Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

ARCHITECTURE OF MALWARE DETECTOR FOR
OBFUSCATED CODE INSPECTION

Y1 EE LING CHUAN,?MAHAMOD ISMAIL,’KASMIRAN JUMARI,“CHAN LEE YEE

L4PhD Student, Department of Electrical, Electromid &ystem Engineering Nation University of
Malaysia, Malaysia
2%professor, Department of Electrical, Electronic &ystem Engineering, National University of
Malaysia, Malaysia
E-mail: ‘iclee_vx@f13-labs.nefmahamod@eng.ukm.mskbj@eng.ukm.my “chanleeyee @f13-labs.net

ABSTRACT

Signature-based malware detection is a very fundéahéechnique that detects malware by generating
signatures. The detection however, is unable teal@bfuscated malware unless pre-generated signiatu
stored in the database. In this paper, we proposenination of known packer detection, unpacking
module, and heuristic scanning techniques to fimdl lBlock a malicious program before it manageseto b
executed locally. Unpacking is the process of pirig packer layers and restoring the original cotste
This module contains self-decryption script bodiest are devised to detect and extract the hiddele-c
bodies of obfuscated malware. Hence, the scanmimgeps only deals with real malware body but nokju
block or junk subroutine code. This paper also draw the implementation and the evaluation of awsv
scanning mechanisms. Finally, we present experamheesults of our proposed techniques and thetsesul
show that our test set is highly accurate.

Keywords. Malware Detector, Obfuscated, Unpacking, Emulator, Disassembler

1. INTRODUCTION computer without the victim’s consent. Currently,
techniques such as packing, encrypting and
The effort of continuously developing obfuscation are the popular methods that malware
applications for computer systems and the Internaeuthors use to hide the malware’s malicious
has been giving malware programs chances fanctions [3]. These viruses are known as
propagate their malicious activities. Malware cambfuscated virus [4]. Obfuscated virus has evolved
infiltrate computers using various methods; fofrom simple encryption and compression to
instance, hidden functionality in regular programsmetamorphic virus [5] and polymorphic virus [6].
attacks against known software vulnerabilitiesMetamorphic virus uses variant obfuscation
drive-by-download from unsafe web sites andechniques to create morphed copies of any base
more. Much research has been done by antivirusalware file. As opposed to metamorphic virus,
researchers to provide better protection fopolymorphic virus mutates or changes by
computer systems and its applicationsgenerating many unique encryption methods for
Unfortunately, the efforts did not stop the growingencryption. Both techniques help in avoiding the
of malware; instead, the techniques became modetection of signature based methods. In spitaef t
sophisticated [1]. Typical antivirus technigquesfact that different obfuscation techniques havenbee
detect these sophisticated malware to create maused to protect the malware instance’s innards,
attack pattern sets. However, the huge signaturesst obfuscation algorithms are available from the
have caused many computers to slow dowmternet (for example UPX, ASPack, Armadillo).
significantly [2]. The computational resourcelronically, many malware that appear today are
consumption by security scanning software isepacked versions with common packers; however,
dependent on the amount of scanning data and ttiey still manage to effectively evade the detectio
size of the pattern set. If the security scannow) t of Antivirus software [7].
|Ssi gdnt?lfi) é(;)r/]?d st|oz g rc:)tfecé:t:u?gvztlevrgsr r{}? : hlrgzt\ﬁlr'g:ja Conceptually, heuristic scanner [8] is devised to

. . detect new and unknown malware. With proper
throughput performance might not be achieved. design of scanning algorithms, the detection of

The challenge of designing a malicious progranexisting virus family variants is possible. Heust
is to design one with the capability of infecting ascanner is devised in a manner of either static or

s
59

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

dynamic [9]. Static heuristic scanner detects method can reduce the size of malware signature
malicious program based on an analysis of coddatabase and accelerate the process pattern
structure. Dynamic heuristic scanner implementsatching by selecting a partial malware pattern to
emulation to simulate CPU and memory activitiebe matched instead of the whole full text of
to detect malicious operations while the malwarsignature. We also proposed a design of a heuristic
program is executed on an emulated platform. engine and emulator engine corresponding to a

Our approach is to design a hybrid method tha}{yture threat_ that most malware detection software
must deal with.

combines the known packer detector and removal
with a heuristic virus scanning engine to acceterat The rest of the paper is organized as follows.
virus scanning in computers. As mentioned earlieBackground and related work is in Section 2.
most obfuscated techniques used by malwai®ection 3 describes the system architecture where
authors are from known packer. Dynamic heuristithe design of virus and packer signature database
scanner is capable in unpacking obfuscatednd the implementation of heuristic scanning will
executables in memory by executing the instandee explained in this section. The experimental
code on the virtual memory. The approach ofesults are discussed in Section 4. Thus, finally,
known packer removal can accelerate the scannignclusion is given in Section 5.

process by detecting and removing any know

packer starting from the common entry point and” BACKGROUND AND RELATED WORK

reveal the real intention of the malicious code
: . . This section briefly reviews the background and
instead of consuming computer time and

works related to this project. Although virus and

performance to emulate and —decrypt garba Talware detection has been studied for years, man

instructions. In cases where no known packer i : y , many
raodern malware programs are still evading existing

detected, the emulator component will be execute : .
malware detectors. Obfuscation is a common

in virtual memory. This approach is based on the
belief that no matter how complex the obfuscatio ?t.hOd that transforms t_he true purpose of the
original program code into a misleading or

algorithm _is, the binary will evenwally be nreadable form in hopes of hiding the program’s
decrypted in memory. Static heuristic scanner Ifrue intentions. According to Brosch [10], more

devised based on an analysis which compares fi .)

. . Than 92% of malware files are runtime packed. In
format and an instance code fragment to a virus_ . S .
“ w u w particular, malware obfuscation is the very first
pattern.” The word “pattern” refers to the

. . . . : Problem a malware analysis should be addressed. If
hexadecimal string in a virus signature. Ou .

