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ABSTRACT 
 

Using the fuzzy rule-based classification method, seventeen phases of NDVI (Normalized Difference 
Vegetation Index) images acquired from 1982 to 1998 were classified respectively based on NDVI and 
climate images. And then, spatiotemporal dynamics of NDVI and land use are described. Finally, this paper 
analyzes NDVI trends and their relationships with climate and human activity under the land cover 
scenario. The results indicate that at the national scale, the increases of monthly and seasonal NDVI 
correspond mainly to climate changes. But NDVI trends show a large spatial and temporal heterogeneity at 
the regional scale corresponding mainly to human activities, besides some sensitive areas with climate 
changes. Therefore it is necessary to establish a set of policies to ensure the ecological conservation and 
restoration, especially in ecological sensitivity areas. 
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1. INTRODUCTION  
 

Normalized Difference Vegetation Index (NDVI) 
is a general biophysical parameter that correlates 
with photosynthetic activity of vegetation and 
provides an indication of the ‘greenness’ of the 
vegetation [1]. It is calculated as NDVI = 
(CH2−CH1) / (CH2+CH1) usually, where CH1 and 
CH2 represent radiances from channels 1 (0.58–
0.68 mm) and 2 (0.725–1.10 mm) of the AVHRR, 
respectively. NDVI does not provide land cover 
type directly. However, a time series of NDVI 
values can separate different land cover types based 
on their phenology, or seasonal signals [2]. Time 
series of continuous Earth Observation (EO) based 
estimates of vegetation have significantly improved 
our understanding of intra and inter-annual 
variations in vegetation from a regional to global 
scale [3]. Different global coverage products based 
on AVHRR data have been used for numerous 
regional to global scale vegetation studies. For 
example, lots of studies analyse the AVHRR NDVI 
time series from regional to global scale [4-5] and 
changes in vegetation phenology [6-7] based on 
NDVI. Furthermore, long term time series analysis 
of AVHRR NDVI have been intercompared with 
other climatic variables like rainfall and air 
temperature to reveal geo-biophysical causes for 
observed changes in vegetation greenness or NPP 
[8-9]. Other geophysical parameters like albedo 
have been derived from Meteosat data [10] to 

analyse continental scale trends associated with 
environmental changes.  

China’s geographic size causes the country to 
have a large climate range, from the tropical to 
subarctic/alpine and from rain forest to desert, 
together with diverse and species-rich vegetation 
types. It is necessary to pay enough attention to land 
cover monitoring and land use planning, so as to 
protect natural environment and ecosystem 
effectively [11]. Land use patterns have been 
dramatically changed in China since the late 1980s, 
especially with regard to urbanization and loss of 
cultivated land. The large scale land use change in 
China over the last two decades of the 20th century 
has attracted international attention to analyze the 
driving forces, impacts and future trends [12]. In the 
late 20th century and early 21st century, China has 
undergone a rapid socio-economic development, 
modification of industrial structure and acceleration 
of industrialization and urbanization. Meanwhile, a 
series of development strategies, including 
“Western Development”, “Revitalization of 
Northeast”, “Rising of Central China” and so on 
have been implemented across the nation. It results 
in remarkable changes and modifications in the 
spatial distribution of China’s land use [13]. In this 
paper, we used the NDVI data from 1982 to 1998, 
to gather with information on climate and land use, 
to explore interannual variations of monthly and 



Journal of Theoretical and Applied Information Technology 
 10th March 2013. Vol. 49 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  

 
ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
411 

 

seasonal NDVI and their relationships with climate 
and human activity.  

