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ABSTRACT 
 

In this paper we provide a quantum information delay scheme using orthogonal product states. By sharing 
orthogonal product states one person can give the other person some information which cannot be read 
until he or she lets the latter do. The fundamental Laws of quantum mechanics guarantee that the scheme is 
unconditionally secure. Our scheme is easy to carry out in practice because there are no entangled states or 
complex quantum operations needed. Moreover our scheme is robust against noise and possible attacks. 
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1. INTRODUCTION  
 

Quantum information science is an ascendant 
research field which integrates quantum physics 
with information science. It may show surprising 
results which are impossible in classical 
information science so far, such as decomposing a 
large number in polynomial time(Shor's algorithm) 
[1], efficient database search(Grove’s algorithm) 
[2] and so on. One of the most important fields of 
quantum information science is quantum 
cryptography. Unlike the classical cryptographic 
protocol based on the complexity of computation, 
the unconditional security of the quantum 
cryptographic protocol is guaranteed by the 
fundamental principles of quantum physics. The 
first quantum key distribution (OKD) scheme is 
proposed by C. H. Bennett and G. Brassard [3]. So 
it’s called BB84 scheme. Since then much research 
work has been done in quantum cryptography, such 
as quantum key distribution [3-9], quantum 
authentication [10-13], quantum secret sharing [14-
15], quantum information hiding [16,17], 
information theory for quantum cryptography [18] 
and so on. Experiments on QKD have also been 
accomplished successfully. In 1992 Bennett, 
Bessette and Brassard first realized BB84 protocol 
in laboratory [19]. Recently QKD in optical fiber 
has been achieved [20] beyond 150 km and in free 
space has been implemented over a distance of 1 
km [21]. 
    There is another interesting problem: information 
delay. Suppose that one person, for example, Alice, 
wants to give some information to the other one, 
Bob. But she hopes that Bob couldn't read the 

information at his hands until she lets him to do 
sometime in the future. Moreover Bob may be far 
away from Alice in space when Alice finally 
decides to let him read the information. Obviously 
it's an important problem which may appear in 
business and military affairs. In classical 
cryptography people often solve this problem by 
the following scheme. Alice encrypts the 
information and only gives Bob the cipher text. So 
Bob can't read the information because he hasn't the 
information to decrypt it. Only when Alice decides 
to let Bob get the information, does she send the 
information to Bob through a public channel. So 
Bob can read the information now. On the other 
hand, since the channel is public, an eavesdropper, 
Eve, can also get the information. But she can't get 
the information because she hasn't the cipher text. 
Obviously such schemes often depend a well-
designed key management system [22-24]. 
However there is still a serious danger in this 
scheme. Bob must keep the cipher text until he gets 
the information Alice sends him. If Eve breaks in 
Bob's office while he isn't present, she can make a 
copy of the cipher text without being found by Bob. 
So she can get the information by decrypt the 
cipher text with the information, that is to say, the 
scheme above is insecure under such attack. 

In this paper we provide an information delay 
protocol which can prevent such attacks. First Alice 
and Bob share a sequence of two-qutrit systems in 
orthogonal product states. When Alice decides to let 
Bob get the information, she declares the state of 
the qutrits at her hands and sends dictates to Bob. 
Then Bob creates auxiliary qutrits and brings them 
together with the qutrits at his hands. Finally Bob 
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get the information by performing measurement on 
the composed systems and doing according to 
Alice’s dictates. The information doesn't exist until 
Alice decides to let Bob know it. Moreover 
quantum no-cloning theorem forbids anyone to 
copy unknown states. These facts prevent Eve from 
getting the information by taking the attack above. 
The principles of quantum mechanics guarantee that 
our protocol is unconditionally secure. It’s easy to 
carry out in practice and robust against noise and 
attacks. 

