Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

A LIGHT-WEIGHTED TRANSACTION PROCESSING
SYSTEM BASED ON INTERNET MESSAGE ACCESS
PROTOCOL

1JIAN SU,’CHONG ZHOU, *WENYONG WENG

133chool of Computer and Computing Science, Zhejlaniyersity City College, Hangzhou, China
’Department of Computer Science, Zhejiang Universigngzhou, China
E-mail: suj@zucc.edu.cn’zhouchonghz@gmail.copfwengwy@zucc.edu.cn

ABSTRACT

A few methods are proposed to build a light-weight@ansaction processing system, which is basetieon
Internet Message Access Protocol (IMAP). The mdiaiunderlying these methods is to use an email
service as ubiquitous lightweight data storage nodide means to assure transaction processinghewa
application environment. Two kinds of operation esties based on advisory shared-exclusive locks and
optimistic concurrency control are implemented eespely. Performance tests are also offered t@ hel
understanding the pros-and-cons of these two schamalifferent application conditions. The light-
weighted transaction processing system will be w®edn on-line storage system for many on-linetdigh
weighted applications which do not require a feliture database system.

Keywords. Transaction Processing, Internet Message Access Protocol (IMAP), Concurrency Control,
Storage System

1. INTRODUCTION requiring only a Internet connection. There is no
need to establish a mobile database server onto re
Internet is one of the most important informatiora cloud data service, it will be secure enough with
infrastructures for most of people. More and mor&SL link, and it will not easily collapse due to a
applications will be deployed on the Internet. Manyrofessional maintain of e-mail service provider.
applications, especially those accessible through We will present a transaction processing librar
internet, need an ‘on-line database syste o V0SS B RS T B
Obviously, a few well-known databg s€ softwareand isolation ,semantics pof transaction based yon
such as MySQL or Oracle, are quite often beefy)\p"1g1 "The LibMTP is a client side library

used to play the role of on-line database systgm [1 ; 2
- ~worked in the way of peer to peer negotiation

[4]. However, many applications, such as mobile . D ;
o : . without any central arbitration. Two kinds of
application, just need an on-line storage system 10

. oncurrency control policy and transaction services
store a few data, not necessarily a full-featur& y policy

database system or a data cloud service[5][6] are compared and discussed to find out the best
' implement scheme in different kinds of application

In this paper, we will discuss a light-weightedsituations [10]. Only the most fundamental features
transaction processing system which is based on tbé various extensions of the IMAP are utilized in
widely-used Internet Message Access Protocalrder to gain a wider compatibility.

(IMAP) [7]. As we know, IMAP is a standard
protocol for email management. This transactior% ARCHITECTURE
processing system use the email box as the
underlying storage infrastructure, and provide th Since IMAP allows multiple clients to connect to

means on the basis of IMAP to assure transactiofc. >2m€ mailbox smultaneously, but (.jo not
: support any request scheduling, LibMTP
processing [8].

establishes the transaction semantic by client-side
Designing and implementing the transactiomegotiation without any central arbitration.

processing mechanism on the infrastructure of e&tructure of application with LIbMTP can be

mail service will make the following interesting denoted as Figure 1.

things possible: a mailbox on an e-mail server can

be used as a database server anywhere anytime,

456

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

3.3 Imap Commands
IMAP works in a request-response mode. All the

requests are called commands. LibMTP uses four
core IMAP commands to build its functionality.
These four commands are APPEND, SEARCH,
FETCH and STORE. Four procedures are designed
to use these four commands respectively, i.e., for
every command there is a corresponding procedure
to use it. These commands and their corresponding

MTP Library MTP Library MTP Library

procedures are listed in the Table 1:
Client 1 Client 2 Clientn Table 1. IMAP command and procedures
Figure 1. Application architecture Command Procedur e Definition
Prototype:
3. ARCHITECTURE ATOM_APPEND(Title, Content)

Title: the title of the new append
dAPPEND message.

