
Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

59

ARCHITECTURE OF MALWARE DETECTOR FOR
OBFUSCATED CODE INSPECTION

1LEE LING CHUAN, 2MAHAMOD ISMAIL, 2KASMIRAN JUMARI, 4CHAN LEE YEE
1,4PhD Student, Department of Electrical, Electronic and System Engineering Nation University of

Malaysia, Malaysia
2,3Professor, Department of Electrical, Electronic and System Engineering, National University of

Malaysia, Malaysia
E-mail: 1lclee_vx@f13-labs.net, 2mahamod@eng.ukm.my, 3kbj@eng.ukm.my , 4chanleeyee@f13-labs.net

ABSTRACT

Signature-based malware detection is a very fundamental technique that detects malware by generating
signatures. The detection however, is unable to detect obfuscated malware unless pre-generated signature is
stored in the database. In this paper, we propose a combination of known packer detection, unpacking
module, and heuristic scanning techniques to find and block a malicious program before it manages to be
executed locally. Unpacking is the process of stripping packer layers and restoring the original contents.
This module contains self-decryption script bodies that are devised to detect and extract the hidden-code
bodies of obfuscated malware. Hence, the scanning process only deals with real malware body but not junk
block or junk subroutine code. This paper also draws up the implementation and the evaluation of our virus
scanning mechanisms. Finally, we present experimental results of our proposed techniques and the results
show that our test set is highly accurate.

Keywords: Malware Detector, Obfuscated, Unpacking, Emulator, Disassembler

1. INTRODUCTION

The effort of continuously developing
applications for computer systems and the Internet
has been giving malware programs chances to
propagate their malicious activities. Malware can
infiltrate computers using various methods; for
instance, hidden functionality in regular programs,
attacks against known software vulnerabilities,
drive-by-download from unsafe web sites and
more. Much research has been done by antivirus
researchers to provide better protection for
computer systems and its applications.
Unfortunately, the efforts did not stop the growing
of malware; instead, the techniques became more
sophisticated [1]. Typical antivirus techniques
detect these sophisticated malware to create more
attack pattern sets. However, the huge signatures
have caused many computers to slow down
significantly [2]. The computational resource
consumption by security scanning software is
dependent on the amount of scanning data and the
size of the pattern set. If the security scanning tool
is deployed to protect a busy server machine with a
significant size of data involved, the required
throughput performance might not be achieved.

The challenge of designing a malicious program
is to design one with the capability of infecting a

computer without the victim’s consent. Currently,
techniques such as packing, encrypting and
obfuscation are the popular methods that malware
authors use to hide the malware’s malicious
functions [3]. These viruses are known as
obfuscated virus [4]. Obfuscated virus has evolved
from simple encryption and compression to
metamorphic virus [5] and polymorphic virus [6].
Metamorphic virus uses variant obfuscation
techniques to create morphed copies of any base
malware file. As opposed to metamorphic virus,
polymorphic virus mutates or changes by
generating many unique encryption methods for
encryption. Both techniques help in avoiding the
detection of signature based methods. In spite of the
fact that different obfuscation techniques have been
used to protect the malware instance’s innards,
most obfuscation algorithms are available from the
Internet (for example UPX, ASPack, Armadillo).
Ironically, many malware that appear today are
repacked versions with common packers; however,
they still manage to effectively evade the detection
of Antivirus software [7].

Conceptually, heuristic scanner [8] is devised to
detect new and unknown malware. With proper
design of scanning algorithms, the detection of
existing virus family variants is possible. Heuristic
scanner is devised in a manner of either static or

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

60

dynamic [9]. Static heuristic scanner detects a
malicious program based on an analysis of code
structure. Dynamic heuristic scanner implements
emulation to simulate CPU and memory activities
to detect malicious operations while the malware
program is executed on an emulated platform.

Our approach is to design a hybrid method that
combines the known packer detector and removal
with a heuristic virus scanning engine to accelerate
virus scanning in computers. As mentioned earlier,
most obfuscated techniques used by malware
authors are from known packer. Dynamic heuristic
scanner is capable in unpacking obfuscated
executables in memory by executing the instance
code on the virtual memory. The approach of
known packer removal can accelerate the scanning
process by detecting and removing any known
packer starting from the common entry point and
reveal the real intention of the malicious code
instead of consuming computer time and
performance to emulate and decrypt garbage
instructions. In cases where no known packer is
detected, the emulator component will be executed
in virtual memory. This approach is based on the
belief that no matter how complex the obfuscation
algorithm is, the binary will eventually be
decrypted in memory. Static heuristic scanner is
devised based on an analysis which compares file
format and an instance code fragment to a virus
“pattern.” The word “pattern” refers to the
hexadecimal string in a virus signature. Our
malicious behavior database is designed by using a
sequence of one or more segments which are
separated by gaps. Each time the scanning engine
scans a malware instance file, the overall program’s
structure, computer instructions, programming
logic and some other attributes will be scrutinized.