2. BASIC IDEA 
 

In quantum information science a two-state 
quantum system is often called a qubit while a 
three-state quantum system is called a qutrit. Once 
people thought that non-locality could only be 
found in entangled states system. But in [25] 
Bennett et al proved that a set of non-entangled 
orthogonal product states in a two-qutrit system can 
also show non-locality. There is a complete 
orthogonal set of states in such system 
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in which we can perform a collective measurement 
on a two-qutrit system. It is proved in [25] that 
these nine states can't be distinguished reliably by 
local operations and classical communications, that 
is to say, it's impossible to confirm the state 
uniquely in this vector set by local operations and 
classical communications. We can design an 
information delay scheme based on this property as 

follows. First Alice and Bob agree to such coding 
rule. 
Coding Rule: 
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Alice   Alice creates a two-qutrit system in one of the nine 

states }|,....,|,{| 921 >>> ϕϕϕ  at random and 

records her choices. Then Alice sends the second 
qutrit to Bob and keeps the first qutrit at her hands. 
To discriminate the two qutrits, we mark them 
qutrit 1 and qutrit 2 respectively. When Bob 
receives qutrit 2, Alice declares the state of qutrit 1 
while she still keeps the state of the two-qutrit 
system secret. If the state of two-qutrit system is  

>>>> 8761 |,|,|,| ϕϕϕϕ  or >9|ϕ , Alice and 

Bob abandon it and turn to the first step, that is to 
say, Alice creates a new two-qutrit system again 
and repeat the following steps. If the state of two-

qutrit system is ,|,|,| 432 >>> ϕϕϕ  or >5|ϕ , 

Bob creates an auxiliary qutrit named qutrit E in the 
same state as qutrit 1. Then Bob performs collective 
measurement on the composed two-qutrit system 
consisting of qutri E and qutrit 2 in basis 

}|,....,|,{| 921 >>> ϕϕϕ . So Bob will get the 

state of the new two-qutrit system of qutri E and 
qutrit 1 which is just the same as the state of 
composed two-qutrit system of qutrit 1 and qutrit 2. 
From this fact we can come to an important 
conclusion as follows. If Alice wants to give Bob a 
bit “0”, she only needs to do according to the 
following Rule 1. 
Key Rule 1: If the state of the composed system of 

qutrit 1 and qutrit 2 is ,| 2 >ϕ or >4|ϕ , Alice 

asks Bob nothing to do but keep the bit he gets; If 
the state of the composed system of qutrit 1 and 

qutrit 2 is ,| 3 >ϕ or >5|ϕ , Alice asks Bo to 

reverse the bit he gets. 
On the other hand, if Alice wants to give Bob a bit  
“1”, she does according to Rule 2. 
Key Rule 2: If the state of the composed system of 

qutrit 1 and qutrit 2 is ,| 2 >ϕ or >4|ϕ , Alice 

asks Bob to reverse the bit he gets. If the state of 
the composed system of qutrit 1 and qutrit 2 is 

,| 3 >ϕ  or >5|ϕ , Alice asks Bob nothing to do 

but keep the bit he gets.  
    Finally Bob is sure to get the bit which Alice 
wants to give him. The process of the coding rules 
can be summarized as following tables. 
 

Table 1. Key Rule 1. ... 
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bit 
(Alice) 

origin 
state 

dictate result 
(Bob) 

bit 
(Bob) 

0 

>2|ϕ  nothing >2|ϕ  0 

>3|ϕ  reverse >3|ϕ  0 

>4|ϕ  nothing >4|ϕ  0 

>5|ϕ  reverse >5|ϕ  0 

 
Table 2. Key Rule 2 

bit 
(Alice) 

origin 
state 

dictate result 
(Bob) 

bit 
(Bob) 

1 

>2|ϕ  reverse >2|ϕ  1 

>3|ϕ  nothing >3|ϕ  1 

>4|ϕ  reverse >4|ϕ  1 

>5|ϕ  nothing >5|ϕ  1 

 
In section 4 we will prove that by a well-

designed error-checking process we can prevent 
anyone except Bob from getting the bit. So we can 
develop an information delay scheme based on 
these facts above. 