In this section, some IMAP elements an
Content: the content of the new append

features will be discussed and formalized for an

. - message.
easier de_scr|pt|on about the upper level protodol return SUCCEED | FAILED.
and algorithms. Prototype:
3.1. Message ATOM_SEARCH(Title_Pattern,
Answered)

LibMTP uses a tuple called Message to represent

an e-mail, which is defined as Title_Pattern: title pattern to search. Note

that any e-mail whose title contains the
Message::=<Seq, Title, Content, Answered> SEARCH | Title_Pattern will be included in the

result set.

In this definition, Seq, Title and Content are the Answered: whether the Answered Flag [of
sequence number, subject and plaintext body of [an an e-mail is set. Answered belongs to the
email respectively. Answered is a flag indicating set of {ANSED,NONANS,IGNORE}.
whether or not an email is answered. In faqt return Ary Of MsgSeq.

Prototype: ATOM_FETCH(Which_Part,
Ary Of MsgSeq)

o

LibMTP utilizes the subject, plaintext body, an
answered flag of an email to store and represent

data, in addition to the message sequence number. Which_Part belongs to the set of
Also, LIbMTP provide means to establish the lock,FETCH {TITLE, CONTENT, TIT_N_CNT}.
serialize latch, and design some other functional return Array_Of _Title |
mechanlsms Al’l’ay_Of_Content I

Array_Of_<Title,Content>

3.2 M essage Sequence Number

. Prototype:
Message sequence number is used by IMAP A'rI'OO(I)\/IypSeTORE(Ary Of MsgSeq,Flag)
servers to .un|quely identify e-mails W|th|n an crore Flag belongs to the set of {ANS_FLAG,
IMAP session. When an IMAP session is DEL_FLAG}.

established, the server will assign a unigye return SUCCEED| FAILED.
sequence number to each e-mail in the order of
receiving time. Any new incoming e-mail will 4
obtain a sequence number which equals to the
number of messages in the mailbox. Since emails
tagged with a deleted flag will not be deleted
immediately until the session is reestablisheqo
delete operation will not result in a fluctuatioh o

SCHEME 1. LOCK PROTECTED
TRANSACTIONS

SCHEME 1 uses advisory shared-exclusive locks
protect the data to be accessed concurrently [11

. O 13]. Clients are required to cooperate with each
message sequence number. LibMTP will filter th ther by acquiring the lock before accessing the

e-mails with deleted flag with any access behaV'%orresponding data [14] [15]. Clients use exclusive

SO that_it mak_es delete operation logically takingf’ocks to obtain an exclusive access right over Data
effecl; |r_nmed|ztetly._ IN|IAP in(tahssalgek Se?ju?rlc?]ﬁems, while use shared locks to prevent reading of
nhumper 1S used 1o implement the fock and 1alCH, .o mmitted data. After critical CRUD operations

mec“"?‘“'sm' as will be discussed later in thg transaction should be committed if everything is
following sections.

457

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

all right, or rolled back if there is any exception be X _LOCK or S_LOCK. The Second parameter is
error detected. the name field of the target Chunk. If the procedur
4.1, Lock Protocol can acquire the lock successfully, it will return a
411 Protocol sketch SUCCEED result, while a FALSE if there is

The lock protocol can be divided into tWosomethlng wrong or the lock-acquiring request has

phases. During the first phase, clients acquirkdoc failed for too many times, which imply that there
. .~ may be a dead lock[17] .
as needed, and during the second phase, clients
release all the acquired locks so as to releadeatri ~ There are some auxiliary subroutines used by the
Chunks [16]. procedure LOCK_ACQUIRE, some of which is