In summary, this paper demonstrates the
capability of detection and removal of obfuscated
techniques implemented by malware authors. We
devised the packer detector approach based on
signature to automate the process of identifying and
extracting the hidden code bodies of packed
executable files. The proposed method can
accelerate the implementation of the malware
detection processes. While the emulator is executed
the obfuscation program in memory before the
scanning and detection of malicious instructions is
launched. Towards this end, we make several
contributions; we proposed an approach of a
malware signature database design that accelerates
the process of malware detection. The signature
database uses multiple parts of malware patterns to
be matched in sequence for virus detection. This

method can reduce the size of malware signature
database and accelerate the process pattern
matching by selecting a partial malware pattern to
be matched instead of the whole full text of
signature. We also proposed a design of a heuristic
engine and emulator engine corresponding to a
future threat that most malware detection software
must deal with.

The rest of the paper is organized as follows.
Background and related work is in Section 2.
Section 3 describes the system architecture where
the design of virus and packer signature database
and the implementation of heuristic scanning will
be explained in this section. The experimental
results are discussed in Section 4. Thus, finally,
conclusion is given in Section 5.

2. BACKGROUND AND RELATED WORK

This section briefly reviews the background and
works related to this project. Although virus and
malware detection has been studied for years, many
modern malware programs are still evading existing
malware detectors. Obfuscation is a common
method that transforms the true purpose of the
original program code into a misleading or
unreadable form in hopes of hiding the program’s
true intentions. According to Brosch [10], more
than 92% of malware files are runtime packed. In
particular, malware obfuscation is the very first
problem a malware analysis should be addressed. If
an obfuscated malware instance cannot be
unpacked, the analysis of the program will only
view the obfuscated block as non-instruction data.

Malware detection can occur before, or after the
malicious code is loaded into the memory. Thus,
the detection approach can be categorized into
static and dynamic strategies. Scott [11] presented a
heuristic scanning method for detection of windows
based obfuscated malware by scanning Windows
PE structure before the binary is executed in
memory. Sung [12] developed a robust signature
based malware detection system; Static Analyzer of
Vicious Executables (SAVE) which emphasizes on
detection of obfuscated and mutated malware. The
basic idea of this approach is that all versions of the
same malware share a common core signature that
is a combination of several features of the code.
Schultz applied the Naïve Bayes’s [13] method to
detect previous unknown malicious codes. They
designed a framework to train multiple classifiers
on a set of malicious and benign executables to
detect new viruses.

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

61

In this paper, we focus on static heuristic
scanning or the white-box approach in which the
target malware instance is in hexadecimal format
which enables our scanning approach to understand
the whole code structure and functionality of the
malware. The effectiveness of a virus scanning
engine depends on the virus signature database.
When a block of malware instance program is
matched with a pattern set, the data file concerned
is infected. To solve the problem of obfuscated
malware executables using a great variety of
packers [14] (for example, UPX, ASPack,
Themida, NSPack.), we integrate the packer
detector and packer unpacking module with our
heuristic scanning engine.

3. THE SYSTEM ARCHITECTURE

As the name implies, the packer or code packing
is an obfuscated technique that is used to hinder the
true function of a binary program through reverse
engineering. The intention of this technique,
especially as applied by most malware authors, is to
repackage the malicious program in ways that will
alter the malware to make it appear completely
different from the original binary; thus, effectively
evading the detection by most malware detection
software. In order to detect the variant malware
which evolves from the implementation of packer
or obfuscation techniques, antivirus companies
would create a virus signature for each variant
malware program. Due to this tendency, virus
signatures increase significantly. In this paper, the
proposed packer detection and de-obfuscation
techniques would accelerate the overall scanning
process and reduce the size of the virus signature
database.

In this section, we describe the architecture of the
malware detection system that is the core
component of our malware and virus scanner
framework. As shown in Figure 1, the core
component consists of known packer detector,
packer unpacking module, heuristic scanning
engine and last but not least, the emulator and
disassembler. Both known packer detector
component and packer unpacking module
component rely on the packer database. The packer
database defines the packer signatures and the
sequences of unpacking instructions. In case a
known packer signature is detected by the targeted
program, specific unpacking instructions will be
executed to unpack the packed program to reveal
the real functionality of the program. The virus
signature database consists of the malicious
signatures and its cure function. It is used by the

heuristic scanning engine to apprehend if any
malicious instructions are contained within the
targeted program. The following section describes
the functions of each core component.

Figure 1. Functional Design of Malware Detector Core
Engine

3.1 Packer Detector And Packer Unpacking

Module
The approach of our detection engine is based on

the natural behavior of the execution packer where
the protection malware code will eventually be
decrypted and revealed in memory, regardless the
type of packer or the number of packed layers used.
To defeat the obfuscation code implemented by the
packer which poses obstacles to the virus scanner
and detection engine, an automated process for
identifying and extracting the hidden-code bodies is
proposed.