. . . . —an obfuscated malware instance cannot be
malicious behavior database is designed by using a acked. the analvsis of the proaram will onl
sequence of one or more segments which ac€€vthe o,bfuscated)lglock as nonl?ins?truction datay
separated by gaps. Each time the scanning enging '
scans a malware instance file, the overall proggam’ Malware detection can occur before, or after the
structure, computer instructions, programmingnalicious code is loaded into the memory. Thus,
logic and some other attributes will be scrutinized the detection approach can be categorized into
tatic and dynamic strategies. Scott [11] preseated
euristic scanning method for detection of windows

capability of detection and removal of obfuscate ased obfuscated malware by scanning Windows
techniques implemented by malware authors. BE structure before the binary is executed in

devised the packer detector approach based an

signature to automate the process of identifyingd) a memory. Sung [12] d_eveloped "_3‘ rob_ust signature
. . . ased malware detection system; Static Analyzer of
extracting the hidden code bodies of packe

executable fies. The proposed -method caff ot Bt eE L e The
accelerate the implementation of the malwar '

detection processes. While the emulator is execut (gzg 'ggjl‘v\?;rt:'2%22rgaggr:]srggﬁtglr;egis'ggﬁﬁ that
the obfuscation program in memory before the Y 9
Is a combination of several features of the code.

scanning and detection of malicious instructions i :))
launched. Towards this end, we make sever chultz appllled the Naive Bay?SS [13] method to
etect previous unknown malicious codes. They

contributions; we proposed an approach of ; ; ; .
. . esigned a framework to train multiple classifiers
malware signature database design that accelerates

. . N a set of malicious and benign executables to

the process of malware detection. The signatur .
: (fetect new viruses.

database uses multiple parts of malware patterns t0

be matched in sequence for virus detection. This

In summary, this paper demonstrates th

s
60

Journal of Theoretical and Applied Information Technology

10" March 2013. Vol. 49 No.1 B
© 2005 - 2013 JATIT & LLS. All rights reserved- L ———
7Y TT]
ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

In this paper, we focus on static heuristicheuristic scanning engine to apprehend if any
scanning or the white-box approach in which thenalicious instructions are contained within the
target malware instance is in hexadecimal formatrgeted program. The following section describes
which enables our scanning approach to understatite functions of each core component.
the whole code structure and functionality of the
malware. The effectiveness of a virus scannin Popm—
engine depends on the virus signature databas
When a block of malware instance program i = -
matched with a pattern set, the data file concerne iy el
is infected. To solve the problem of obfuscatet - Emulator and Disassembler
malware executables using a great variety c
packers [14] (for example, UPX, ASPack,

Malicious
Themida, NSPack.), we integrate the packe Treatiment e
detector and packer unpacking module with ou No

heuristic scanning engine.

Figure 1. Functional Design of Malware Detector Core
3. THE SYSTEM ARCHITECTURE Engine

As the name implies, the packer or code packingl Packer Detector And Packer Unpacking
is an obfuscated technique that is used to hifuert ~ Module
true function of a binary program through reverse The approach of our detection engine is based on
engineering. The intention of this technique,the natural behavior of the execution packer where
especially as applied by most malware authors is the protection malware code will eventually be
repackage the malicious program in ways that wiflecrypted and revealed in memory, regardless the
alter the malware to make it appear completel{yPe of packer or the number of packed layers used.
different from the original binary; thus, effectye TO defeat the obfuscation code implemented by the
evading the detection by most malware detectiopacker which poses obstacles to the virus scanner
software. In order to detect the variant malwar@nd detection engine, an automated process for
which evolves from the implementation of packetdentifying and extracting the hidden-code bodges i
or obfuscation techniques, antivirus companieBroposed.

would create a virus signatur_e for each var_iant In the packer detector component, we devised an
malware program. Due to this tendency, Viruggorithm that identifies whether a program applies
signatures increase S|gn|f|pantly. In this papke t any obfuscation mechanisms. Known packer
proposed packer detection and de-obfuscatiqfetection function is built on top of core scanning
techniques would accelerate the overall scanning,mnonents. It is developed to analyze a malware
process and reduce the size of the virus signatUiiance file, and determines if any packer has bee

database. applied. Our approach begins by detecting any

In this section, we describe the architecture ef thPacker applied for malware instance files based on
malware detection system that is the coréhe packer signature detection at entry point [15].
component of our malware and virus scannefhe entry point is the first instruction the pointe
framework. As shown in Figure 1, the corePoints to, which is intended as the destinatiora of
component consists of known packer detectofond jump. A module for automating the process of
packer unpacking module, heuristic Scanningxtracting the hidden code to obtain the Original
engine and last but not least, the emulator argPde bodies of the program is executed if any
disassembler. Both known packer detectopacker is detected.

component and packer unpacking module pigre 2 llustrates the architectural design @f th
component rely on the packer database. The packetcer signature database. As shown in the figure,
database defines the packer signatures and en entities are required to store the data for
sequences of unpacking instructions. In case f,cker detection. The packer_no entity displays the
known packer signature is detected by the targetedhount of packer signatures inside the database. In
program, specific unpacking instructions will beis case, only one packer signature is available i
executed to unpack the packed program to revegle gatabase. The remaining entities, _prefix_ftype
the real functionality of the program. The virus prefix_fname, prefix_signature_length,
signature database consists of the ma”CiOU_Sprefix_reserved, pre_fix sig?lature data and
signatures and its cure function. It is used by thf’prefix:cure_offsetarg defined with a serial of

61

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

prefix numbering identification. The _prefix_ftype instance. The value of an arbitrary amount of bytes
determines if the targeted program is a Windowafter (*) wild card indicates the distance in bytes
PE program. The name of the packer is definebetween two segments.

under _prefix_fname. Whether a targeted program Th it tchi f :
implements the packer is based on the signature € pattern malching process ot our scanhing

matchina process between the taraeted binar Wiﬁ_lngine uses a variation of the Aho-Corasick pattern
N9 p g y matching algorithm [16], which prepares for the on-
_prefix_signature_data. If the program perfectl

y o : .
matches, the execution pointer will jump to thedoing future plan that will consist of a large nwemb

particular unpacking module located at the of'fse?f patterns against input text inside the database.
address defined by _preflx_cure_offset. State0 | Statel | State2 | State3 | State4

Jdata ;signature database | | | |
packer_no dd 1 ;nuber of records in the database

_o01_feype do eftype pe
_001_fnane dh 'Pack.UPX.
db 013 dup (0)

001 _signature_length db 011

001 _reserved dv ?