3. INFORMATION DELAY SCHEME 
USING ORTHOGONAL PRODUCT STATES 
 
    Now we present our information delay scheme. 
If Alice wants to give Bob an n-bit string denoted 
as K which Bob can’t read only when Alice wants 
him to do.  They do as follows. 
 
3.1. Share The Orthogonal Product States 
       First Alice tries to share n two-qutrit systems 
with Bob. They perform following steps. 

step 1: Alice creates N two-qutrit systems 
(N>>n) in one state in the set 

}|,....,|,{| 921 >>> ϕϕϕ  at random and records 

her choices. 

step 2: Alice sends qutrit 2 of each two-qutrit 
system to Bob.  

step 3: After Bob receives the qutrits, to each 
two-qutrit system Alice chooses it out and declares 
its state if it is in the state 

>>>> 8761 |,|,|,| ϕϕϕϕ  or >9|ϕ  while Alice 

keep its state secret if it is in the state 

,|,|,| 432 >>> ϕϕϕ  or >5|ϕ . Let’s assume that 

there are m two-qutrit systems chosen out. So there 
are N-m two-qutrit systems left whose states are still 
secret. 

step 4: To each of the m two-qutrit system, Bob 
creates an auxiliary qutrit (qutrit E) in the same state 

as the qutrit 1 whose state is now public. Then Bob 
performs collective measurement on the composed 
system consisting of the qutrit E and qutrit 2 in basis 

}|,....,|,{| 921 >>> ϕϕϕ .  

step 5(error-checking): To each composed system 
consisting of qutrit E and qutrit 2 Bob compares his 
measurement result with the state of corresponding 
two-qutrit system consisting of qutrit 1 and qutrit 2 
which Alice has declared. If there are too many 
disagreements, Alice and Bob abandon the scheme 
and turn back to step 1. Else they continue to step 6. 

step 6: Alice and Bob choose n two-qutrit 
systems out at random and discard the others. 
Because N>>n, so they can always accomplish it. 

After finishing steps above, Alice and Bob share 
n two-qutrit systems. 

3.2. The Information Delay Scheme 
    Whenever Alice wants to let Bob get an 
n-bit string, they perform the following 
steps. 

step 7: To each one of the left n two-qutrit 
systems, Alice declares the state of qutrit 1 of every 
two-qutrit system and send dictates to Bob according 
to K as Rule 1 and Rule 2 ask.  

step 8: To each one of these two-qutrit systems 
Bob creates an auxiliary qutrit (qutrit E) in the same 
state as the qutrit 1. Then Bob performs collective 
measurements on the composed systems consisting 
of qutrit E and qutrit 2 in basis 

}|,....,|,{| 921 >>> ϕϕϕ  and records his 

measurement results. Next Bob does as Alice’s 
dictates ask. Finally he will get an n-bit string named 
K1. 

step 9: Obviously we have K1=K. It is just the 
information that Alice want to let Bob get in our 
information delay scheme. 

So in the end Alice lets Bob get a string as she 
wants. Notice it, Alice and Bob may be far away 
from each other in space now. For example, Alice is 
in New York while Bob is in London.  

4. SECURITY OF THE SCHEME 
 
    Our scheme is secure. No one except Alice and 
Bob can get the information. We prove it as follows.  
Let's assume that an eavesdropper, for example, 
Eve, wants to get the information. She may catch 
the qutrits sent from Alice to Bob and try to get 
something about the information. We can prove 
that it’s impossible. From equation (1) we can 
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notice that the possible states set of qutrit 2 is  