In the packer detector component, we devised an
algorithm that identifies whether a program applies
any obfuscation mechanisms. Known packer
detection function is built on top of core scanning
components. It is developed to analyze a malware
instance file, and determines if any packer has been
applied. Our approach begins by detecting any
packer applied for malware instance files based on
the packer signature detection at entry point [15].
The entry point is the first instruction the pointer
points to, which is intended as the destination of a
long jump. A module for automating the process of
extracting the hidden code to obtain the original
code bodies of the program is executed if any
packer is detected.

Figure 2 illustrates the architectural design of the
packer signature database. As shown in the figure,
seven entities are required to store the data for
packer detection. The packer_no entity displays the
amount of packer signatures inside the database. In
this case, only one packer signature is available in
the database. The remaining entities, _prefix_ftype,
_prefix_fname, _prefix_signature_length,
_prefix_reserved, _prefix_signature_data and
_prefix_cure_offsetare defined with a serial of

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

62

prefix numbering identification. The _prefix_ftype
determines if the targeted program is a Windows
PE program. The name of the packer is defined
under _prefix_fname. Whether a targeted program
implements the packer is based on the signature
matching process between the targeted binary with
_prefix_signature_data. If the program perfectly
matches, the execution pointer will jump to the
particular unpacking module located at the offset
address defined by _prefix_cure_offset.

Figure 2. Packer Signature Database

3.1.1 Scanning and matching process
Generally, packer signatures can be defined as a

set of instruction sequences that contain the most
significant information to represent a particular
packer. The scanning process to determine whether
a file contains the obfuscation instruction relies on
a matching process between the body code of the
targeted program, P, and the packer signature, T.
The targeted program will flag as packed by a
particular packer if a match is found. In order to
reduce the size of database and increase the
effectiveness of the scanning process, the matching
process works together with wildcard techniques in
which skipping of bytes and byte ranges is allowed.
In our framework, the wildcard character, “*”, is
defined to determine the number of character that
are skipped between the two consecutive signature
letters of the body code of a file.

Figure 3. Fragments of a Malware Signature

Figure 3 uses a wild card regular expression to
divide the signature into two segments. As shown
in the example, upon a hit of 0B4h, 03Ch, 0BBh,
000h,if 026h, 0FFh, 01Eh, 084h, 000h appears after
the skip of 9 bytes distance from the first segment,
only then it is possible to report the file as a packed

instance. The value of an arbitrary amount of bytes
after (*) wild card indicates the distance in bytes
between two segments.

The pattern matching process of our scanning
engine uses a variation of the Aho-Corasick pattern
matching algorithm [16], which prepares for the on-
going future plan that will consist of a large number
of patterns against input text inside the database.

Figure 4. Success Transitions of keyword searching

The Aho-Corasick algorithm is initialized by

building a finite state machine for the entire
signature pattern with the purpose of constructing a
pattern matching automaton. Figure 4 shows the
automaton for the signature of “55 8B EC 8A 55”
and “55 8B EC 33 DB”. State 0 illustrates the
beginning of the automaton, and both of the final
states are shown in bold circles. The first signature
pattern, “55 8B EC 8A 55” is added at state 0 until
state 4. Since the second signature shares the same
prefix (“55 8B EC”) of the first signature, only state
5 and state 6 are needed to be created.

All signatures with the same prefix are stored in
a linked list under the appropriate trie leaf node. As
long as the trie is built, the pattern matching
process is ready to read the opcode of the targeted
program whether it matches with any of the
patterns in the trie. If the match is confirmed, it will
follow the trie transaction and check the entire
pattern inside the linked list using a sequential
string comparison method. The process proceeds
until the last input opcode is read or a match failure
is detected.

3.2 Heuristic Scanning Engine
The idea of heuristic scanning is to detect the

most significant malware functionalities statically
without executing the targeted program. Figure 5
illustrates the idea of our heuristic scanner engine.
Unlike dynamic analysis, static extraction analysis
provides complete information on targeted
instances via PE parsing approach. Generally, the
PE parse transforms Windows binary files to collect
information for the purpose of pre-automating the
analysis. The static extraction step for information

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

63

collection is quite complex and require several
processing steps.

Static extraction, illustrated on the left side of
Figure 5, uses the traditional extraction technique to
collect necessary information. As shown in the
figure, the initialization function displays the option
of the scanning engine. The command line
argument component collects the scanning option
for the next instruction action. Prior to beginning
the heuristic scanning process, the information of
the scan target is crucial to prepare the drive path
and search for file components. By calling
Windows API functions, which include
GetCurrentDirectory, FindFirstFile and
FindNextFile,information such as the scanning
path, names and total number of targeted scanning
files can be collected. The last information
collective step, the process file component,
identifies the file permission, file type and size of
each scanned program. As soon as sufficient
information is collected, the information will be
emitted to the heuristic scanning component to
perform the matching process for identifying
whether the targeted program is benign or
malicious.