_001_signature data do h, '*',004d,06Dh,0BEL, '*', 004d ;ollydog=60h,BEh, 3Fh,04h,8Dh, BER
dh CDh
dh 019 dup (0)

_001_cure_offset ad 0

State5

State6

Figure 4. Success Transitions of keyword searching

More
Signatures

The Aho-Corasick algorithm is initialized by
building a finite state machine for the entire
signature pattern with the purpose of constructing
pattern matching automaton. Figure 4 shows the
automaton for the signature of “55 8B EC 8A 55"
and “55 8B EC 33 DB". State O illustrates the
3.1.1 Scanning and matching process beginning of the automaton, and both of the final

Generally, packer signatures can be defined asSiates are shown in bold circles. The first sigreatu
set of instruction sequences that contain the moB@ttern, “55 8B EC 8A 55" is added at state O until
significant information to represent a particulaState 4. Since the second signature shares the same
packer. The scanning process to determine wheth@iefix (“55 8B EC”) of the first signature, onlyase
a file contains the obfuscation instruction reles S and state 6 are needed to be created.

a matching process between the body code of the s signatures with the same prefix are stored in
targeted program, P, and the packer signature, 3 jinked list under the appropriate trie leaf noéie.
The targeted program will flag as packed by §ong as the trie is built, the pattern matching
particular packer if a match is found. In order t,ocess is ready to read the opcode of the targeted
reduce the size of database and increase t fogram whether it matches with any of the
effectiveness of the scanning process, the matcm%tterns in the trie. If the match is confirmeduyil
process works together with wildcard techniques ify|iow the trie transaction and check the entire
which skipping of bytes and byte ranges is allowedyaitern inside the linked list using a sequential
In our framework, the wildcard character, “, iS string comparison method. The process proceeds

defined to determine the number of character thafytj| the last input opcode is read or a matchufail
are skipped between the two consecutive signatuf€detected.

letters of the body code of a file.

Figure 2. Packer Sgnature Database

' o 3.2 Heurisgtic Scanning Engine
000h most significant malware functionalities statically

without executing the targeted program. Figure 5
illustrates the idea of our heuristic scanner emgin

Figure 3 uses a wild card regular expression tynlike dynamic analysi.s, static. extraction analysis
divide the signature into two segments. As showRrovides —complete information —on targeted
in the example, upon a hit of 0B4h, 03Ch, oBBhinstances via PE parsing approach. Generally, the
000h,if 026h, OFFh, 01Eh, 084h, 000h appears aftErE parse transforms Windows binary files to collect
the skip of 9 bytes distance from the first segmentformation for the purpose of pre-automating the
only then it is possible to report the file as akel analysis. The static extraction step for informatio

s
62

Figure 3. Fragments of a Malware Signature

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

collection is quite complex and require severamatches the asterisk character (*) wild card, it wi
processing steps. proceed to step 2.

Static extraction, illustrated on the left side of Step 2: Malware Code Offset address+ x
Figure 5, uses the traditional extraction technigue bytes.The pointer of the scanner will move to the
collect necessary information. As shown in thenext pattern segment with predefined length of
figure, the initialization function displays thet@m gaps. The process will proceed to step 3.

of the scanning engine. The comm_and In_we Step 3: Signature Match. This stage performs the
argument component collects the scanning 0pt|0r1[. . : .

: : : : . string pattern matching process with the signature
for the next instruction action. Prior to beginning atabase. Upon a hit of a sianature matched. the
the heuristic scanning process, the information oqrocess Will 'pum to step 4 tog repare for the r'1ext
the scan target is crucial to prepare the drivéa pa{s)cannin Ioc: I?Iowevef if nopmgtch is reported
and search for file components. By Callingthe heugr]isticpécannin ,rocess will sto aF;Id thé
Windows APl functions, which include P gp > Wil Stop

remaining incomplete scanned file will be passed to

GetCurrentDirectory, FindFirstFile and the emulator and disassembler module [17].

FindNextFile,information such as the scannin ulator is a safe virtual environment in which to
path, names and total number of targeted scanni . : :
spot and trace the next instruction of an instance

fles can be collected. The last information

: ! executable program.
collective step, the process file component,
identifies the file permission, file type and siak Step 4: Signature Detection Loop.The scanning
each scanned program. As soon as sufficiepattern pointer will shift to the next charactedan
information is collected, the information will be the scanning approach will reiterate from step 1.
emitted to the heuristic scanning component t
perform the matching process for identifying
whether the targeted program is benign oE

21 Taxonomy of Virus Detection
In general, the heuristic scanning examines
haracteristics of the scanned target program code,

malicious. which includes the file size, its architecture and
m behavior to determine the likelihood of an
_ infection. It intends to duplicate expert antivirus

analysis by looking for specific signatures witte th

likeliness of a virus or certain unusual instrunto
or commands which of these are not found in
typical application programs. The heuristic
scanning performs in a manner that uses a search
and detect function to scan for pieces of
2. Malware code H [T H i’
et hexadecimal code that are generally “viral-likedan
do not have known signatures.