),1|0(|
2

1
),1|0(|

2

1
,2|,1|,0{| >−>>+>>>>  

)}2|1(|
2

1
),2|1(|

2

1 >−>>+> which 

contains seven states. These states aren’t orthogonal 
to each other. As known non-orthogonal quantum 
states are indistinguishable. So Eve can’t know the 
state of qutrit 2 with certainty whatever she does, or 
in other words, she can’t get the information just as 
Bob. We can estimate the probability she 
fortunately gets a bit. Notice that if Eve chooses 
exact the correct basis to measure qutrit 2 she 
catches, she may know the state of qutrit with 
certainty and get a bit of the information at last. 
Moreover to the qutrit, Eve can get its state with 
certainty only when she chooses the correct basis to 
measure. It’s easy to find that there are three 
possible bases 
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                                                                                (3) 
If Eve choose the incorrect basis, she only get the 
state with a probability p(p<1). It can be 
summarized as the following table 

 
Table 3. Probability 

basis B1 B2 B3 
|0> 1 0 1 
|1> 1 0 0 
|2> 1 1 0 
|s1> 0 1 0 
|s2> 0 1 0 
|s3> 0 0 1 
|s4> 0 0 1 

in which  

),1|0(|
2

1
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1
1 >−>=>+>= ss  
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1
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Because no information can help Eve to choose 
correct basis, she has to measure qutrit 2 in one 
basis at random, or in other words, the probability 
that Eve choose any basis is 1/3. So from table 1 we 
can deduce that the probability that to the seven 
states Eve chooses the correct basis and get the bit 
are 

3/113/1,3/223/1

,3/113/1,3/223/1

43

21

=×==×=
=×==×=

pp

pp
 

,3/113/1,3/113/1 65 =×==×= pp     

3/113/17 =×=p                                              (4) 

According to our scheme, Alice creates the two-
qutrit systems in one state of the set 

}|,....,|,{| 921 >>> ϕϕϕ  at random. So for 

each state the probability is 1/9. From equation (1) 
and equation (4), the average probability which Eve 
get a bit without being found by Alice and Bob is 

22(
9

1
321 ×++××= pppP  

)7654 pppp ++++  

27

13=                                                  (5) 

The length of the information is n. So the 
probability for Eve to get the information is 

n
n

error pP 






==
27

13
                  (6) 

If n=1000, we have 

300
1000

10
27

13 −≈






== n
error pP           (7) 

It’s a number too small to image. So Eve’s attack 
can’t succeed.  

Since attacks by catching the qutrits fails, all that 
Eve can do is to listen to the public classical 
channel in which Alice sends her dictates to Bob. 
But she can just get the dictates that Alice tells Bob 
to perform operation on his strings from 
measurement results. The information is 
determined by not only Alice’s dictates, but also 
Bob's measurement results which are kept secret by 
Bob. Eve can’t get them. It’s easy to prove that Eve 
could obtain no information about the information 
as follows. First the measurement results Bob gets 
is random, or in other words, Bob will get 

measurement results ,|,|,| 432 >>> ϕϕϕ  or 

>5|ϕ with equal probability 1/4 no matter what 

string Alice wants to send Bob. Then Alice sends 
dictates to Bob as the two key rules ask. We can 
easily deduct from the four tables in section 2 as 
follows. If Eve gets a dictate from Alice to Bob, for 
example, “nothing”, she can’t get any information 
about the string which Alice sends to Bob because 
it may be 0 or 1 with equal probability 1/2. The 
same result does she get if the dictate is “reverse”. 
So Eve has no way to get the information than 



Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
468 

 

random guessing. The probability she gets a correct 
two-bit string is 

2

1=ep .                             (8) 

Then the probability she gets the n-bit information 
is 

.
2

1
n

n
eerror pP 







==                (9) 

Let n=1000 which is a common length of a 
information. We have 

.10
2

1 300
1000
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=errorP             (10) 

It’s also a number too small to image. So it’s 
impossible foe Eve to get the information in fact, or 
in other words, Eve’s attack fails.             
    Let’s consider resend attack. Eve may catch all 
the qutrits sent from Alice to Bob and send fake 
qutrit to let Bob get fake information. But in step 5 
of our scheme Alice and Bob perform error-
checking. Because Eve doesn’t know the states of 
the original two-qutrit systems created by Alice, 
she can only create two-qutrit systems at random in 

one state of }|,....,|,{| 921 >>> ϕϕϕ  and send 

the second qutrits to Bob. So when Bob gets these 
qutrits and performs error-checking with Alice, 
they are sure to find many disagreements. The 
probability that Eve succeeds in cheating is equals 
to the probability that she just chooses the same 
state as Alice’s two-qutrit system, which is 1/9. 
There are m two-qutrit systems for error-checking. 
So the probability for Eve to escape from being 
found by Alice and Bob is 

m

errorP 






=
9

1
                         (11) 

