
Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
456 

 

 A LIGHT-WEIGHTED TRANSACTION PROCESSING 
SYSTEM BASED ON INTERNET MESSAGE ACCESS 

PROTOCOL 
 

1JIAN SU, 2CHONG ZHOU, 3WENYONG WENG 
1,3School of Computer and Computing Science, Zhejiang University City College, Hangzhou, China 

2Department of Computer Science, Zhejiang University, Hangzhou, China 
E-mail:  1suj@zucc.edu.cn , 2zhouchonghz@gmail.com , 3wengwy@zucc.edu.cn  

 
 

ABSTRACT 
 

A few methods are proposed to build a light-weighted transaction processing system, which is based on the 
Internet Message Access Protocol (IMAP). The main idea underlying these methods is to use an email 
service as ubiquitous lightweight data storage and provide means to assure transaction processing in a new 
application environment. Two kinds of operation schemes based on advisory shared-exclusive locks and 
optimistic concurrency control are implemented respectively. Performance tests are also offered to help 
understanding the pros-and-cons of these two schemes in different application conditions. The light-
weighted transaction processing system will be used as an on-line storage system for many on-line light-
weighted applications which do not require a full-feature database system. 

Keywords: Transaction Processing, Internet Message Access Protocol (IMAP), Concurrency Control, 
Storage System 

 
1. INTRODUCTION  
 

 Internet is one of the most important information 
infrastructures for most of people. More and more 
applications will be deployed on the Internet. Many 
applications, especially those accessible through 
Internet, need an on-line database system. 
Obviously, a few well-known database software, 
such as MySQL or Oracle, are quite often been 
used to play the role of on-line database system [1]-
[4]. However, many applications, such as mobile 
application, just need an on-line storage system to 
store a few data, not necessarily a full-feature 
database system or a data cloud service[5][6].  

In this paper, we will discuss a light-weighted 
transaction processing system which is based on the 
widely-used Internet Message Access Protocol 
(IMAP) [7]. As we know, IMAP is a standard 
protocol for email management. This transaction 
processing system use the email box as the 
underlying storage infrastructure, and provide the 
means on the basis of IMAP to assure transaction 
processing [8].  

Designing and implementing the transaction 
processing mechanism on the infrastructure of e-
mail service will make the following interesting 
things possible: a mailbox on an e-mail server can 
be used as a database server anywhere anytime, 

requiring only a Internet connection. There is no 
need to establish a mobile database server or to rent 
a cloud data service, it will be secure enough with 
SSL link, and it will not easily collapse due to a 
professional maintain of e-mail service provider. 

We will present a transaction processing library 
called LibMTP, which implemented the atomicity 
and isolation semantics of transaction based on 
IMAP [9]. The LibMTP is a client side library 
worked in the way of peer to peer negotiation 
without any central arbitration. Two kinds of 
concurrency control policy and transaction services 
are compared and discussed to find out the best 
implement scheme in different kinds of application 
situations [10]. Only the most fundamental features 
of various extensions of the IMAP are utilized in 
order to gain a wider compatibility. 

2. ARCHITECTURE 
 

Since IMAP allows multiple clients to connect to 
the same mailbox simultaneously, but do not 
support any request scheduling, LibMTP 
establishes the transaction semantic by client-side 
negotiation without any central arbitration. 
Structure of application with LibMTP can be 
denoted as Figure 1. 



Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
457 

 

 
Figure 1. Application architecture 

 
3. ARCHITECTURE 
 

In this section, some IMAP elements and 
features will be discussed and formalized for an 
easier description about the upper level protocol 
and algorithms. 

3.1. Message 
LibMTP uses a tuple called Message to represent 

an e-mail, which is defined as  

Message::=<Seq, Title, Content, Answered> 

In this definition, Seq, Title and Content are the 
sequence number, subject and plaintext body of an 
email respectively. Answered is a flag indicating 
whether or not an email is answered. In fact, 
LibMTP utilizes the subject, plaintext body, and 
answered flag of an email to store and represent 
data, in addition to the message sequence number. 
Also, LibMTP provide means to establish the lock, 
serialize latch, and design some other functional 
mechanisms. 