2.Command Line

Arguments
4. Signature
Detection Loop

3. Prepare Drive
DPath

4. Search for file

1.Data
Signature=*'x
Yes

match?
As mentioned earli?r_, he.uriftics_sqanning.is a
method that looks for “viral-like” activities. Utkde

Figure5. Flowchart To Describe The Overall proc.iﬁ traditional signature detection, heuristic scanning
Of Satic Heuristic Scanning involves static extraction and verification of ith

benign or malicious of an executable based on

The heuristic process, as shown on the right sicR¢havioral signature, not simple byte patterns.

of Figure 5 performs the operation according to thB€havioral signature is a program with distinct
following steps: syntaxes that have identical malware behavior

] _ capture signatures. With the design of malware
Step 1. Data Signature="x.The process begingehavior signatures, the ability to detect a magwar
by detection of asterisk character (*) wild cardsno longer relies on detecting a single piece of

Symbol (x) represents arbitrary bytes of valuedor malware program but a whole class of malware
gap between two segments that was predefined ym a common strain.

antivirus analysts. On the condition that the .

scanning pattern character is not equal to the Figure 6 shows an example of pieces of code that
asterisk character (*), it will jump to Step 3 toperf_o_rm actions in a way that we _have specified as
perform the comparison with thevirus signaturdnalicious. The left side of the figure shows the

database. On the contrary, if the scanning proce8gerational code (Opcode) [18]. It is part of a
machine language instruction that specifies the

s
63

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

-:l'\lll

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

operation to be executed and it is readable bgntities will be defined with a serial of prefix
microprocessors. On the contrary, the Disassembteimbering identification. As shown in Figure 7,
Code [19] on the right side displays assemblgonsider the fifth group of virus sample signature,
languages in human-readable format that have be@005_ftype and @O005_fname, which represents
translated from machine language. The exampkhe type of executable file and name of the malware
code in Figure 6 illustrates a program logic thainstance, respectively. eftype_pe represents the PE
performs a function which determines the entryile format. @005_sig_len specifies total length of
point of a targeted program and returns to ththe signature. In addition, the signatures were
normal execution flow. During infection, a malwarestored in the most efficient Opcode data type, as
program does not know the exact address ishown in @005 sig data. The selection of the
memory until the allocation is made. Moreover, theignature is based on the significant behavior of
allocation address might be different from arfunlove. The virus implements the modification PE
execution to another. This is a common automatastructure method by inserting its malicious code in
virus infection mechanism to retrieve the memoryhe .reloc table in PE structure.This behavior doul
address of the entry point for overwriting ornever happen for a normal benign program. Our
moving programs in memory. approach of @005 cure_offset will trigger the
scanner to proceed to the funlove cure function if

O TSHRdtoRbE the infection of Virus.Win32.FunLove.4070 was
b Has S detected. @005 reserved takes no action and is
2. BB0000 MOV BX. 0000 —
3. SDSIED <offset address> POPEBP reserved for future usage.
SUB EBP, <offset address> .
4 66 S13E 5045 CMP WORD PTR[ESI), ‘PE’ 3.3 Emulator and Disassembler
5. 9C PUSHF
6. 66813E 4D3A CMP WORD PTR[ESI], ‘ZM’
7. 66 813F 4B45524F CMP DWORD PTR|ESI|, ‘KERN’ Start Emulator 6A 14 SE
Figure 6. Sample piece of malicious code found on a l CO 3B C6
malicious executable file 59 59 85 50
))) Disassembly
Our malware and virus scanner detection engin PUSH ESI
approach comprises of a scanning engine modu i PUSH 14
and a malware signature database. Both modul Assembly POPES|
work together and are inseparable. Generally, tr TEST EAX, EAX
design of our signature database is highly volatile l CMP EAX, EAX
The main goal of volatility is to ensure new Allocate Virtual Buffer
signatures can be updated in the future.
\L movdwordptr[regs+000], eax
movdwordptrlregs+004], ecx
8005_feype @ etcypeye Execute Instructions owordotT o121, o
B005_fname z 0‘:‘; dup M 2 .Funlove.4 movdwordptriregs+020], ebp
#005_sig_len db 015 ‘ l movdwordptriregs+024], esi
@DUSZzesgrved dw 2 o ptriregs+028], edi
JEGh, 0Akh, 008h, 00)h,08Dh, '*',005d,08Bh,03Ch = pusl
8005_sig data e T ey T T AR Destroy Virtual Buffer moveax, dwordptrlesp]
db 15 dup (0) dwordptriflags], eax

B005_cure_offset dd offset funlove popfd

Figure 8. Incremental steps of the Emulator and
Signature Disassembler

The emulation identifies common malicious
activities via emulating the instruction codes of a
targeted program. Thus, a safe and isolated

The design of our detection engine to detect bo@nvironment is crucial to perform a just-in-time
malicious code and known packer for instanc®inary execution within the environment to prevent
executable files is similar; both using a signaturéhe execution of malicious instructions that can
database. Figure 7 shows the architectural degign @ause damage to the local computer. To emulate
a virus sample and packer signature databasé¥ery instruction, the CPU emulation is devised to
respectively. Similar to the architecture of theP@come the core of the emulator engine. Figure 8
packer signature database shown in Figure 2, dilustrates the overall steps of the emulator eegin
The process flow begins with the Disassembly

s
64

Figure7. Virus Sgnature Database

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

component translating the targeted program frorsource pointer of signature database and EDI as a
opcode into assembly instructions. After thepointer to the first byte of malware binary at gntr
disassembly process, a safe virtual environment goint. Thus, the three variables; signature length,
ready to allow the translated instructions to besignature data and code location, are assigned to
executed. ECX, ESI and EDI respectively.