2. RESEARCH METHOD 
 
2.1 Data 

The Normalized Difference Vegetation Index 
(NDVI) data used in this study were derived from 
the NOAA/AVHRR Land data set by the Global 
Inventory Monitoring and Modeling Studies 
(GIMMS) group; its spatial resolution was 8×8 km2 
with 15-day intervals, between January 1982 and 
December 1998 [14-16]. Annual mean air 
temperature and precipitation data at 1×1 km2 
resolution were compiled from the 1982–1998 
temperature/precipitation database of China. 
Available data and maps for this study include: (a). 
Land Use Map of China (1:1,000,000), edited by 
the Editorial Committee for the 1:1,000,000 Land 
Use Map of China, published by Science Press, 
Beijing, 1990; (b). Resources and environment data 
of China (1:4,000,000), produced by the State Key 
Laboratory of Resources and Environment 
Information Systems of the Institute of Geography, 
at the Chinese Academy of Sciences, Beijing 
November 1996. The data include 13 specific 
datasets: national boundaries, provincial 
boundaries, county boundaries, canals, railway 
system, rivers, main road system, and surface 
waters etc; (c). DEM of GTOPO30 that USGS 
distributes to the public through the Internet ; (d). 
Land Use Map of China in 1995 from sharing 
infrastructure of Earth system science. All data 
were aggregated to grid cells at 8×8 km2 resolution, 
as done for the NDVI data sets. And then, the mask, 
geometric correction, coordination transformation, 
and layer stack were carried out on images with 
ArcGIS 9.3. 

 
2.2 Method 

As some variations (clouds, aerosols, etc) may 
still remain in the GIMMS NDVI data, the mean-
value iteration filter (MVI) [17] was conducted to 
reconstruct a high quality NDVI time-series and to 
support a multi-temporal analysis for 15-day 
interval NDVI data sets from 1982 to 1998. To 
further reduce residual atmospheric and 
bidirectional effect, the maximum NDVI values in 
each season and year were produced from the 
seasonal and annual NDVI data sets [18]. 

There exist different uncertainties in many real 
world applications and the fuzzy technique has 
been witnessed to be a powerful modeling tool to 
these uncertainties [19-20]. Usually only fuzzy 
concepts exist for land cover and land use. Hence, 
fuzzy classification systems, such as fuzzy c-means 
clustering algorithm [21], are well suited to handle 
most sources of vagueness in remote sensing 
information extraction. Fuzzy logic is a multi-
valued logic quantifying uncertain statements. It 
can model imprecise human thinking and can 
represent linguistic rules [22]. Fuzzy classification 
systems consist of three main steps: fuzzification, 
the combination of fuzzy sets (e.g. by fuzzy rule), 
and defuzzification. Fuzzy rules are ‘‘if–then’’ 
rules. If a condition is fulfilled, an action takes 
place. An example is: ‘‘If’’ feature x is low, 
‘‘then’’ the image object should be assigned to land 
cover W. In fuzzy terminology this would be 
written: If feature x is a member of fuzzy set low, 
then the image object is a member of land cover W 
[22]. According to the land use/cover categories 
suggested by the Chinese Academy of Sciences, the 
land use/cover types in this study were classified 
as: Farmland, Forestland, Grassland, Water Area, 
Urban Land, and Unused Land. Then annual fuzzy 
rules were extracted from seasonal NDVI, annual 
NDVI, temperature, precipitation and DEM images, 
respectively, in reference to the Land Use Map of 
China 1:1,000,000. For example, if all five of these 
variables are in their respective fuzzy set low, then 
the image object is a member of land cover Unused 
Land. Using these fuzzy rules assembled for every 
year, seventeen land use-classified maps were 
obtained, one for each year from 1982 to 1998 
(Figure 1). 

3. RESULTS AND DISCUSSION 
 
3.1 Fuzzy classification accuracy 

Based on the reference of the Land Use Map of 
China, Kappa coefficients of all classified images 
were very high and gradually decreased from 
94.05% in 1982 to 92.46% in 1998 (Figure 2). The 
maximum Kappa coefficient value was 96.65% in 
1991 and the minimum value was 91.74% in 1983. 
If three outlying years (1983, 1991 and 1997) are 
ignored, the values from 1982 to 1998 decrease 
significantly (r2 = 0.329, p = 0.0321) with a trend of 
-0.000617 yr-1 (Figure 2). These figures imply that 
the change of land use in China is getting extreme.
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(a) Land Use Map of China                                            (b) Classification flow diagrams 

Figure 1. Land Use Map Of China Referenced And Fuzzy Rule-Based Classification Flow Diagrams. 
 