3.2 Message Sequence Number 
Message sequence number is used by IMAP 

servers to uniquely identify e-mails within an 
IMAP session. When an IMAP session is 
established, the server will assign a unique 
sequence number to each e-mail in the order of 
receiving time. Any new incoming e-mail will 
obtain a sequence number which equals to the 
number of messages in the mailbox. Since emails 
tagged with a deleted flag will not be deleted 
immediately until the session is reestablished, 
delete operation will not result in a fluctuation of 
message sequence number. LibMTP will filter the 
e-mails with deleted flag with any access behavior, 
so that it makes delete operation logically taking 
effect immediately. IMAP message sequence 
number is used to implement the lock and latch 
mechanism, as will be discussed later in the 
following sections. 

3.3 Imap Commands 
IMAP works in a request-response mode. All the 

requests are called commands. LibMTP uses four 
core IMAP commands to build its functionality. 
These four commands are APPEND, SEARCH, 
FETCH and STORE. Four procedures are designed 
to use these four commands respectively, i.e., for 
every command there is a corresponding procedure 
to use it. These commands and their corresponding 
procedures are listed in the Table 1: 

Table 1. IMAP command and procedures 
Command Procedure Definition 

APPEND 

Prototype:   
ATOM_APPEND(Title, Content) 
Title: the title of the new append 
message.  
Content: the content of the new append 
message. 
return SUCCEED | FAILED. 

SEARCH 

Prototype: 
ATOM_SEARCH(Title_Pattern, 
Answered ) 
Title_Pattern: title pattern to search. Note 
that any e-mail whose title contains the 
Title_Pattern will be included in the 
result set. 
Answered: whether the Answered Flag of 
an e-mail is set. Answered belongs to the 
set of {ANSED,NONANS,IGNORE}. 
return  Ary_Of_MsgSeq. 

FETCH 

Prototype: ATOM_FETCH(Which_Part, 
Ary_Of_MsgSeq) 

Which_Part belongs to the set of 
{TITLE, CONTENT, TIT_N_CNT}. 
return Array_Of_Title | 
Array_Of_Content | 
Array_Of_<Title,Content> 

STORE 

Prototype: 
ATOM_STORE(Ary_Of_MsgSeq,Flag) 

Flag belongs to the set of {ANS_FLAG, 
DEL_FLAG}. 
return SUCCEED| FAILED. 

 
4. SCHEME 1: LOCK PROTECTED 

TRANSACTIONS 
 

SCHEME 1 uses advisory shared-exclusive locks 
to protect the data to be accessed concurrently [11]-
[13]. Clients are required to cooperate with each 
other by acquiring the lock before accessing the 
corresponding data [14] [15]. Clients use exclusive 
locks to obtain an exclusive access right over Data 
Items, while use shared locks to prevent reading of 
uncommitted data. After critical CRUD operations 
a transaction should be committed if everything is 



Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
458 

 

all right, or rolled back if there is any exception or 
error detected. 

4.1. Lock Protocol 
4.1.1. Protocol sketch 

The lock protocol can be divided into two 
phases. During the first phase, clients acquire locks 
as needed, and during the second phase, clients 
release all the acquired locks so as to release critical 
Chunks [16]. 

Before executing a read operation, clients need to 
acquire a shared lock first. Before executing a 
write, update or delete operation, clients must 
acquire an exclusive lock. Exclusive locks are 
privileged than shared locks, i.e., clients can read 
data safely if they have assigned an exclusive lock 
to a Chunk, but they shall never write to a Chunk if 
they only have acquired a shared lock. Exclusive 
locks and share locks are represented by 
X_LOCK_MSGs and S_LOCK_MSGs. To apply 
an exclusive lock over a Chunk, clients append a 
Message whose Type field is X_LOCK_MSG, and 
the Name field is equal to the Name field of the 
target Chunk by issuing an IMAP APPEND 
command through invoking the ATOM_APPEND 
function. Similarly, to apply a shared lock over a 
target Chunk, clients have to append a 
S_LOCK_MSG Message. 

Since multiple clients may try to apply locks 
over a Chunk simultaneously, SCHEME 1 protocol 
has to decide who can acquire lock immediately 
and who have to wait. SCHEME 1 takes a FCFS 
(First Come First Served) policy and use the 
Message Sequence Number as a criterion to decide 
which lock request is issued first. All clients check 
the mailbox to see whether there is any conflicted 
locks applied to the same target Chunk before 
accessing the data, and if there is, the client have to 
back off some time and do a recheck later, until the 
client have obtained the lock message with a 
smallest message sequence number.  

Clients will maintain a set of locks that have 
been acquired locally, and there is no need to 
acquire a lock repeatedly. Locks can not be 
upgraded, and clients always have to acquire an 
exclusive lock again if they have not acquired it, 
even if they have already obtained a shared lock on 
the same target. 