If m=100, we have 

95
100

10
9

1 −≈






=errorP                  (12) 

So Alice and Bob are sure to find Eve’s existing. 
They abandon the scheme and turn back to step 1. 
That is to say, Eve’s attack fails. 
    Now we have proved that our scheme is 
unconditionally secure. 
 
5. FESIBILITY ANALYSIS OF THE 

SCHEME 
 
    Notice that there are no entangled states and 
complex quantum operations needed in our scheme. 
All that people need to do is performing 

measurement on a qutrit and performing collective 
measurement on a two-qutrit system which have 
been mature technology in laboratory. So it's easier 
to carry out in practice. On the other hand in our 
scheme there are no producing and controlling 
entangled states and no complex quantum 
operations at all, which makes our scheme to have 
less fragility from noise, decoherence effects and 
possible attacks. So our scheme is more robust. 
    Second as known in quantum cryptographic 
schemes to keep quantum coherence is the most 
important and most difficult task. Especially in 
schemes using entangled states, the scheme is sure 
to fail if the entangled qubits lose coherence, or in 
other words, lose correlations between them. In 
practice quantum systems often undergo 
decoherence over time which make them lose 
quantum coherence and turn into classical systems 
inevitably. So the more work to handle and control 
quantum systems does a quantum cryptographic 
scheme need, the more difficult to accomplish is it. 
In our scheme the qutrits need to be tansfered for 
one time. To Alice, she won’t handle quantum at all 
after step 2, which means that decoherence no 
longer affects Alice’s work. It will reduce the risk 
of decoherence much for our scheme. On the other 
hand Alice and Bob don’t exchange quantum 
information after step 2. What they need is only to 
exchange classical information. Or in other words, 
the quantum channel is no longer needed, which 
reduce the risk of decoherence of the quantum 
channel, too. So our scheme is easier to carry out in 
practice. This is a significant advantage of our 
scheme.  

All that above discussions are based on the fact 
that Alice and Bob always use noiseless channels to 
send classical information and qutrits in our scheme. 
If there are no noiseless channels, can this scheme 
work? In our scheme they need an unjamed 
classical channel and a quantum channel. The 
quantum channel can be insecure. An eavesdropper 
can control it, which we have discussed in section 4. 
At the same time it can be a noisy channel in which 
occasional mistakes may occur at random. When a 
qutrit is affected by channel noise and changes its 
state, it seems that such accident will threaten our 
scheme. We can prove that such error can’t cause 
our scheme fail. In step 4 of our scheme Alice and 
Bob do error-checking by comparing measurement 
results of m qutrits. If the error qutrit is in the m 
chosen qutrits, it will be found in the error-cheking 
and doesn’t affect the process of information 
building. Only when the error qutrit isn’t in the m 
chosen qutrits, it may be left to contribute a 
mistaken bit to the information. On the other hand 
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we can estimate the maximum probability that 
qutrit errors cause to the failure of the scheme. 
Let’s assume that the error rate of the channel is e. 
Alice and Bob choose m two-qutrit systems to do 
error-checking from N two-qutrit system. So the 
probability that an error qubit is chosen out for 
error-checking is m/N. We can conclude that a 
qutrit error is from being found is 

N

m
p =                              (13) 

Then the probability that all error qubit escapes 
from being found is 

Ne
error N

m
P )1( −=                    (14) 

Let e=0.1, m=200, N=2000, which is a reasonable 
assumption, we have 

000035.0)1.01( 200 ≈−=errorP       (15) 