 
(a) Classified image of China in 1998                              (b) Kappa values trend 

Figure 2. Classified Image Of China In 1998 And Kappa Values Trend From 1982 To 1998 
 

 
Figure 3. Land Use Map Of China In 1995 

Based on the Land Use Map of China in 1995 
(Figure 3), the Kappa coefficient of classified 

image 1995 was 80%, and the overall accuracy and 
mean accuracy were 85% and 81.2% respectively 
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(Table 1). It can be seen that 88.5% of the actual 
Forestland pixels (34460 out of 38933) were 
correctly identified; the producer of the map 
incorrectly omitted 11.5% of the pixels (4473 out 
of 38933). Looking at the columns, we can see that 
87.6% of the Forestland pixels (34460 out of 39332) 
were correctly identified and 4872 out of 39332 or 
12.4% of the Forestland pixels were incorrectly 

assigned to other classes during the classification 
process (Table 1). Water Area shows a lower 
degree of accuracy. Water areas are not spectrally 
homogeneous or distinct since they contain 
wetlands and aquatic plants, as well as other land 
covers in an 8×8 km2 pixel. For this reason, there is 
some spectral confusion with the other classes in 
the matrix. 

 

Table 1. Land Use Types Error Matrix Between 1995R (Reference Data) And 1995C (Classified Data) (Pixels) and 
Kappa value  

       1995C 
1995R 

Farm 
land 

Forest 
land 

Grass 
land 

Water 
Area 

Urban 
Land 

Unused 
Land 

Row 
Total 

Producer's 
Accuracy 

Errors of 
Omission 

Farmland 25558 2292 1659 46 52 309 29916 85.4% 14.6% 

Forestland 1378 34460 2649 37 10 399 38933 88.5% 11.5% 

Grassland 1165 2031 40034 115 6 5252 48603 82.4% 17.6% 

Water Area 185 78 217 1572 12 132 2196 71.6% 28.4% 

Urban Land 27 19 8 2 181 7 244 74.2% 25.8% 

Unused Land 580 452 2843 187 1 23469 27532 85.2% 14.8% 
Column 

Total 
28893 39332 47410 1959 262 29568 147424   

User’s 
Accuracy 

88.5% 87.6% 84.4% 80.2% 69.1% 79.4%    

Errors of 
Commission 

11.5% 12.4% 15.6% 19.8% 30.9% 20.6%  
 

 

Kappa value Kappa=80% 

Overall Accuracy = 85%, Mean Accuracy = 81.2% 
 

3.2 Spatiotemporal Dynamics of Land Use 
The main spatial distribution changes of land 

cover type in 1982-1998 existed in the reaches of 
the Yangtze River and the Yellow River, central 
Shandong and Guizhou, southern Inner Mongolia, 
eastern Tibet, northern Xinjiang, in most parts of 
Qinghai, Sichuan, Yunnan and Hunan (Figure 
4(a)). The areas of farmland, water area, urban 
land and unused land increased; water area had the 
greatest rate of increase, which was 8.52% during 
the period. The areas of forestland and grassland 
decreased; forestland had the biggest rate of 
decrease, which was 1.56% during the period. The 
main characteristics of the change in land cover 
types over the period 1982-1998 are detailed in 
Figure 4(b) and Table 2. 