4.1.2. Lock acquire algorithm 
Procedure LOCK_ACQUIRE implements the 

algorithm used to acquire an exclusive lock or 
shared lock on the target Chunk. It accepts two 
parameters. The first parameter is used to indicate 
which kind of lock it will acquire, and the value can 

be X_LOCK or S_LOCK. The Second parameter is 
the name field of the target Chunk. If the procedure 
can acquire the lock successfully, it will return a 
SUCCEED result, while a FALSE if there is 
something wrong or the lock-acquiring request has 
failed for too many times, which imply that there 
may be a dead lock[17] . 

There are some auxiliary subroutines used by the 
procedure LOCK_ACQUIRE, some of which is 
also used by the lock release algorithm. The first 
pair of the subroutine is LOCK_IS_OBTAINED 
and LOCK_ADDED. These two procedures are 
used to maintain and use the set of locks which 
have already been acquired by the client. 
LOCK_IS_OBTAINED accepts two parameters: 
the first parameter is a lock type, and the second 
one indicates the target chunk. 
LOCK_IS_OBTAINED checks the lock list to find 
out whether the lock to be acquired has already 
been acquired: if it is, LOCK_IS_OBTAINED will 
return the Message Sequence Number of the lock 
Message, while if it is not, -1 will be returned. 
LOCK_ADD_TO_SET is used to add the acquired 
lock message and the message sequence number 
into the lock list. XLOCK_IS_OCCUPIED and 
SLOCK_IS_OCCUPIED are used to check whether 
the exclusive lock or shared lock append by the 
client is the lock message targeted to the same 
Chunk with a smallest sequence number. If the 
answer is yes, the procedure will return FALSE 
indicating that the target chunk now is available for 
critical operation, otherwise TRUE will be 
returned. SLOCK_IS_OCCUPIED accepts two 
parameters: the target Chunk name and the message 
sequence number of the exclusive lock message. 
XLOCK_IS_OCCUPIED accepts three parameters: 
the first and second parameter works just as the first 
two parameters of S_LOCK_IS_APPLIED, and the 
last parameter is used to send a shared lock 
message on the same target, and is acquired 
already. This is used to avoid an exclusive lock 
which conflict with a shared lock already acquired.  

4.1.3 lock release algorithm 
After acquiring a lock, clients can enter the 

critical section and execute the CRUD (Create, 
Read, Update and Delete) operations. These 
operations will be handled by TXN module 
services. Since a sequence of CRUD operations 
within a transaction will be finished after 
committing or rolling back of a transaction, all 
acquired locks will be released. Procedure 
LOCK_RELEASE provide the function of lock 
releasing. 

 



Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
459 

 

4.2 Transaction Algorithms 
SCHEME 1 use Transaction interfaces to bind a 

sequence of CRUD operations into a customized 
atomic action [18]. After having acquired the lock, 
client can now enter the critical section safely. A 
local buffer is used to cache a previously read 
chunk and delay the write operations until 
transaction has been committed. All the dirty 
chunks and delete messages will be write to the 
mailbox and validated by a single atomic operation. 
After that, a few of clean up operations will be 
carried out, and all the locks will be released.  

4.2.1. Buffer management algorithms 
As both exclusive locks and shared locks will 

protect Chunks from being modified, it is safe to 
maintain a cache of Chunks which have been read 
at the client side. Meanwhile, the buffer is used to 
delay the dirty write to the global storage, so as to 
establish the atomic semantic. Transactions use two 
arrays of Messages as the buffer pool: 
ary_of_dirties and ary_of_copies. The 
ary_of_dirties is used to buffer the dirty chunks and 
deleted messages that will be written to the mailbox 
when the transaction is committed, and the 
ary_of_copies is used to cache the chunks that are 
read and not modified.  

The TXN_BUFFER_INSERT function is used to 
insert a new buffer item into the client buffer. It 
accepts two parameters: the first parameter is the 
message that is going to be buffered, and the 
second one indicates whether this is a dirty one, 
which can be value of DIRTY or NONDIRTY. 

The TXN_BUFFER_REMOVE function is used 
to remove an element from the buffer, it accepts 
two parameters: the first parameter is the type of 
the message, and the second one is the message 
name.  

The TXN_BUFFER_CONTAINS function is 
used to check whether the target message is cached 
already. If it is, then it can be accessed directly 
from the buffer, or it is indicating that it has to be 
fetched from the mailbox through an IMAP 
operation. It will return the message if there is a 
buffer hit or NOTHING_FOUND if it is missed. 