Before executing a read operation, clients need %so used by the lock release algorithm. The first

acquire a shared lock first. Before executin air of the subroutine is LOCK_IS_OBTAINED
q S ; 9 dnd LOCK_ADDED. These two procedures are
write, update or delete operation, clients mus

used to maintain and use the set of locks which

privileged than shared Iocké, i.e., clients cardrea?‘have already been acquired by the client.
1

data safely if they have assigned an exclusive lo OCK_IS_OBTAINED accepts two parameters:

to a Chunk, but they shall never write to a Chunk i e first parameter is a lock type, and the second
one indicates the target chunk.

they only have acquired a shared lock. ExclusivEn - 5™ oRTAINED checks the lock list to find
locks and share locks are represented b —

Jut whether the lock to be acquired has already
X_LOCK_MSGs and S_LOCK_MSGs. To apply, .. acquired: if it is, LOCK_IS_OBTAINED will

an exclusive lock over a Chunk, clients appendtf\:‘etum the Message Sequence Number of the lock
Message whose Type field is X_LOCK_MSG, an essage, while if it is not, -1 will be returned.

:gfggangiljfkld t')‘; egt;ilintg tgﬁ ,\IIISI?E’ f'ilgp(gl\}gq_OCK_ADD_TO_SET is used to add the acquired
command through invoking the ATOM APPEND!OCk message gnd the message sequence number
function. Similarly, to apply a shared lock over into_the lock list. XLOCK_IS_OCCUPIED and
target Chunk ,cIients have to append aSLOCK_IS__OCCUPIED are used to check whether
' %he exclusive lock or shared lock append by the
S LOCK_MSG Message. . .
client is the lock message targeted to the same
Since multiple clients may try to apply locksChunk with a smallest sequence number. If the
over a Chunk simultaneously, SCHEME 1 protocohnswer is yes, the procedure will return FALSE
has to decide who can acquire lock immediatelindicating that the target chunk now is availalde f
and who have to wait. SCHEME 1 takes a FCFSritical operation, otherwise TRUE will be
(First Come First Served) policy and use theeturned. SLOCK_IS_OCCUPIED accepts two
Message Sequence Number as a criterion to decigdarameters: the target Chunk name and the message
which lock request is issued first. All clients cke sequence number of the exclusive lock message.
the mailbox to see whether there is any conflictedLOCK_IS_OCCUPIED accepts three parameters:
locks applied to the same target Chunk beforthe first and second parameter works just as the fi
accessing the data, and if there is, the clienettav two parameters of S_LOCK_IS_APPLIED, and the
back off some time and do a recheck later, ungl thlast parameter is used to send a shared lock
client have obtained the lock message with message on the same target, and is acquired
smallest message sequence number. already. This is used to avoid an exclusive lock

Clients will maintain a set of locks that haveWhICh conflict with a shared lock already acquired.

been acquired locally, and there is no need t4.1.3lock release algorithm

acquire a lock repeatedly. Locks can not be After acquiring a lock, clients can enter the
upgraded, and clients always have to acquire amitical section and execute the CRUD (Create,
exclusive lock again if they have not acquired itRead, Update and Delete) operations. These
even if they have already obtained a shared lock @mperations will be handled by TXN module
the same target. services. Since a sequence of CRUD operations
within a transaction will be finished after

: committing or rolling back of a transaction, all
Procedure LOCK_ACQUIRE implements theacquired locks will be released. Procedure

algorithm used to acquire an exclusive lock o : :
shared lock on the target Chunk. It accepts tWLe(IJeC;;mEELEASE provide the function of lock

parameters. The first parameter is used to indicate
which kind of lock it will acquire, and the valuarc

4.1.2. Lock acquire algorithm

B
458

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-1SSi817-3195
4.2 Transaction Algorithms deleted messages. It is invoked under protectibns o