(1) Although 1182.08×104 and 404.48×104 
hectares of farmland were converted into forestland 
and grassland respectively, the area of farmland 
increased by 379.52×104 hectares. The net increase 
was mainly derived from the occupation of 
forestland (1459.84×104 hectares), and grassland 
(547.84×104 hectares).  Forest loss occurred 
primarily in southern and eastern China, such as the 

lower reaches of Yellow River, the Yangtze River 
Basin, Yunnan, Guizhou, Sichuan, Guangdong, 
Fujian, Shaanxi, and Shandong Provinces. 
Similarly, the farmland converted into forestland 
also occurred primarily in these regions. The 
occupation of grassland by farmland was mainly 
distributed in Inner Mongolia, the Yellow River 
Basin and central Tibet. Farmland converted into 
grassland was also mainly found in these regions 
except Inner Mongolia. 

(2) Overall the area of forestland decreased by 
382.72×104 hectares. Increases in forestland were 
mainly attributed to the occupation of farmland 
(1182.08×104 hectares) and grassland (545.28×104 
hectares).  However 1459.84×104 hectares and 
564.48×104 hectares of forestland were converted 
into farmland and grassland respectively, which 
resulted in net losses to these groups. In addition, 
304.64×104 hectares of forestland was converted 
into unused land and only 238.72×104 hectares 
was conversely converted. The conversion 
between forestland and other land cover types 
occurred mainly in central, southern and eastern 
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China, Inner Mongolia, and the southeastern 
Qinghai-Tibet Plateau. 

(3) There was a decrease of 466.56×104 hectares 
in grassland which was the most dominant 
conversion during the study period. The decrease 
of grassland mainly derived from the occupation of 
unused land (963.2×104 hectares), farmland 
(547.84×104 hectares) and water area (131.2×104 
hectares). Conversely, 720×104 hectares, 
404.48×104 hectares and 30.72×104 hectares of 
unused land, farmland and water were converted 
into grassland respectively. Grassland was 
converted into water bodies mainly in eastern 
Xinjiang, northwestern Qinghai and Shanxi, and 

the southeastern portions of the Qinghai-Tibet 
Plateau and Inner Mongolia Autonomous Region. 
The conversion between grassland and unused 
land is particularly evident in the middle and upper 
reaches of the Yellow River, Inner Mongolia, 
Gansu and northwestern Qinghai. Additionally, 
some conversions were distributed in the eastern 
Qinghai-Tibet Plateau and northern Xinjiang. 

(4) Water area increased by 112.64×104 hectares 
over the study period. Besides grassland, the 
second source of conversion to water was 
forestland (33.28×104 hectares), this mainly 
distributed in eastern Jiangxi Province and 
northern Guangdong Province. 

 

           
 (a) Change probability                              (b) Land cover types change in 1982-1998 

Figure 4. Mainly Spatial Distributions Of Land Cover Types Change During 1982-1998 
 

Table 2. Land Use Types Transformation Matrix From 1982 To 1998 (104 Hectares) 

       1998 
1982 

Farmland Forestland Grassland 
Water 
area 

Urban 
land 

Unused 
land 

total 

Farmland 17002.88 1182.08 404.48 5.12 9.60 339.20 18943.36 

Forestland 1459.84 22236.8 564.48 33.28 3.84 304.64 24602.88 

Grassland 547.84 545.28 29720.96 131.20 1.92 963.20 31910.40 

Water area 10.24 14.08 30.72 1242.24 0.00 24.96 1322.24 

Urban land 2.56 3.20 3.20 0.00 141.44 1.92 152.32 

Unused land 299.52 238.72 720.00 23.04 5.12 16149.76 17436.16 

Total 19322.88 24220.16 31443.84 1434.88 161.92 17783.68 94367.36 

increasing rate 2.00% -1.56% -1.46% 8.52% 6.30% 1.99%  

 

(5) Urban land increased by 9.6×104 hectares, but 
it had the second greatest positive rate of increase, 

of 6.3%, during the study period. The increase of 
urban land primarily came at the expense of 
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farmland (7.04×104 hectares) and distributed 
around the border area of Hebei and Shandong 
Provinces, as well as in Qinghai Province. 