It’s an acceptable error rate for a noisy channel. If 
we need lower error-rate, we can use quantum 
error-correcting coding scheme which will be 
discussed in future work. So we can say that our 
scheme works well in a noisy quantum channel. 
However how about a noisy classical channel in our 
scheme? We can discuss it, too. In the step 2 in 
which Alice sends qutrits to Bob, the classical 
channel must be unjamed and error-free because 
Alice and Bob’s error-checking needs to exchange 
classical information. On a noisy classical channel, 
it can’t be accomplish to build shared the two-qutrit 
systems between Alice and Bob. Fortunately 
classical error-correcting coding technology has 
been a mature and powerful technology now. We 
can fulfill information transmission through a noisy 
classical channel with very low error rate by error-
correcting coding. On the other hand in step 7 in 
which Alice sends dictates to Bob, we also need a 
classical channel. This channel can be unsecure. 
Eavesdroppers can control it and catch the dictates 
form Alice to Bob. They can even sends fake 
dictates to Bob. All this can’t make Bob to get the 
faked information, which we have proved in section 
4. But if there are noise in this channel which make 
a dictate error, Bob will be unable to get the correct 
information. So we need try to avoid the error 
caused by the channel noise. The solution to it is 
still error-correcting coding. We can guarantee that 
Bob get the correct dictates by transmitting them 
using error-correcting coding. 

6. DISCUSSION AND CONCLUSION 
 

In fact there are several variants of information 
delay scheme using orthogonal product states. For 
example, in the scheme Alice declares the state of 

qutrit 1 at her hands after Bob receiving qutrit 2. 
But Bob doesn’t create auxiliary qutrits to build 
two-qutrit system and perform collective 
measurement on the composed two-qutrit system. 
Instead Alice ask Bob to measure the qubit at his 
hands directly in basis B2 or B3 in which 

}2|),1|0(|
2

1
),1|0(|

2

1
{2 >>−>>+>=B

)}2|1(|
2

1
),2|1(|

2

1
,0{|3 >−>>+>>=B  

(16)  

On the other hand they agree to another coding 
rule. 

Coding Rule(modified): 

1)1|0(|
2

1
,0)1|0(|

2

1 →>−>→>+>

1)2|1(|
2

1
,0)2|1(|

2

1 →>−>→>+>  

(17) 

It’s easy to find that Alice and Bob will get the 
same result with certainty. If Alice wants to give 
Bob a bit “0”, she only needs to do according to the 
following modified Rule 1. 

Key Rule 1(modified): If the state qutrit 2 is 

)1|0(|
2

1 >+> or )2|1(|
2

1 >+> , Alice 

asks Bob nothing to do but keep the bit he gets; If 
the state of the composed system of qutrit 1 and 

qutrit 2 is )1|0(|
2

1 >−> or 

)2|1(|
2

1 >−> , Alice asks Bo to reverse the 

bit he gets. 

On the other hand, if Alice wants to give Bob a 
bit “1”, she does according to modified Rule 2. 

Key Rule 2(modified): If the state of the composed 
system of qutrit 1 and qutrit 2 is 

)1|0(|
2

1 >+> or )2|1(|
2

1 >+> , Alice 

asks Bob to reverse the bit he gets. If the state of 
the composed system of qutrit 1 and qutrit 2 is 
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)1|0(|
2

1 >−> or )2|1(|
2

1 >−> , Alice 

asks Bob nothing to do but keep the bit he gets.  

So we can design a modified information delay 
scheme just as in section 3. It also works well. We 
can issue some other methods to build information 
delay scheme. They have the same power and 
security as the first scheme we present in section 3.  

An information delay scheme using orthogonal 
product states is present. By sharing orthogonal 
product states one person can give the other person 
some information which cannot be read until he or 
she lets the latter do. We prove that the scheme is 
unconditionally secure. There are no entangled 
states or complex quantum operations needed in our 
scheme. So it’s easy to carry out in practice and 
robust against possible noise and attacks. 
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