Figure 5. Flowchart To Describe The Overall Process

Of Static Heuristic Scanning

The heuristic process, as shown on the right side

of Figure 5 performs the operation according to the
following steps:

Step 1: Data Signature=’*’x.The process begins
by detection of asterisk character (*) wild cards.
Symbol (x) represents arbitrary bytes of value for a
gap between two segments that was predefined by
antivirus analysts. On the condition that the
scanning pattern character is not equal to the
asterisk character (*), it will jump to Step 3 to
perform the comparison with thevirus signature
database. On the contrary, if the scanning process

matches the asterisk character (*) wild card, it will
proceed to step 2.

Step 2: Malware Code Offset address+ x
bytes.The pointer of the scanner will move to the
next pattern segment with predefined length of
gaps. The process will proceed to step 3.

Step 3: Signature Match. This stage performs the
string pattern matching process with the signature
database. Upon a hit of a signature matched, the
process will jump to step 4 to prepare for the next
scanning loop. However, if no match is reported,
the heuristic scanning process will stop and the
remaining incomplete scanned file will be passed to
the emulator and disassembler module [17].
Emulator is a safe virtual environment in which to
spot and trace the next instruction of an instance
executable program.

Step 4: Signature Detection Loop.The scanning
pattern pointer will shift to the next character and
the scanning approach will reiterate from step 1.

3.2.1 Taxonomy of Virus Detection
In general, the heuristic scanning examines

characteristics of the scanned target program code,
which includes the file size, its architecture and
behavior to determine the likelihood of an
infection. It intends to duplicate expert antivirus
analysis by looking for specific signatures with the
likeliness of a virus or certain unusual instructions
or commands which of these are not found in
typical application programs. The heuristic
scanning performs in a manner that uses a search
and detect function to scan for pieces of
hexadecimal code that are generally “viral-like” and
do not have known signatures.

As mentioned earlier, heuristics scanning is a
method that looks for “viral-like” activities. Unlike
traditional signature detection, heuristic scanning
involves static extraction and verification of either
benign or malicious of an executable based on
behavioral signature, not simple byte patterns.
Behavioral signature is a program with distinct
syntaxes that have identical malware behavior
capture signatures. With the design of malware
behavior signatures, the ability to detect a malware
no longer relies on detecting a single piece of
malware program but a whole class of malware
from a common strain.

Figure 6 shows an example of pieces of code that
perform actions in a way that we have specified as
malicious. The left side of the figure shows the
operational code (Opcode) [18]. It is part of a
machine language instruction that specifies the

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

64

operation to be executed and it is readable by
microprocessors. On the contrary, the Disassemble
Code [19] on the right side displays assembly
languages in human-readable format that have been
translated from machine language. The example
code in Figure 6 illustrates a program logic that
performs a function which determines the entry
point of a targeted program and returns to the
normal execution flow. During infection, a malware
program does not know the exact address in
memory until the allocation is made. Moreover, the
allocation address might be different from an
execution to another. This is a common automaton
virus infection mechanism to retrieve the memory
address of the entry point for overwriting or
moving programs in memory.

Figure 6. Sample piece of malicious code found on a

malicious executable file

Our malware and virus scanner detection engine
approach comprises of a scanning engine module
and a malware signature database. Both modules
work together and are inseparable. Generally, the
design of our signature database is highly volatile.
The main goal of volatility is to ensure new
signatures can be updated in the future.

Figure 7. Virus Signature Database

The design of our detection engine to detect both

malicious code and known packer for instance
executable files is similar; both using a signature
database. Figure 7 shows the architectural design of
a virus sample and packer signature databases,
respectively. Similar to the architecture of the
packer signature database shown in Figure 2, all

entities will be defined with a serial of prefix
numbering identification. As shown in Figure 7,
consider the fifth group of virus sample signature,
@005_ftype and @005_fname, which represents
the type of executable file and name of the malware
instance, respectively. eftype_pe represents the PE
file format. @005_sig_len specifies total length of
the signature. In addition, the signatures were
stored in the most efficient Opcode data type, as
shown in @005_sig_data. The selection of the
signature is based on the significant behavior of
funlove. The virus implements the modification PE
structure method by inserting its malicious code in
the .reloc table in PE structure.This behavior would
never happen for a normal benign program. Our
approach of @005_cure_offset will trigger the
scanner to proceed to the funlove cure function if
the infection of Virus.Win32.FunLove.4070 was
detected. @005_reserved takes no action and is
reserved for future usage.