(6) Unused land increased by 347.52×104 
hectares and had a similar rate to farmland. Its 
increase came primarily at the expense of grassland 
(243.2×104 hectares), forestland (65.92×104 
hectares) and farmland (39.68×104 hectares). The 
conversion to unused land from farmland occurred 
primarily in the middle and lower reaches of the 
Yangtze River and the Yellow River Basin, as well 
as in southern Inner Mongolia, Shaanxi, Shanxi, 
Henan, Shandong, and Ningxia. The reverse 
conversion of unused land into farmland occurred 
mainly in the middle and lower reaches of the 
Yellow River and Xinjiang. 

3.3 Spatiotemporal Dynamics of NDVI 
 
3.3.1 Temporal dynamics of NDVI in national 

scale 
From 1982 to 1998, there was not a significant 

correlation between annual mean NDVI and 
climatic factors, and no apparent trend was seen in 
annual NDVI (r2 = 0.123, p = 0.169). But the NDVI 
trends for spring and autumn increased 
significantly. The largest NDVI increase (r2 = 
0.533, p = 0.001) was in spring, with a magnitude 
of 17.7% over the 17 years and a trend of 0.00211 
yr-1 (the 17-year averaged NDVI is 0.3111). The 
increase (r2 = 0.355, p = 0.012) for autumn was 
7.21% with a trend of 0.001126 yr-1. Despite the 
pronounced NDVI increases in two seasons, several 
large fluctuations appeared in the NDVI trends. For 
example, seasonal NDVI was large in 1987 and 
1990 but small in 1991 and 1995 for spring and 
autumn respectively (Figure 5(a)).  

The magnitude of monthly NDVI and its change 
over time are important indicators of the 
contribution of vegetation activity in different 
months to annual plant growth total [16]. In China, 
the monthly NDVI trends showed positive values 
for all months except November and December, 
indicating that NDVI increased throughout the year 
almost over the 17-year study period (Figure 5(b)). 
The monthly NDVI trends for May and September 
increased significantly. The largest monthly NDVI 
increase (r2 = 0.531, p = 0.001) was in May, with a 
magnitude of 19.96% over the 17 years and a trend 
of 0.0022 yr-1 (the 17-year averaged NDVI is 
0.3047). The increase (r2 = 0.358, p = 0.011) for 

September was 8.14% with a trend of 0.001243 yr-1. 
But monthly NDVI reached maximum value in 
August and was rather small from December 
through March (Figure 5(b)). That is, plant growth 
peaked in the middle of growing season (summer), 
while the largest NDVI increase occurred in the 
early growing season (spring). Monthly and 
seasonal NDVI trends and their patterns are likely 
coupled with climate patterns and moisture 
availability [16]. 

 
3.3.2 Temporal dynamics of NDVI in provincial 

scale 
Although no apparent trend was seen in annual 

NDVI at the national scale from 1982 to 1998, we 
found a high degree of spatial heterogeneity in most 
areas, especially in the North China Plain, hilly and 
plain areas of Central China, Yangtze River deltas 
and Pearl River deltas. At the provincial scale, the 
provincial NDVI trends for Inner Mongolia (r2 = 
0.235, p = 0.049), Shanxi (r2 = 0.378, p = 0.009), 
Xinjiang (r2 = 0.339, p = 0.014) and Ningxia (r2 = 
0.292, p = 0.025) increased significantly. The 
largest provincial NDVI increase was in Ningxia, 
with a magnitude of 42.59% over the 17 years and a 
trend of 0.002943 yr-1 (the 17-year averaged NDVI 
was 0.323). The increase for Inner Mongolia, 
Shanxi and Xinjiang were 7.22%, 10.76%, and 
17.61% with a trend of 0.001908 yr-1, 0.002613 yr-
1, and 0.001322 yr-1, respectively. But because a 
rapid urbanization had taken place over the past 20 
years, there was significantly decrease in 
Guangdong (r2 = 0.27, p = 0.032), with a trend of -
0.001845 yr-1.  
 