A safe virtual environment requires a list of Packer signature database illustrates the design
virtual CPU register for support when performingof packer database. packer_no shows that there is
the corresponding instructions. The execution ef thonly one packer signature inside our database.
target sequence will call the defined virtual CPWItimate Packer for eXecutables (UPX) [22] is the
without access to the original register. Duringpbfuscated mechanism used by the instance
execution, the virtual CPU has to check whether amalware defined by @001 fnrame entity.
existing block of instructions consists of malicsou @001_sig_len indicates the total length of packer
code. The virtual buffer of the emulator would besignature. Before the next heuristic scanning
destroyed if any malware signature is detected qrocess begins, the target instance file staysin a
the maximum allowed time for analysis hasunpack form. Thus, any detection of known packer
elapsed. All original register saved on the stackeported, the detection mechanism will trigger an
must be destroyed before handling a pointer tautomatic unpacking process to reveal the innards
conclusion, where it will be decided whether theof the instance binary file.

scanning program was infected by a malware or As shown in Figure 9, a total of eleven bytes of

not. length has been defined, and the ECX register will

4. |IMPLEMENTATION AND inherit the value for future scanning processe® Th
EXPERIMENTAL RESULTS heuristic scanning engine, fully coded in assembly

4.1 Implementation And Experimental Results language, shows the overall scanning process.

The implementation of known packer and virusAccording to the program, sig_detec loop is
signature detection described in this sectionirtyfa designed to detect any asterisk character (*),ewvhil
conventional. Heuristic scanning engine uses the other two functions, detection_compare and
specific packer signature database to determine detection_cont are designed to perform the
any packed-code is applied by an instance binéry. $canning/pattern matching process and
a packed-signature match is detected, ouwosition/shift values corresponding to possible
unpacking mechanism is used to unpack and extrdaibcks respectively.

X‘e hldd.?n C(.)de co_ntalned in the target_bmary file Prior to starting our packer detection codes, the
specific virus signature database is used t ;
determine if any malicious program exists inside asgal length of the generated signature patter,

instance binary. The virus signature databasegefe 001._S|g_len IS saved_ n th? ECX register. The
value is of eleven bytes including asterisk chanact

. As shown in Figure 9, the heuristic scanning
rocess will begin at the sig_detec_loop function t

to common short signatures, which are presented
most viruses (also known as “suspicious’
command). Our approach is to select different co

1 *
segments from a common short signature and saJg ZE ¥ SRS GRECE [RS, O 00
it into our virus signature database. If a match i& ' 9 B

. o . will jump to the detection_compare function to
found, the instance file is flagged as virus. . ; . X
perform the comparison of instance binary with the

Figure 9 illustrates the packer detection of th@acker signature database. Upon a hit of 060h,
obfuscation mechanism applied byOBEh opcodes, the sig_detec_loop function is able
Worm.Win32.QAZ [20] together with a predefinedto detect an asterisk character (*) and the scannin
packer signature database. As shown in the figurprocess jumps to the detection_cont function. The
the upper part of Worm.Win32.QAZ packed withcounter value of ECX register will decrease and the
UPX packer refers to the hexadecimal format [21pointer of the EDI register will move to the next
of the packed binary. It is a hexadecimal view opattern segment with a predefined length of gaps. |
malware binary and each byte is represented asttas case, the total predefined value of gap is 4
two-digit hexadecimal number. Parameter is a prdsytes. The scanning process will shift to the next
allocated variable that exists in the x86 registersharacter and the scanning approach will loop back
[18] before the heuristic scanning process start® the sig_detec_loop function. The scanning
Conceptually, many instructions assign specifiprocess will reiterate until the value of ECX
registers of certain arguments. For instance, gtrircounter becomes zero or the match of the entire
instructions use ECX as a size of signature, ES@l assignature at @001 _sig_data is reported.

s
65

Journal of Theoretical and Applied Information Technology

10™ March 2013. Vol. 49 No.1 N
© 2005 - 2013 JATIT & LLS. All rights reserved- L ———
7Y TT]
ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

0002312
0003314
00023141
0002318

Hl 3661 4100 6604 A540 OGS £100 0000 1050 B4EY 2500 0000 0083 ¢
SES FFLS 70F4 4100 A308 C14 00A1 DECL 4100 C1EG 0625 EFOD 0000 A:
41 0DEB DDA C141 0381 EIFF 00CO 0089 ODED C14L 08B 1SED C141 00C1 E208 0315
€1 4160 §915 DCC1 4100 AIDS C141 00C: E810 25FF FD0 D0A3 Di