3.3 Emulator and Disassembler

Figure 8. Incremental steps of the Emulator and

Disassembler

The emulation identifies common malicious
activities via emulating the instruction codes of a
targeted program. Thus, a safe and isolated
environment is crucial to perform a just-in-time
binary execution within the environment to prevent
the execution of malicious instructions that can
cause damage to the local computer. To emulate
every instruction, the CPU emulation is devised to
become the core of the emulator engine. Figure 8
illustrates the overall steps of the emulator engine.
The process flow begins with the Disassembly

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

65

component translating the targeted program from
opcode into assembly instructions. After the
disassembly process, a safe virtual environment is
ready to allow the translated instructions to be
executed.

A safe virtual environment requires a list of
virtual CPU register for support when performing
the corresponding instructions. The execution of the
target sequence will call the defined virtual CPU
without access to the original register. During
execution, the virtual CPU has to check whether an
existing block of instructions consists of malicious
code. The virtual buffer of the emulator would be
destroyed if any malware signature is detected or
the maximum allowed time for analysis has
elapsed. All original register saved on the stack
must be destroyed before handling a pointer to
conclusion, where it will be decided whether the
scanning program was infected by a malware or
not.

4. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

4.1 Implementation And Experimental Results
The implementation of known packer and virus

signature detection described in this section is fairly
conventional. Heuristic scanning engine uses a
specific packer signature database to determine if
any packed-code is applied by an instance binary. If
a packed-signature match is detected, our
unpacking mechanism is used to unpack and extract
the hidden code contained in the target binary file.
A specific virus signature database is used to
determine if any malicious program exists inside an
instance binary. The virus signature database refers
to common short signatures, which are presented in
most viruses (also known as “suspicious”
command). Our approach is to select different code
segments from a common short signature and save
it into our virus signature database. If a match is
found, the instance file is flagged as virus.

Figure 9 illustrates the packer detection of the
obfuscation mechanism applied by
Worm.Win32.QAZ [20] together with a predefined
packer signature database. As shown in the figure,
the upper part of Worm.Win32.QAZ packed with
UPX packer refers to the hexadecimal format [21]
of the packed binary. It is a hexadecimal view of
malware binary and each byte is represented as a
two-digit hexadecimal number. Parameter is a pre-
allocated variable that exists in the x86 registers
[18] before the heuristic scanning process starts.
Conceptually, many instructions assign specific
registers of certain arguments. For instance, string
instructions use ECX as a size of signature, ESI as a

source pointer of signature database and EDI as a
pointer to the first byte of malware binary at entry
point. Thus, the three variables; signature length,
signature data and code location, are assigned to
ECX, ESI and EDI respectively.

Packer signature database illustrates the design
of packer database. packer_no shows that there is
only one packer signature inside our database.
Ultimate Packer for eXecutables (UPX) [22] is the
obfuscated mechanism used by the instance
malware defined by @001_fname entity.
@001_sig_len indicates the total length of packer
signature. Before the next heuristic scanning
process begins, the target instance file stays in an
unpack form. Thus, any detection of known packer
reported, the detection mechanism will trigger an
automatic unpacking process to reveal the innards
of the instance binary file.

As shown in Figure 9, a total of eleven bytes of
length has been defined, and the ECX register will
inherit the value for future scanning processes. The
heuristic scanning engine, fully coded in assembly
language, shows the overall scanning process.
According to the program, sig_detec_loop is
designed to detect any asterisk character (*), while
the other two functions, detection_compare and
detection_cont are designed to perform the
scanning/pattern matching process and
position/shift values corresponding to possible
blocks respectively.

Prior to starting our packer detection codes, the
total length of the generated signature pattern,
@001_sig_len is saved in the ECX register. The
value is of eleven bytes including asterisk character
(*). As shown in Figure 9, the heuristic scanning
process will begin at the sig_detec_loop function to
detect any asterisk character (*). If none of the
asterisk character is detected, the scanning process
will jump to the detection_compare function to
perform the comparison of instance binary with the
packer signature database. Upon a hit of 060h,
0BEh opcodes, the sig_detec_loop function is able
to detect an asterisk character (*) and the scanning
process jumps to the detection_cont function. The
counter value of ECX register will decrease and the
pointer of the EDI register will move to the next
pattern segment with a predefined length of gaps. In
this case, the total predefined value of gap is 4
bytes. The scanning process will shift to the next
character and the scanning approach will loop back
to the sig_detec_loop function. The scanning
process will reiterate until the value of ECX
counter becomes zero or the match of the entire
signature at @001_sig_data is reported.

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

66

Figure 9. Packer Detection of Heuristic Scanning

Engine

The process of detecting Worm.Win32.QAZ

virus illustrated in Figure10 shows that the pattern
matching process between the malware binary with
the virus signature occurred at the
detection_compare function. After a hit of series
055h 08Bh 0ECh 06Ah 0FFh 068h, the
sig_detec_loop function succeeds in detecting
asterisk character (*) and the overall process jumps
to detection_cont. The counter value in ECX
register decreases and the pointer of EDI register
moves to the next pattern segment with predefined
length of gaps which is five bytes. The scanning
process shifts to the next character and the scanning
approach continues to the sig_detec_loop function.
The scanning process repeats until the value of
ECX counter becomes zero or the match of the
entire signature at @001_sig_data is reported.