SCHEME 1 use Transaction interfaces to bind #cks. It accepts only a single parameter thahés t
sequence of CRUD operations into a customizedame of the Chunk which is going to be cleaned.
atomic action [18]. After having acquired the lock,After cleaning up, only one unique Chunk with the
client can now enter the critical section safely. Aighest version will be retained, or all Chunkslwil
local buffer is used to cache a previously reatle deleted. Procedure TXN_WRITE is used to
chunk and delay the write operations untilwrite a Data_Item to the data set. It accepts two
transaction has been committed. All the dirtyparameters, i.e., the key and value field of a
chunks and delete messages will be write to tHeata Item. To reduce the number of exposed
mailbox and validated by a single atomic operatiorinterface, we grouped write and update operation
After that, a few of clean up operations will beinto a single procedure that is TXN_WRITE. If the
carried out, and all the locks will be released. key is a new one, then the TXN_WRITE acts as a
. create operation; if the key is existed already,
4.2.1. Buffer management algorithms TXN_WRITE will replace the old value with new

As both exclusive locks and shared locks WIIIvalue, just as a write operation does. Procedure

protect Chunks from being modified, it is safe toT N REMOVE is used to delete a Data Item
maintain a cache of Chunks which have been read — -

at the client side. Meanwhile, the buffer is used {Jiven its key.

delay the dirty write to the global storage, sad@s 4.2.3. Transaction commit and roll back

establish the atomic semantic. Transactions use twoAs soon as all the CRUD operations are finished,
arrays of Messages as the Dbuffer poolthe transaction should be committed if everythmg i
ary_of _dirties and ary_of_copies. Theall right and the client decides to take the
ary_of_dirties is used to buffer the dirty chunksla modifications into effect, otherwise the transactio
deleted messages that will be written to the mailboshould be rolled back to give up all efforts done
when the transaction is committed, and théefore [19] [20]. Procedure TXN_ROLLBACK
ary_of_copies is used to cache the chunks that amplements the function of rolling back
read and not modified. transactions.

The TXN_BUFFER_INSERT function is used to5. SCHEME 2: OCC TRANSACTIONS
insert a new buffer item into the client buffer. It
accepts two parameters: the first parameter is theThe lock based transaction schema previously
message that is going to be buffered, and thdescribed will suffer from a significant slowing
second one indicates whether this is a dirty onelown during deadlock resolve course. Thus, we
which can be value of DIRTY or NONDIRTY. developed an alternative transaction scheme which

The TXN_BUFFER_REMOVE function is used use OCC (Optimistic Concurrency Control) method

to remove an element from the buffer, it acceptg‘,0 avoid deadlock tangles [21].

two parameters: the first parameter is the type of An OCC transaction is divided into three phases,
the message, and the second one is the messagenely READ, VALIDTAE and WRITE, which
name. will be carried out one by one. The READ phase is

. . a non-critical phase. This phase can be paralleled
The TXN_BUFFER_CONTAINS function is with any other transaction's READ phase or any

used to check whether the target message is Cach% er phases. VALIDATE phase and WRITE phase
already. If it is, then it can be accessed d'reCtlfyire critical, and shall never get paralleled. The

from the buffer, or it is indicating that it has be concurrency controlling policy of the three phases
fetched from the mailbox through an IMAP y g poiicy P
can be denoted as Figure 2.

operation. It will return the message if there is a
buffer hit or NOTHING_FOUND if it is missed. READ ‘ VAT | VALDATE ‘ WRITE ‘

4.2.2. Crud algorithms WA | VADSE | VR B

The algorithm presented in this section is th
CRUD procedures which are used directly by client % Paralleled }éerialileé{
applications to operate on Data_ltems

. . Figure 2. Concurrency controlling policy of the 3-phased
Procedure TNX_READ will read the value field J Cytranmioﬁ’ poey P

of a Data_ltem if its key field is given. The

459

Journal of Theoretical and Applied Information Technology
10™ March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN: 1992-8645 www.jatit.org E-1SSi817-3195
have been touched. The fields of the local buffer aWRITE phase. All the polluted Data_ltems will be
described as Table 2. updated as well as delete operation will be carried
Table 2. Fields of the local buffer out.
Field Function 6. PERFORMANCE EVALUATION
Key The key of the Data_Item
Value The value of the Data_ltem .) .
Indicates whether the Data ltem is rdad N this section, we are going to evaluate the
ReadFlag| - f f the t h ite oriented
rom global storage performance of the two schemes on write oriente

If this is a Data_ltem read from global transactions and read-write balanced operations
storage(the ReadFlag is setted), this field [22]. All performance results are obtained on al Del
will record the Message Sequence desktop PC.