(00007E60 | B 15C0 4100 BDBE EB4F FEFF E7HI UDFE EB10 9090 9090 9090 8ADG 4686 0747 0105 M. .A....0..% i 561 300, B oauty
[D0007ER0 (7507 SBIE B3EE FC11 DB72 ;nﬂﬂ 0100 0000 01DB 7507 BBLE 8;[[FC11 DBIL CO001 DB73 ! x. 000131A0{0085 €075 DA6A ICES A401 DODO 83C4 DA 062
[D0007EAQ|EF7S 098B 1E83 EEFC 11DB 73E4 31C9 83E8 0372 ODCI E008 8AUG 4683 FOFF 7474 89CS 030)31C0 FF1S FBE3 4:00 A3SC DA41 DOES COSB 00 i}
[D0B07ECO (0108 7507 8B1E 83EE FC11 DB11 £901 DB7S B 1E83 EEFC 11DB 11C9 7520 4101 DB7S 0D0)31EQSCDA 410 0075 0AGA FFEB
[D0GO7EEQ | 0788 1E83 EEFC 11DB 119 01DB 73EF 7509 8B1E 83EE FC1l DB73 E483 C102 B1FD 00F3|. 00003200 |8BOD SCIA 4100 894D 9
I00007F00 |FFFF B3D1 018D 142F S3FD FC7 OFSA 0242 8807 4749 7SE7 E963 FEFE FF9Q GEO2 83C2 00033220 3033 COEA 0263 Feez 7424 2Bl 271 1F38 4 820 5158 9ES1
D0D07F20| 0489 0783 0704 B3EY 0477 F101 CFEY CFF FFFF SEBQ F7BO 0804 0000 807 472C ES3C 03013240 |0000 8304 0485 CO74 0383 559C B3C2 0189 559C EBCL 3845 2 0883 F922 7509,
l00007F40| 0177 F780 3F0S 7SF2 8807 GASF 0486 CIES 0SCI COLO S6C4 29F8 SOEB ES01 F4B9 0783 260 logss se3 ool o o6 330 55 207 A
[D0B07F60|C70S 8808 E2D9 BDBE 0010 0200 8BO7 09CO 7445 8BSF 048D 8430 1835 0200 01F3 5083|..... ot P e R S 808 Uind TG
l00007F80|C708 FE96 B35 0200 95GA 0747 0BCO 74DC GIEQ 7907 OFB7 U7AT 5047 B9S7 48F2 AESS| ... Buonwea
I00007FAQ |FFS6 BC3S 0200 09C0 7407 8903 83C3 O4EB DEFF 9604 3502 00SR AECO 3502 009D BEOO|...S. - -
~sig_detec_loop: = Worm. Win32.04Z
B | /' bish] ([i
-~ sis_detec_loop: T~ Worm.Win32.QAZ Packed with UPX packer \ secx = signature length
/ lodsh cnp al, sesi =signature_data
iy fon AL \ secx = signature_length juz detection_compare i =collsbabos
; 0 wesi =signature_data sub ea,eax \
jnz detection_compare i, SAIEnAE S 4
i e _ edi =code Iocation) bish 5 Pargmaas 5
lodsb B Paranieters dec a /data 3
dec ecx /7 data add e, eax [virus_no a7
3 / :) =
?dd edi, eax [packer_no ad 1 jmp detection_cont-1 @003 frype db eftype_pe
jmp detection_cont+] @00L_fivpe b eftype_pe detection_compare: @001_faame db Worm Wiud2.04Z
detection_compare: @001_fname db ‘Pack.UPX.202 anp bytepirfedi], al
@001 db 011 dup(0)
pug byeptiati,a) db 013 dup(®) it defection_cont Q001 sig len dh 019
[detection_cont @001 _sig_len db 011 sub eax,ax 2001 2
b eax, eax p= 5 s e @00 reserved dw ?
2 e OB, teteeped i 2 jmp detection ret @001 sig data b 055k, 03Bk, OECA, 06Ah, OFFh, 068k, **, 0054, 004k, 045k
imp etection_re @001 _sig_data db 060k, 0BEL, ***, 004d, 08Dk, 0BEL, TH e g o sk g S g N
Tetics : ek . X db 040k,00%,064h, 0A b, 000k, *, 004d, 064h, 039k
detection_cont: db 057h,083h,0CDh i el dun (O ’ S
inc edi db 019 dup (0) ! db 011 dup ()
Tog . AR R ok 4 b loop sig_detect_loop @00L_cure offset dd cmethod_delete
\ /o RS \ mov all I
mov a1 gtk \ g \ /
“._ Detection_ret: ik 1.8 . Detection_ret: —— P
L . S Packer Signature Database = . . o = S Virus Signature Database -
Heuristic Scanning Engine Hewiste Seanning Engine

Engine
As soon as the targeted viruses were collected

The process of detecting Worm.Win32.QAzfrom the VX Heaven website, the experimental
virus illustrated in Figure10 shows that the patterdetection was initialized via detecting the tardete
matching process between the malware binary witfiruses with the proposed malware scanner engine.
the virus signature occurred at theThe malware detection test is built based on the
detection_compare function. After a hit of seriegnalware samples that have been collected. Table 1
055h 08Bh OECh 06Ah OFFh 068h, theillustrates the proposed malware scanner and
sig_detec_loop function succeeds in detectingetection results. Under the detection column, only
asterisk character (*) and the overall process pmpWwo options are allowed, that is _elthéror X. A
to detection_cont. The counter value in ECXndicates detection, X indicates failure to detéd.
register decreases and the pointer of EDI registéhown in Table 1, the seven malware are detected
moves to the next pattern segment with predefinddy the proposed malware scanner engine.
length of gaps which is five bytes. The scanning \sirs wingx.Marburg.b was the virus that used
process shifts to the next character and the se@nnio5; 32 pit

. ; . polymorphic engines. It can create
approach continues to the sig_detec_loop fundm@adless numbers of new decryptors via different

The scanning process repeats until the value @fcryntion methods to encrypt the constant part of
ECX counter becomes zero or the maitch of thge “yirys body. Our detection malware tool,
entire signature at @001_sig_data is reported. nstructed by both dynamic decryption and
4.2 Experimental Analysis emulator, has the ability to deal with this
The experiment began with the detection of regdbfuscation technique. As mentioned earlier, the
malware from the Internet which were oncdntention of the packer unpacking module is to
infamous causing millions of dollars lost at itsunpack the known detectable packer; however, the

appearance. Seven viruses including Marburg [23pumber of unpacking algorithm in the database is
FunLove [24], Kriz.4029 [25], Parite.B [26], limited. In order to defeat the new and undeteetabl
Worm.QAZ [27], Confickervarian B and packer, the emulator component is proposed to the
Confickervarian C [28] have been collected from gcanner engine. Table 2 examines the detectable
virus collectionwebsite, VX heaven [29].time and cure time of the emulator component. In

Nevertheless, the website is currently seized bijpis test, the unpacking algorithm of the

local police forces due to the criminal investigati Viruses;Virus.Win9x.Marburg.b, Conficker variant

in regards to the articles of 361-1, “Criminal CodeB and Conficker variant C, are not found in our

of Ukraine — The creation of malicious prograndatabase. The emulator component will be triggered
with an intent to sell or spread them”, based off unpack the obfuscation portion to reveal the
someone's tip-off on “Placement into the frednalicious code to the scanner to detect the
access malicious software designed for thabnormal instructions. Table 2 shows the scanning
unauthorized breaking into computers, automateiéime of the emulator.

systems, computer networks” [30].