4.2 Experimental Analysis
The experiment began with the detection of real

malware from the Internet which were once
infamous causing millions of dollars lost at its
appearance. Seven viruses including Marburg [23],
FunLove [24], Kriz.4029 [25], Parite.B [26],
Worm.QAZ [27], Confickervarian B and
Confickervarian C [28] have been collected from a
virus collectionwebsite, VX heaven [29].
Nevertheless, the website is currently seized by
local police forces due to the criminal investigation
in regards to the articles of 361-1, “Criminal Code
of Ukraine – The creation of malicious program
with an intent to sell or spread them”, based on
someone's tip-off on “Placement into the free
access malicious software designed for the
unauthorized breaking into computers, automated
systems, computer networks” [30].

Figure 10. Virus Detection of Heuristic Scanning Engine

As soon as the targeted viruses were collected

from the VX Heaven website, the experimental
detection was initialized via detecting the targeted
viruses with the proposed malware scanner engine.
The malware detection test is built based on the
malware samples that have been collected. Table 1
illustrates the proposed malware scanner and
detection results. Under the detection column, only
two options are allowed, that is either √ or X. √
indicates detection, X indicates failure to detect. As
shown in Table 1, the seven malware are detected
by the proposed malware scanner engine.

Virus.Win9x.Marburg.b was the virus that used
real 32-bit polymorphic engines. It can create
endless numbers of new decryptors via different
encryption methods to encrypt the constant part of
the virus body. Our detection malware tool,
constructed by both dynamic decryption and
emulator, has the ability to deal with this
obfuscation technique. As mentioned earlier, the
intention of the packer unpacking module is to
unpack the known detectable packer; however, the
number of unpacking algorithm in the database is
limited. In order to defeat the new and undetectable
packer, the emulator component is proposed to the
scanner engine. Table 2 examines the detectable
time and cure time of the emulator component. In
this test, the unpacking algorithm of the
viruses;Virus.Win9x.Marburg.b, Conficker variant
B and Conficker variant C, are not found in our
database. The emulator component will be triggered
to unpack the obfuscation portion to reveal the
malicious code to the scanner to detect the
abnormal instructions. Table 2 shows the scanning
time of the emulator.

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

67

Table 1: Feature Analysis for detecting virus and
malware

Virus / Malware

(MD5)
Detection
(√ or X)

File
Size
(KB)

Virus.Win9x.Marburg.b
(e8e0f1f5305718a03432a09fe38ab007)

√ 28

Virus.Win32.Kriz.4029
(79c5d6806145b67968528ffe806990c0)

√ 470

Virus.Win32.Funlove.4070
(fe05b8bb9eabcdafe0125334d02cb65a)

√ 61

Worm.Win32.QAZ
(1e9307bc19a0a7270c501c5e9108d214)

√ 118

Virus.Win32.Parite.b
(f689a4564a3bdb3f62093ab10e713180)

√ 338

Conficker Variant B
(6ee741c4e0d36d0dc9162a6e71943379)

√ 158

Conficker Variant C
(5e279ef7fcb58f841199e0ff55cdea8b)

√ 86.5

Table 2: Detection and Recovery Time

Virus / Malware Emulation
Detection

Time
(Milli-

seconds)

Emulation
Detection
and Cure

Time
(Milli-

seconds)

File
Size
(KB)

Virus.Win9x.Marburg.b
(e8e0f1f5305718a03432
a09fe38ab007)

47 63 28

Virus.Win32.Kriz.4029
(79c5d6806145b679685
28ffe806990c0)

125 140 470

Virus.Win32.Funlove.4
070
(fe05b8bb9eabcdafe012
5334d02cb65a)

16 18 61

Worm.Win32.QAZ
(1e9307bc19a0a7270c5
01c5e9108d214)

16 17 118

Virus.Win32.Parite.b
(f689a4564a3bdb3f6209
3ab10e713180)

31 32 338

Conficker Variant B
(6ee741c4e0d36d0dc91
62a6e71943379)

16 17 158

Conficker Variant C
(5e279ef7fcb58f841199
e0ff55cdea8b)

15 17 86.5

The detection, without any resistance techniques,
lacks effectiveness in the scanning and detection
engine. Thus, the experimental task is followed by
implementationof The Ultimate Packer for
eXecutables (UPX) packer with the viruses, and the
same previous detection task is conducted. Table 3
shows the detection of obfuscation viruses and
malware with the proposed scanner engine. Only 3
viruses are packed for the examination which
includes Virus.Win32.Kriz.4029,
Virus.Win32.Funlove.4070 and Worm.Win32.QAZ.