Number

Sequence

6.1 Write Orinted Transactions

During the READ phase, all the CRUD)))
Operations may get executed. Read Operation will The two schemes will be tested with a bulk write
look at the buffer first, if a read from the buffer transaction. We let the two scheme clients write
missed, the read routine will go on to read théata items into data set, but do no read operations
Data_ltem from global storage with theFirst we carried out the benchmark, which running
ATOM_FETCH() procedure, new read Data_ltem®ne single thread. The test result is show as Eigur
will be added into the local buffer, and theS.

corresponding ReadFlag and Sequence field will bé Then we tested them in a multiple user mode.

setted. All of the write, update and deleterjye clients are used for testing. The test refsult
operations are performed to the local buffer onlgpoy as Figure 6.

(omitting ReadFlag and Sequence out). The read

phase of OCC transactions can be described asAs displayed, SCHEME 1 allows more

Figure 3. concurrency, but costs more lock overhead. To

reveal more details about the relationship between

Global Storge(Mailbox) the client number and performance, we tested the
‘ schemes with different number of clients to do the

; ; | same number of write operation, and the result is
READ MISS READ MISS READ MISS collected in Figure 7.

A J
Local Local Local
Buffer Buffer Buffer
- 700
WRITE/ | WRITE/ WRITE/ X Ve
READUPDATE/ READUPDATE/ READUPDATE/ 600
| DELETE | DELETE | DELETE 500 F
h J | v | h J

Client Client Client

Elapsed Time (sec)

400

300 |

200 |

10 J/U =
0 P

Figure 3. The read phase of OCC transactions
100 200 300 500 1000

Before the VALIDATE phase begins’ LIbMTP ——SCHEME 2| 1.947 6. 297 14. 488 25.125 | 132.937
will lock the whole data set by invoking the = SCHEME 1| 8.875 | 29.89 | 64.594 | 162.219 | 658.688
LOCK_ACQUIRE() procedure. After the whole Data Set Scale
data set is locked, we are going to check out
whether any of the read data is polluted by other ~ Figure5: Read-only Trans with Single Client
transactions by iterating through the local butfer
see whether any of the Data_ltem with a ReadFlag
has a new version which has a bhigger Message
Sequence Number. If the read set is polluted, the
transaction can not carry on committing, but having
to be rolled back. Otherwise, if none of the read
data get modified, the transaction can be committed
safely.

As is validated successfully, transaction now is
going to write data into the global storage during

460

Journal of Theoretical and Applied Information Technology

10" March 2013. Vol. 49 No.1 N
© 2005 - 2013 JATIT & LLS. All rights reserved- T
ISSN:1992-8645 www.jatit.org E-ISSI¥17-3195
350000 500000
300000 /. /
400000
250000
200000 |- 300000
150000 F 200000
100000 F
100000
50000
o = 0] . .
100 | 200 | 300 | 400 | 500 | 600 | 700 100 200 300 500 1000
[—o— SCHEME 1] 22891 | 24766 | 49093 | 61766 | 91734 [133156| 179937 ——SCHEME 1 | 16203 | 38110 | 66563 | 141484 | 435078
|-=—scHEME 2| 7532 | 25859 | 61594 | 108156] 168265 238562321375 e SCHEME 2 | 7062 | 15359 | 24948 | 48276 | 129130