66

Journal of Theoretical and Applied Information Technology
10" March 2013. Vol. 49 No.1 5

© 2005 - 2013 JATIT & LLS. All rights reserved- o ———

-;l'\lll

ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195
Table 1: Feature Analysis for detecting virus and Table 3: Feature Analysis for detecting virus and
malware malware
Virus/ Malware with UPX Packer Detection File
Virus/ Malware Detection | File (MD5) (Vor X) Size
(MD5) (or X) Size (KB)
(KB) Virus.Win32.Kriz.4029 N 186
(a583bd8e66c4afeb5h27d28c51131538¢) .
Virus.Win32.Funlove.4070 24
Virus.Win9x.Marburg.b N 28
(e8e0f1f5305718a03432a09fe38ab007¥) . @i?;?@?ﬁggngzeb‘%ﬂd2805“315 ¢) N 376
Virus.Win32.Kriz.4029 470
(79c56806145667968528(e806990cD) (57d0fe9f2c1531bd87c08af6ddd74bd7)
Virus.Win32.Funlove.4070 N 61
(fe05b8bbIeabcdafe0125334d02ch65g) Table 4 shows the required time of the proposed
Worm.Win32.QAZ v 118 | scanner engine to remove the obfuscated packer
$e9307.b°19aoa.‘7270°501°5€9108d214) and detect the malicious code. While comparing the
irus.Win32.Parite.b N 338 ; . .
(f68924564a3bdb3f62093ab10e713180) results with Table 2, the file sizes of the Samples
Conficker Variant B N 158 are significantly reduced. Both removal time and
§66f74k104\'/30q36d8dc9162a6671943379) . = curing time are almost similar to the original
onficker Variant . 171
(50279ef7fch581841199€0f55cdeasb) sample from Table 2. Summarizing, the retgrn
performance results are good where the required
. _) time to unpack and cure the malicious portion is
. Table 2. Detection anq Recovery Time . less than one second.
Virus/ Malware Emulation Emulation File
Detection Detection Size
Time and Cure | (KB)
(Milli- Time Table 4: Detection and Recovery Time
seconds) (Milli- Virus/ Malwar e with Remove Remove File
seconds) UPX Packer Packer Packer Size
Virus.Win9x.Marburg.b a7 63 28 (MD5) and and Cure | (KB)
(e8e0f15305718a03432 Detection | Time
a09fe38ab007) Time (Milli-
Virus.Win32.Kriz.4029 125 140 470 (Milli- seconds)
(79c5d6806145b679684 seconds)
28ffe806990c0) Virus.Win32.Kriz.4029 130 140 186
Virus.Win32.Funlove.4 16 18 61 (a583bd8e66c4afeb5b27d
070 28¢51f3153e)
(feO5b8bbYeabcdafe012 Virus.Win32.Funlove.407 | 17 19 24
5334d02ch65a) 0
Worm.Win32.QAZ 16 17 118 || (a583bd8e66c4afeb5h274
(1€9307bc19a0a7270cH 28c51f3153e)
01c5€9108d214) Worm.Win32.QAZ 17 18 34.6
Virus.Win32.Parite.b 31 32 338 (57d0fe9f2¢1531bd87c08a
(f689a4564a3bdb3f620 f6ddd74bd7)
3ab10e713180)
Conficker Variant B 16 17 158 . . .
(6ee741c4e0d36d0dc9] 4.3 Theinterface of malwar e detection engine
62a6€71943379) In this section, the final result of malware
(Csogfi?%kir?;/zfsigff\éﬁlgg 15 17 86.5| detection engine will be discussed. Our malware
e er/1c H H H
c0ff55cdeash) detection engine can be performed in the form of

console and graphical user interface based. Irrorde

to maintain the light weight and reduce the
The detection, without any resistance techniquescanning time, the entire engine is built using

lacks effectiveness in the scanning and detecticmssembly language. However, Python programming

engine. Thus, the experimental task is followed bis integrated with the assembly language to develop

implementationof The Ultimate Packer forthe graphical user interface of the malware

eXecutables (UPX) packer with the viruses, and thgetection engine. The main purpose of the graphical

same previous detection task is conducted. TableuSer interface is to reduce complications and

shows the detection of obfuscation viruses anihcrease the flexibility for users to execute the

malware with the proposed scanner engine. Only scanner engine.

viruses are packed for the examination which

includes Virus.Win32.Kriz.4029,

Virus.Win32.Funlove.4070 and Worm.Win32.QAZ.

s
67

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 P

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

: metaware.exe Loptions]lpathl 1
optione 1 e Gisintoor malware out of 290 executable files that were
sun — save report scanned.

appends to existing report

check all files

Figure 11: The Option of Execution of Malware
Detection Engine

Figure 11 shows the execution options of thi
detection engine in console based. As shown in tt
figure, the options are “/c”, “/wn” and “wa”. The §
“disinfect” option (“/c") is designed to detect and
delete the malicious instruction of a targeted
executable program. Without this option, the enging
will only perform the detection process. The Optiol e —
“save report” (“/wn”) performs the scanning resultsFigure 13: Results from Malware Scanning Core Engine
and allows users to review the output of the scan.
Last but not least, the option “appends to existing. CONCLUSION
report” (“/wa”) is to append the existing report in

the same result file. The “[path]” allows the user The analysis and detection of malware has beena
select the desired directory. The user can SPECiane-consuming and challenging task. In this paper,
the desired path by inputting the directory of th§ue presented a heuristic method for detection of
path (e.g. c:\, c:\Document andopfuscated or mutated window based malware. Our
Settings\User\Desktop etc.). However, the user cafethod scans for suspicious behavior patterns in
also perform a full scan of the entire directory inthe malware instance file before the binary is
the user's computer. This can be done by inputtingyecuted locally. In order to defeat the obfuscated
the “/*". techniques which areapplied by most malware, an
Figure 12 shows the graphical user interface gutomated process for identifying and extracting
the malware scanner engine that was proposed ¢ original code bodies is proposed. This method
this paper. The graphical user interface approadif€vents the scanning process from consuming
allows the user to conduct a scan without having te°MPuter resources by scanning junk blocks or junk
input any options which may cause confusion. ASubroutine codes. Ou_r virus detection approac_h is
soon as the scan reaches the end, another windB@sed on the combination of packer detection,

will appear displaying the scan results as shown iﬂa_lcker removal, and heuristic scanning (_:oncept. In
Figure 13. this paper, the overall concept and algorithm ef th

core component have been described.