Table 3: Feature Analysis for detecting virus and
malware

Virus / Malware with UPX Packer
(MD5)

Detection
(√ or X)

File
Size
(KB)

Virus.Win32.Kriz.4029
(a583bd8e66c4afeb5b27d28c51f3153e)

√ 186

Virus.Win32.Funlove.4070
(a583bd8e66c4afeb5b27d28c51f3153e)

√ 24

Worm.Win32.QAZ
(57d0fe9f2c1531bd87c08af6ddd74bd7)

√ 34.6

Table 4 shows the required time of the proposed

scanner engine to remove the obfuscated packer
and detect the malicious code. While comparing the
results with Table 2, the file sizes of the samples
are significantly reduced. Both removal time and
curing time are almost similar to the original
sample from Table 2. Summarizing, the return
performance results are good where the required
time to unpack and cure the malicious portion is
less than one second.

Table 4: Detection and Recovery Time
Virus / Malware with
UPX Packer
(MD5)

Remove
Packer
and
Detection
Time
(Milli-
seconds)

Remove
Packer
and Cure
Time
(Milli-
seconds)

File
Size
(KB)

Virus.Win32.Kriz.4029
(a583bd8e66c4afeb5b27d
28c51f3153e)

130 140 186

Virus.Win32.Funlove.407
0
(a583bd8e66c4afeb5b27d
28c51f3153e)

17 19 24

Worm.Win32.QAZ
(57d0fe9f2c1531bd87c08a
f6ddd74bd7)

17 18 34.6

4.3 The interface of malware detection engine

In this section, the final result of malware
detection engine will be discussed. Our malware
detection engine can be performed in the form of
console and graphical user interface based. In order
to maintain the light weight and reduce the
scanning time, the entire engine is built using
assembly language. However, Python programming
is integrated with the assembly language to develop
the graphical user interface of the malware
detection engine. The main purpose of the graphical
user interface is to reduce complications and
increase the flexibility for users to execute the
scanner engine.

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

68

Figure 11: The Option of Execution of Malware

Detection Engine
Figure 11 shows the execution options of the

detection engine in console based. As shown in the
figure, the options are “/c”, “/wn” and “wa”. The
“disinfect” option (“/c”) is designed to detect and
delete the malicious instruction of a targeted
executable program. Without this option, the engine
will only perform the detection process. The option
“save report” (“/wn”) performs the scanning results
and allows users to review the output of the scan.
Last but not least, the option “appends to existing
report” (“/wa”) is to append the existing report in
the same result file. The “[path]” allows the user to
select the desired directory. The user can specify
the desired path by inputting the directory of the
path (e.g. c:\, c:\Document and
Settings\User\Desktop etc.). However, the user can
also perform a full scan of the entire directory in
the user’s computer. This can be done by inputting
the “/*”.

Figure 12 shows the graphical user interface of
the malware scanner engine that was proposed in
this paper. The graphical user interface approach
allows the user to conduct a scan without having to
input any options which may cause confusion. As
soon as the scan reaches the end, another window
will appear displaying the scan results as shown in
Figure 13.

Figure 12: The Graphical User Interface of Malware

Scanner Engine
In order to validate the scan engine, three real

time malware were randomly inserted into a testing
computer. The malware scanning core engine
begins by scanning the entire C directory. As
shown in Figure 13, a new window will pop up
after the scanning process which displays that the
scan has detected three executable files infected by

malware out of 290 executable files that were
scanned.

Figure 13: Results from Malware Scanning Core Engine

5. CONCLUSION

The analysis and detection of malware has beena
time-consuming and challenging task. In this paper,
we presented a heuristic method for detection of
obfuscated or mutated window based malware. Our
method scans for suspicious behavior patterns in
the malware instance file before the binary is
executed locally. In order to defeat the obfuscated
techniques which areapplied by most malware, an
automated process for identifying and extracting
the original code bodies is proposed. This method
prevents the scanning process from consuming
computer resources by scanning junk blocks or junk
subroutine codes. Our virus detection approach is
based on the combination of packer detection,
packer removal, and heuristic scanning concept. In
this paper, the overall concept and algorithm of the
core component have been described.

ACKNOWLEDGMENT:

The authors gratefully acknowledge that financial
support for this research was received from a grant
funded by Universiti Kebangsaan Malaysia under
grant number oup-2012-182

REFRENCES:

[1] Gupta, A., et al. An empirical study of malware

evolution. in Proceedings of the First international
conference on COMmunication Systems And
NETworks. 2009. Bangalore, India

[2] Clementi, A. Release rates & update size of
signature databases of some main top Anti-virus
products. 2006; Available from: http://www.av-
comparatives.org/seiten/ergebnisse/Release_rates.
pdf.