Figure 6: 5 Read-only Trans with 5 Clients

120000
100000 AN //.
80000 _\\.><:/\A

60000
40000 F
20000
0

1 2 3 4 5

——SCHEME 1| 110860 | 72266 | 64063 | 62000 | 61766

= SCHEME 2| 73391 | 63094 | 74016 | 88141 | 108156

Figure 7: Read-only Trans with Different Client

Figure 8: Debit & Credit Trans with Single Client

450000

400000

350000
300000 |
250000
200000

150000 |
100000

50000

0

100 200 300 400 500

—— SCHEME 1

282906 242984 248422 274797 289547

—8— SCHEME 2

13844 141953 216484 295484 390500

Figure 9: Debhit & Credit Transwith 5 Clients

Numbers

6.2 Debit-And-Credit Transactions

In this section, we tested the two schemes with a
read-write balanced transaction in a debit-and-
credit style [23][24]. We first tested the schemes
with a single client mode. Result is shown in Fegur
8. Then we tested the schemes in a multiple clients
mode, five clients are chosen to do the debit-and-
credit transaction simultaneously. The result is
displayed in Figure 9.

To reveal the relationship between the operation
data set and performance we carried out test
described as Figure 10, in which we did the debit-
and-credit transactions on different scale of antou
number by five clients.

Finally, to analysis the performance of the two
schemes with different number of clients, we tested
the schemes on the same conditions but different
number of clients, the results is described in Fégu
11.

461

450000
400000 —
350000
300000 —
250000 — Y
200000
150000 /r
100000
50000 e
0 -
100 200 300 400 500
—— SCHEME 1 282906 242984 248422 274797 289547
—8— SCHEME 2 13844 141953 216484 295484 390500
Figure 10: Debit & Credit Trans with 5 Clients on
Different Scale Data Sets
300000
250000 |
200000 |
150000
100000 //
0
1 2 3 4 5
——SCHEME 1 22703 46844 59500 183063 282906
—8-— SCHEME 2 10516 19360 33891 51796 75312

Figure 11: Debit & Credit Trans on Different

Client Numbers

Journal of Theoretical and Applied Information Technology

10" March 2013. Vol. 49 No.1 B
© 2005 - 2013 JATIT & LLS. All rights reserved- L ———
7Y TT]
ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

7. CONCLUSION

This paper proposes an approach to build a Iigh[Y]
weighted transaction processing system based on
the widely-used IMAP infrastructures. It is an
interesting attempt to make use of the historical8]

wide spread, charge-free E-Mail service for
ubiquitous data storage in a new internet
application environment. Two schemes of9]

transaction were implemented. One of them uses
advisory shared-exclusive locks to establish the
atomicity and isolation semantics based on peer-to-
peer negotiation. The other scheme takes an
optimistic concurrency control policy to provide a

deadlock-free implement, but sacrifice
throughput possibility. Neither of the two schemes
relies on a central arbitration mechanism. In stead

thg10]R. Sears, E.

Systems 4th edition, The MIT Press, 2005, pp.
2-41.

M. Crispin, "Internet Message Access Protocol
— Version 4revl", Internet Engineering Task
Force RFC3501, 2003.

D. Comer, "The Ubiquitous B-Tree",
Computing Surveys, Vol.2, No.2, 1979,
pp.121-137.

M. M. Astrahan, W. Blasgen, D. D.

Chamberlin, K. P. Eswaran, J. N. Gray, P. P.
Griggiths, "System R: Relational Approach to

Database Management”, ACM Transactions on
Database Systems, Vol.1, No.2, 1976, pp. 97-
137.

Brewer, "Stasis: flexible

transactional storage", Proceeding of OSDI,
2006, pp.29-44.

both of these schemes completely depend on pe¢td]J. N. Gray, R. A. Lorie, G. R. Putzulo,

to-peer negotiation.

For on-line light-weighted applications which do
not require a full-feature database system, tha-lig

.) . 1
weighted transaction processing system can be us[eg]

as an on-line storage system

ACKNOWLEDGEMENT
The work of this paper is supported by the

I.L.Traiger, "Granularity of locks and degrees
of consistency in a shared database", IBM
Research Report, RJ1654, 1975.