4.2.2. Crud algorithms 
The algorithm presented in this section is the 

CRUD procedures which are used directly by client 
applications to operate on Data_Items .  

Procedure TNX_READ will read the value field 
of a Data_Item if its key field is given. The 
auxiliary TXN_CLEANUP is used to remove the 
low version chunks and duplicated, expired or 

deleted messages. It is invoked under protections of 
locks. It accepts only a single parameter that is the 
name of the Chunk which is going to be cleaned. 
After cleaning up, only one unique Chunk with the 
highest version will be retained, or all Chunks will 
be deleted. Procedure TXN_WRITE is used to 
write a Data_Item to the data set. It accepts two 
parameters, i.e., the key and value field of a 
Data_Item. To reduce the number of exposed 
interface, we grouped write and update operation 
into a single procedure that is TXN_WRITE. If the 
key is a new one, then the TXN_WRITE acts as a 
create operation; if the key is existed already, 
TXN_WRITE will replace the old value with new 
value, just as a write operation does. Procedure 
TXN_REMOVE is used to delete a Data_Item 
given its key.  

4.2.3. Transaction commit and roll back 
As soon as all the CRUD operations are finished, 

the transaction should be committed if everything is 
all right and the client decides to take the 
modifications into effect, otherwise the transaction 
should be rolled back to give up all efforts done 
before [19] [20]. Procedure TXN_ROLLBACK 
implements the function of rolling back 
transactions. 

5. SCHEME 2: OCC TRANSACTIONS 
 

The lock based transaction schema previously 
described will suffer from a significant slowing 
down during deadlock resolve course. Thus, we 
developed an alternative transaction scheme which 
use OCC (Optimistic Concurrency Control) method 
to avoid deadlock tangles [21].  

An OCC transaction is divided into three phases, 
namely READ, VALIDTAE and WRITE, which 
will be carried out one by one. The READ phase is 
a non-critical phase. This phase can be paralleled 
with any other transaction's READ phase or any 
other phases. VALIDATE phase and WRITE phase 
are critical, and shall never get paralleled. The 
concurrency controlling policy of the three phases 
can be denoted as Figure 2. 

Figure 2. Concurrency controlling policy of the 3-phased 
transaction 

In this OCC Transaction scheme, LibMTP will 
maintain a local buffer to store the Data_Items that 



Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
460 

 

have been touched. The fields of the local buffer are 
described as Table 2. 

Table 2. Fields of the local buffer 
Field Function 

Key The key of the Data_Item 
Value The value of the Data_Item 

ReadFlag 
Indicates whether the Data_Item is read 
from global storage 

Sequence 

If this is a Data_Item read from global 
storage(the ReadFlag is setted), this field 
will record the Message Sequence 
Number 

 
During the READ phase, all the CRUD 

operations may get executed. Read operation will 
look at the buffer first, if a read from the buffer is 
missed, the read routine will go on to read the 
Data_Item from global storage with the 
ATOM_FETCH() procedure, new read Data_Items 
will be added into the local buffer, and the 
corresponding ReadFlag and Sequence field will be 
setted. All of the write, update and delete 
operations are performed to the local buffer only 
(omitting ReadFlag and Sequence out). The read 
phase of OCC transactions can be described as 
Figure 3. 

 
Figure 3. The read phase of OCC transactions 

Before the VALIDATE phase begins, LibMTP 
will lock the whole data set by invoking the 
LOCK_ACQUIRE() procedure. After the whole 
data set is locked, we are going to check out 
whether any of the read data is polluted by other 
transactions by iterating through the local buffer to 
see whether any of the Data_Item with a ReadFlag 
has a new version which has a bigger Message 
Sequence Number. If the read set is polluted, the 
transaction can not carry on committing, but having 
to be rolled back. Otherwise, if none of the read 
data get modified, the transaction can be committed 
safely. 

As is validated successfully, transaction now is 
going to write data into the global storage during 

WRITE phase. All the polluted Data_Items will be 
updated as well as delete operation will be carried 
out. 

6. PERFORMANCE EVALUATION 
 

In this section, we are going to evaluate the 
performance of the two schemes on write oriented 
transactions and read-write balanced operations 
[22]. All performance results are obtained on a Dell 
desktop PC. 

6.1 Write Orinted Transactions 
 

The two schemes will be tested with a bulk write 
transaction. We let the two scheme clients write 
data items into data set, but do no read operations. 
First we carried out the benchmark, which running 
one single thread. The test result is show as Figure 
5.  