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

69

[3] Kang, M.G., P. Poosankam, and H. Yin, Renovo: a
hidden code extractor for packed executables, in
Proceedings of the 2007 ACM workshop on
Recurring malcode2007, ACM: Alexandria,
Virginia, USA. p. 46-53.

[4] Priyadarshi, S., Metamorphic Detection via
Emulation, in The Faculty of the Department of
Computer Science2011, San Jose State University.
p. 84.

[5] Chouchane, M.R. and A. Lakhotia, Using engine
signature to detect metamorphic malware, in
Proceedings of the 4th ACM workshop on
Recurring malcode2006, ACM: Alexandria,
Virginia, USA. p. 73-78.

[6] Abdulla, S.M. and O. Zakaria, Devising a
Biological Model to Detect Polymorphic
Computer Viruses Artificial Immune System
(AIM): Review, in Proceedings of the 2009
International Conference on Computer
Technology and Development - Volume 012009,
IEEE Computer Society. p. 300-304.

[7] Desai, P., Towards an undetectable computer
virus, in The Faculty of the Department of
Computer Science2008, San Jose State University.

[8] Pao, D., et al., String searching Engine for virus
scanning. IEEE Trans. Computers, 2011. 60(11):
p. 1596-1609.

[9] Symantec Understanding Heuristics: Symantec’s
Bloodhound Technology. XXXIV.

[10] Brosch, T. and M. Morgenstern. Runtime Packers:
The Hidden Problem? in Black Hat USA 2006.
2006. Las Vegas, USA.

[11] Treadwell, S. and M. Zhou. A heuristic approach
for detection of obfuscated malware. in
Proceedings of the 2009 IEEE international
conference on Intelligence and security
informatics. 2009. Richardson, Texas, USA.

[12] Sung, A.H., et al., Static Analyzer of Vicious
Executables (SAVE), in Proceedings of the 20th
Annual Computer Security Applications
Conference2004, IEEE Computer Society. p. 326-
334.

[13] Schultz, M.G., et al., Data Mining Methods for
Detection of New Malicious Executables, in
Proceedings of the 2001 IEEE Symposium on
Security and Privacy2001, IEEE Computer
Society. p. 38.

[14] Wu, Y., T.-C. Chiueh, and C. Zhao, Efficient and
Automatic Instrumentation for Packed Binaries, in
Proceedings of the 3rd International Conference
and Workshops on Advances in Information
Security and Assurance2009, Springer-Verlag:
Seoul, Korea. p. 307-316.

[15] Eagle, C., The IDA Pro Book: The Unofficial
Guide to the World's Most Popular Disassembler
2011 San Franscisco: William Pollock. 672.

[16] Aho, A.V. and M.J. Corasick, Efficient string
matching: an aid to bibliographic search.
Commun. ACM, 1975. 18(6): p. 333-340.

[17] Ligh, M., et al., Malware Analyst's Cookbook and
DVD: Tools and Techniques for Fighting
Malicious Code2010: Wiley.

[18] Hyde, R., The Art of Assembly Language2003:
No Starch Press. 1000.

[19] Ferguson, J. and D. Kaminsky, Reverse
Engineering Code With IDA Pro2008: Syngress
Pub.

[20] Marx, A., The Usual Suspects - Part 3, in Virus
Bulletin February 20012001, Virus Bulletin Ltd. p.
14-16.

[21] Yan, W. and E. Wu. Toward Automatic Discovery
of Malware Signature for Anti-virus Cloud
Computing. 2009; Available from:
http://us.trendmicro.com/imperia/md/content/us/pd
f/threats/securitylibrary/weiyan-09-
whitepaper.pdf.

[22] Oberhumer, M.F.X.J. and L. Molnar. UPX: The
Ultimate Packer for Executables. 2010; Available
from: http://upx.sourceforge.net.

[23] F-Secure. 1998; Available from: http://www.f-
secure.com/v-descs/marburg.shtml

[24] Kaspersky. How to disinfect computer from the
virus Win32.FunLove? ; Available from:
http://support2.kaspersky.com/38

[25] Panda. Virus Encyclopedia. [cited 2007 March
26]; Available from:
http://www.pandasecurity.com/homeusers/security
-info/24779/information/Kriz.4029

[26] Panda. Virus Encyclopedia. 2008 [cited 2008
December 12]; Available from:
http://www.pandasecurity.com/homeusers/security
-info/18181/Parite.B/.

[27] Kit, F.A. QAZ worm. 2000 [cited 2007 January
4]; Available from:
http://www.fireav.com/virusinfo/library/qaz.htm

[28] Chuan, L.L., et al. Automating uncompressing and
static analysis of Conficker worm. in
Communications (MICC), 2009 IEEE 9th
Malaysia International Conference. 2009. Kuala
Lumpur.

[29] VXHeave. [cited 2012 April 20].
[30] CRIMINAL CODE OF UKRAINE. 2001;

Available from:
http://legislationline.org/documents/action/popup/i
d/16257/preview.