A. Adya, R. Gruber, B. Liskov, U.
Maheshwari, "Efficient Optimistic
Concurrency Control Using Loosely
Synchronized Clocks", Proceeding of

SIGMOD, 1995, pp.23-24.

Science and Technology Program of Zhejiangl3]C. Mohan, "ARIESIKVL: A Key-Value

Province (N0.2012C33078).

REFRENCES:

[1] Xiaoying Wang, Xuhan Jia, Lihua Fan,
Weitong Huang, "Research on performance
modeling of transactional cloud applications",
Journal of Theoretical and Applied Information
Technology, Vol.44, No.2,2012, pp.166-171.
Zheng Hua, "A development model for
domain-oriented information service based o
cloud computing infrastructure”, Journal of
Theoretical and Applied Information
Technology, Vol. 46, No. 2, 2012, pp. 594-
598.

H. Yadava, The Berkeley DB Book, Apress,
Berkely, CA, 2007.

W. Litwin, “Linear hashing: A new tool for file
and table addressing”, Proceedings of the 6th
International Conference on Very Large Data
Bases, Vol.6, 1980, pp.212-223.

J.M. Hellerstein, M. Stonebraker, "Anatomy of
a Database System", Readings in Databa
Systems 4th edition, The MIT Press, 2005,
pp.42-93.

J.M. Hellerstein, M. Stonebraker, "What Goes
Around Comes Around", Readings in Database

(2]

[3]

[4]

[5]

[6]

[17]C. Mohan,

Locking Method for Concurrency Control of

Multiaction Transactions Operating on B-Tree
Indexes", Proceedings of the 16th VLDB

Conference, Brisbane, August 1990, pp.392-
405.

[14]R. Bayer, M. Schkolnick, "Concurrency of

Operations on B-Tree", Acta informatica,

1977.

[15]P. L. Lehman, S. B. YAO, "Efficient Locking

for Concurrent Operations on B-Trees", ACM
Transactions on Database Systems, Vol.6,
No.4, 1981, pp.650-670.

rf16]E. Sciore, "SimpleDB: a simple java-based

multiuser system for teaching database
internals”, Proceeding of SIGCSE, 2007,
pp.561-565.

Don Haderle, B. Lindsay, H.
Pirahesh, P. Schwarz, "ARIES: A Transaction
Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-
Ahead Logging", ACM Transactions on
Database Systems, Vol 17, No. 1, 1992, pp.94-
162.

é%S]M. Kornacker, C. Mohan, J.M. Hellerstein,

"Concurrency and recovery in generalized
search trees", Proceeding of SIGMOD, 1997,
pp.62-72.

462

Journal of Theoretical and Applied Information Technology

10" March 2013. Vol. 49 No.1 B
© 2005 - 2013 JATIT & LLS. All rights reserved- L ———
7Y TT]
ISSN: 1992-8645 www.jatit.org E-ISSN17-3195

[19]M. Stonebraker, "Retrospection on a Database
System", ACM Transactions on Database
Systems, Vol.5, No.2, 1980, pp.225-240.

[20]M. Stonebraker, E. Wong, P. Kreps, G. Held,
"The Design and Implementation of
INGRES", ACM Transactions on Database
Systems, Vol. 1, No.3, 1976, pp.189-222.

[21]H.T. Kung, "On Optimistic Methods for
Concurrency Control", ACM Transactions on
Database Systems, Vol.6, No.2, 1981, pp.213-
226.

[22]J.N. Gray, Database and Transaction
Processing Performance Handbook, Morgan
Kaufmann Pub, 1993.

[23]1D. D. Chamberlin, "A history and evaluation of
System R", Communications of the ACM,
Vol.24, No.10, 1981, pp.632-646.

[24]C. Mohan, "ARIES/IM: An Efficient and High
Concurrency index Management Method
Using Write-Ahead Logging”, Proceeding of
SIGMOD, 1992, pp.371-380.

463