Then we tested them in a multiple user mode. 
Five clients are used for testing. The test result is 
show as Figure 6.  

As displayed, SCHEME 1 allows more 
concurrency, but costs more lock overhead. To 
reveal more details about the relationship between 
the client number and performance, we tested the 
schemes with different number of clients to do the 
same number of write operation, and the result is 
collected in Figure 7. 

0

100

200

300

400

500

600

700

Data Set Scale

E
l
a
p
s
e
d
 
T
i
m
e
(
s
e
c
)

SCHEME 2 1.947 6.297 14.488 25.125 132.937

SCHEME 1 8.875 29.89 64.594 162.219 658.688

100 200 300 500 1000

 

Figure 5: Read-only Trans with Single Client 

 



Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
461 

 

0

50000

100000

150000

200000

250000

300000

350000

SCHEME 1 22891 24766 49093 61766 91734 133156 179937

SCHEME 2 7532 25859 61594 108156 168265 238562 321375

100 200 300 400 500 600 700

Figure 6: 5 Read-only Trans with 5 Clients 

 

0

20000

40000

60000

80000

100000

120000

SCHEME 1 110860 72266 64063 62000 61766

SCHEME 2 73391 63094 74016 88141 108156

1 2 3 4 5

 

Figure 7: Read-only Trans with Different Client 
Numbers 

6.2 Debit-And-Credit Transactions 
In this section, we tested the two schemes with a 

read-write balanced transaction in a debit-and-
credit style [23][24]. We first tested the schemes 
with a single client mode. Result is shown in Figure 
8. Then we tested the schemes in a multiple clients 
mode, five clients are chosen to do the debit-and-
credit transaction simultaneously. The result is 
displayed in Figure 9.  

To reveal the relationship between the operation 
data set and performance we carried out test 
described as Figure 10, in which we did the debit-
and-credit transactions on different scale of account 
number by five clients.  

Finally, to analysis the performance of the two 
schemes with different number of clients, we tested 
the schemes on the same conditions but different 
number of clients, the results is described in Figure 
11. 

0

100000

200000

300000

400000

500000

SCHEME 1 16203 38110 66563 141484 435078

SCHEME 2 7062 15359 24948 48276 129130

100 200 300 500 1000

 

Figure 8: Debit & Credit Trans with Single Client 
 

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

SCHEME 1 282906 242984 248422 274797 289547

SCHEME 2 13844 141953 216484 295484 390500

100 200 300 400 500

 

Figure 9: Debit & Credit Trans with 5 Clients 

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

SCHEME 1 282906 242984 248422 274797 289547

SCHEME 2 13844 141953 216484 295484 390500

100 200 300 400 500

 

Figure 10: Debit & Credit Trans with 5 Clients on 
Different Scale Data Sets 

0

50000

100000

150000

200000

250000

300000

SCHEME 1 22703 46844 59500 183063 282906

SCHEME 2 10516 19360 33891 51796 75312

1 2 3 4 5

 

Figure 11: Debit & Credit Trans on Different 
Client Numbers 

 



Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
462 

 

7. CONCLUSION 
 

This paper proposes an approach to build a light-
weighted transaction processing system based on 
the widely-used IMAP infrastructures. It is an 
interesting attempt to make use of the historical, 
wide spread, charge-free E-Mail service for 
ubiquitous data storage in a new internet 
application environment. Two schemes of 
transaction were implemented. One of them uses 
advisory shared-exclusive locks to establish the 
atomicity and isolation semantics based on peer-to-
peer negotiation. The other scheme takes an 
optimistic concurrency control policy to provide a 
deadlock-free implement, but sacrifice the 
throughput possibility. Neither of the two schemes 
relies on a central arbitration mechanism. In stead, 
both of these schemes completely depend on peer-
to-peer negotiation.  

For on-line light-weighted applications which do 
not require a full-feature database system, the light-
weighted transaction processing system can be used 
as an on-line storage system  

ACKNOWLEDGEMENT 
The work of this paper is supported by the 

Science and Technology Program of Zhejiang 
Province (No.2012C33078). 

 

REFRENCES: 
 

[1] Xiaoying Wang, Xuhan Jia, Lihua Fan, 
Weitong Huang, "Research on performance 
modeling of transactional cloud applications", 
Journal of Theoretical and Applied Information 
Technology, Vol.44, No.2,2012, pp.166-171. 

[2] Zheng Hua, "A development model for 
domain-oriented information service based on 
cloud computing infrastructure", Journal of 
Theoretical and Applied Information 
Technology, Vol. 46, No. 2,  2012, pp. 594-
598. 