ACKNOWLEDGMENT:

The authors gratefully acknowledge that financial

- support for this research was received from a grant
funded by Universiti Kebangsaan Malaysia under

. grant number oup-2012-182

REFRENCES:
Figure 12: The Graphical User Interface of Malware [1] Gupta, A., et al. An empirical study of malware
Scanner Engine evolution. in Proceedings of the First internationa

In order to validate the scan engine, three real gnference on COMmunication Systems And
time malware were randomly inserted into a testing NETworks. 2009. Bangalore, India
Com_puter. The 'T‘a'Wafe scanning core engln&] Clementi, A. Release rates & update size of
begins by scanning the entire C directory. AS " gignature databases of some main top Anti-virus
shown in Figure 13, a new window will pop up products. 2006; Available from: http://www.av-

after the scanning process which displays that the comparatives.org/seiten/ergebnisse/Release_rates.
scan has detected three executable files infegted b pdf.

s
68

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

[3] Kang, M.G., P. Poosankam, and H. Yin, Renovo:[&6] Aho, A.V. and M.J. Corasick, Efficient string
hidden code extractor for packed executables, in matching: an aid to bibliographic search.
Proceedings of the 2007 ACM workshop on Commun. ACM, 1975. 18(6): p. 333-340.

Recurring malcode2007, ACM: Alexandria{17] Ligh, M., et al., Malware Analyst's Cookbookca
Virginia, USA. p. 46-53. DVD: Tools and Techniques for Fighting
[4] Priyadarshi, S., Metamorphic Detection via Malicious Code2010: Wiley.

Emulation, in The Faculty of the Department ofig] Hyde, R., The Art of Assembly Language2003:
Computer Science2011, San Jose State University. No Starch Press. 1000.

p. 84. [19] Ferguson, J. and D. Kaminsky, Reverse

[5] Chouchane, M.R. and A. Lakhotia, Using engine Engineering Code With IDA Pro2008: Syngress
signature to detect metamorphic malware, in pyb.

Procee_dings of the 4th ACM _Workshop ,OTZO] Marx, A., The Usual Suspects - Part 3, in iru
Recurring malcode2006, ACM: Alexandria,” gjietin February 20012001, Virus Bulletin Ltd. p.
Virginia, USA. p. 73-78. 14-16.

[6] A,bd””f"" SM. and O. Zakaria, Devising) a[21] Yan, W. and E. Wu. Toward Automatic Discovery
Biological = Model to Detect Polymorphic™ "ot \ajware Signature for Anti-virus Cloud
Computer Viruses Artificial Immune System Computing. 2009: Available from:

(AIM): Review, in Proceedings of the 2009 .15 trendmicro.com/imperia/md/content/us/pd
International Conference on Computer fithreats/securitylibrary/weiyan-09-
Technology and Development - Volume 012009, whitepaper.pdf.

IEEE Computer Society. p. 300-304. t[eng] Oberhumer, M.F.X.J. and L. Molnar. UPX: The

[7] D_esai, .P" Towards an undetectable compu Ultimate Packer for Executables. 2010; Available
virus, in The Faculty of the Department of ... http://upx.sourceforge.net.

Computer Science2008, San Jose State Universif¥3] F-Secure. 1998; Available from: http:/Awww.i-
[8] Pao, D., et al., String searching Engine fausi secure.comiv-descs/marburg.shtml '

scanning. IEEE Trans. Computers, 2011. 60(1][54] Kaspersky. How to disinfect computer from the

p. 1596-1609. virus Win32.FunLove? ; Available from:
[9] Symantec Understanding Heuristics: Symantec’s http://supporté.kaspersky.corh/38 .

Bloodhound Technology. XXXIV.) I1525] Panda. Virus Encyclopedia. [cited 2007 March

[10] Brosch, T. and M. Morgenstern. Runtime Packe 26]: Available from:
The Hidden Problem? in Black Hat USA 2006. hyn./amww.pandasecurity.com/homeusers/security
2006. Las Vegas, USA. -info/24779/information/Kriz.4029

[11] Treadwell, S and M. Zhou. A heuristic appm)a_ 26] Panda. Virus Encyclopedia. 2008 [cited 2008
for detection of obfuscated malware. i December 12]: Available from:

Proceedings of the 2909 IEEE internatior]al http://www.pandasecurity.com/homeusers/security
conference on Intelligence and security _¢0/18181/Parite.B/.

informatics. 2009. Richardson, Texas, USA. - [27]Kit, F.A. QAZ worm. 2000 [cited 2007 January
[12] Sung, A.H., et al., Static Analyzer of Viciou 4); Available from:

Executables (SAVE), in Pfoce,edings of.the. 20th http://www.fireav.com/virusinfo/library/gaz.htm
Annual Computer Security Applications
Conference2004, IEEE Computer Society. p. 32
334.

[13] Schultz, M.G., et al., Data Mining Methods for
Detection of New Malicious Executables, in Lumpur.

Proceedings of the 2001 IEEE Symposium . .
Security and Privacy2001, |EEE Computg[tag] VXHeave. [cited 2012 April 20].

Society, p. 38. [30] CRIMINAL CODE OF UKRAINE. 2001;

E2_8] Chuan, L.L., et al. Automating uncompressimgl a
static analysis of Conficker worm. in
Communications (MICC), 2009 IEEE 9th
Malaysia International Conference. 2009. Kuala

[14] Wu, Y., T.-C. Chiueh, and C. Zhao, Efficientca ﬁt‘{af'/";‘lb'? tion y < /from: ,
Automatic Instrumentation for Packed Binaries, in p-/egisiationiine.org/documents/action/popup/i
d/16257/preview.

Proceedings of the 3rd International Conference
and Workshops on Advances in Information
Security and Assurance2009, Springer-Verlag:
Seoul, Korea. p. 307-316.

[15] Eagle, C., The IDA Pro Book: The Unofficial
Guide to the World's Most Popular Disassembler
2011 San Franscisco: William Pollock. 672.

s
69