3.3.3 Temporal dynamics of NDVI in Land use 

scale 
Similar to annual NDVI and its trend over the 

past 17 years at the provincial scale, if we assumed 
the location of land cover was not change in Land 
Use Map of China referenced (Figure 1(a)), annual 
NDVI and its trends showed a high degree of 
heterogeneity at land cover scale. Especially, the 
annual NDVI trends increased significantly for 
water area (r2 = 0.254, p = 0.039) with a magnitude 
of 12.18% over the 17 years and a trend of 
0.001295 yr-1 (Table 3). Compare with 
spatiotemporal dynamics of land use from 1982 to 
1998 (Figure 4 and Table 2), regional NDVI trends 
and their patterns are likely associated with human 
activities because of land use changed significantly. 
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(a) Seasonal NDVI                                                  (b) Monthly NDVI 

Figure 5. Seasonal And Monthly NDVI Change In China 
 

Table 3. NDVI Regression Analysis From 1982 To 1998 In Land Use Scale 

Landuse N Reg Coef T P R I rate 

Farmland 17 0.001482 2.003 .064 .459 0.064469 

Forestland 17 -0.000373 -.671 .512 .171 -0.02506 

Grassland 17 0.001004 1.807 .091 .423 0.053312 

Water area 17 0.001295 2.259 .039 .504 0.121757 

Urban land 17 -0.000344 -.389 .703 .100 0.046945 

Unused land 17 0.000606 1.720 .106 .406 0.105325 

 

3.4 Discussion 
A comparison of the NDVI trends in China 

resulting from this analysis with those found in 
other studies provides context and support for the 
overall results of the present study. Reference [16] 
used the NDVI data from 1982 to 1999, together 
with information on climate, vegetation, and human 
activity, to explore interannual variations of 
monthly and seasonal NDVI and their relationships 
with climate and land use change. At the national 
scale, they found that monthly and seasonal NDVI 
had increased significantly over the study period 
and NDVI had showed the largest increase (14.4% 
during the 18 years and a trend of 0.0018 yr-1) over 
85.9% of the total study area in spring and the 
smallest increase (5.2% with a trend of 0.0012 yr-1) 
over 72.2% of the area in summer, while the NDVI 
trends had showed a marked heterogeneity 
corresponding to regional and seasonal variations in 
climates. The results were very similar to our 
analysis in this paper. But in this study, NDVI in 
summer did not appear the significant change and 
monthly NDVI trend was negative values for 
November (Figure 5(b)). Because reference [16] 
not only assume that such variations were smaller 
than those due to environmental drivers, and grid 
cells with <0.1 of annual average NDVI during 18 

years were excluded to reduce the influence of soil 
(over deserts and sparsely vegetated grids) and 
snow on the NDVI trend, but also aggregated 
monthly NDVI to grid cells of 0.1°× 0.1° from the 
original 8-km resolution data. However, in this 
study, the mean-value iteration filter (MVI) [17] 
was used to reduce the noise and reconstruct the 
high quality NDVI time-series. These differences of 
NDVI data preprocess would cause slight bias in 
some results. 

 
4. CONCLUSION 
 

The multiyear NDVI data set and a 
corresponding climate data set from 1982 to 1998 
were used to analyze NDVI trends and their 
relationships with climate and human activity. The 
results indicated that both increase of monthly and 
seasonal NDVI corresponded mainly to climate 
changes, suggesting that climate change is playing 
an important role for the patterns of NDVI trends at 
the national scale. But NDVI trends showed a large 
spatial and temporal heterogeneity at the regional 
scale corresponding mainly to human activities, 
suggesting that human activities is playing an 
important role for the patterns of NDVI trends at 
the regional scale, besides some sensitive areas with 
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climate changes. Human activities have exerted a 
large effect on the spatiotemporal patterns of NDVI 
trends in some regions. If human activities would 
exceed regulation capacity of ecosystems 
themselves, the ecosystems in China might be 
deteriorated more seriously. It is necessary to 
establish a set of policies to ensure the ecological 
conservation and restoration, especially in 
ecological sensitivity areas. 
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