[3] H. Yadava, The Berkeley DB Book, Apress, 
Berkely, CA, 2007. 

[4] W. Litwin, “Linear hashing: A new tool for file 
and table addressing”, Proceedings of the 6th 
International Conference on Very Large Data 
Bases, Vol.6, 1980, pp.212-223. 

[5] J.M. Hellerstein, M. Stonebraker, "Anatomy of 
a Database System", Readings in Database 
Systems 4th edition, The MIT Press, 2005, 
pp.42-93. 

[6] J.M. Hellerstein, M. Stonebraker, "What Goes 
Around Comes Around", Readings in Database 

Systems 4th edition, The MIT Press, 2005, pp. 
2-41. 

[7] M. Crispin, "Internet Message Access Protocol 
–  Version 4rev1", Internet Engineering Task 
Force RFC3501, 2003. 

[8] D. Comer, "The Ubiquitous B-Tree", 
Computing Surveys, Vol.2, No.2, 1979, 
pp.121-137. 

[9] M. M. Astrahan, W. Blasgen, D. D. 
Chamberlin, K. P. Eswaran, J. N. Gray, P. P. 
Griggiths, "System R: Relational Approach to 
Database Management", ACM Transactions on 
Database Systems, Vol.1, No.2, 1976, pp. 97-
137. 

[10] R. Sears, E. Brewer, "Stasis: flexible 
transactional storage", Proceeding of  OSDI, 
2006, pp.29-44. 

[11] J. N. Gray, R. A. Lorie, G. R. Putzulo, 
I.L.Traiger, "Granularity of locks and degrees 
of consistency in a shared database", IBM 
Research Report,  RJ1654, 1975. 

[12] A. Adya, R. Gruber, B. Liskov, U. 
Maheshwari, "Efficient Optimistic 
Concurrency Control Using Loosely 
Synchronized Clocks", Proceeding of 
SIGMOD, 1995, pp.23-24. 

[13] C. Mohan, "ARIESIKVL: A Key-Value 
Locking Method for Concurrency Control of 
Multiaction Transactions Operating on B-Tree 
Indexes", Proceedings of the 16th VLDB 
Conference, Brisbane, August 1990, pp.392-
405. 

[14] R. Bayer, M. Schkolnick, "Concurrency of 
Operations on B-Tree", Acta informatica, 
1977. 

[15] P. L. Lehman, S. B. YAO, "Efficient Locking 
for Concurrent Operations on B-Trees", ACM 
Transactions on Database Systems, Vol.6, 
No.4, 1981, pp.650-670. 

[16] E. Sciore, "SimpleDB: a simple java-based 
multiuser system for teaching database 
internals", Proceeding of SIGCSE, 2007, 
pp.561-565. 

[17] C. Mohan, Don Haderle, B. Lindsay, H. 
Pirahesh, P. Schwarz, "ARIES: A Transaction 
Recovery Method Supporting Fine-Granularity 
Locking and Partial Rollbacks Using Write-
Ahead Logging", ACM Transactions on 
Database Systems, Vol 17, No. 1, 1992, pp.94-
162. 

[18] M. Kornacker, C. Mohan, J.M. Hellerstein, 
"Concurrency and recovery in generalized 
search trees", Proceeding of SIGMOD, 1997, 
pp.62-72. 



Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
463 

 

[19] M. Stonebraker, "Retrospection  on  a Database  
System", ACM Transactions on Database 
Systems, Vol.5, No.2, 1980, pp.225-240. 

[20] M. Stonebraker, E. Wong, P. Kreps, G. Held, 
"The  Design  and  Implementation  of  
INGRES", ACM Transactions on Database 
Systems, Vol. 1, No.3, 1976, pp.189-222. 

[21] H.T. Kung, "On Optimistic Methods for 
Concurrency Control", ACM Transactions on 
Database Systems, Vol.6, No.2, 1981, pp.213-
226. 

[22] J.N. Gray, Database and Transaction 
Processing Performance Handbook, Morgan 
Kaufmann Pub, 1993. 

[23] D. D. Chamberlin, "A history and evaluation of 
System R", Communications of the ACM, 
Vol.24, No.10, 1981, pp.632-646. 

[24] C. Mohan, "ARIES/IM: An Efficient and High 
Concurrency index Management Method 
Using Write-Ahead Logging", Proceeding of 
SIGMOD, 1992, pp.371-380. 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
  

 


