
Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

378

REALISTIC RENDERING IN WEBGL

1LI YU, 2XIAOMENG MAO
1Assoc Prof., School of Information Technology, Shanghai Jianqiao University, Shanghai

2Lecturer, School of Information Technology, Shanghai Jianqiao University, Shanghai

E-mail: 1yuli110@126.com , 2maomxm@163.com

ABSTRACT

HTML5 introduces many new features, in which the Canvas can use WebGL technology to achieve 3D
graphics rendering. This paper presents a method to render virtual models in WebGL on browser platform.
We use Vertex Shader and Fragment Shader programming to achieve realistic graphics, including Phong
illumination model, Phong shading and texture mapping. The advantages of this method are 1) The browser
support WebGL natively, so there is no need to install any plug-ins, and it is cross-platform; 2) 3D scene
roaming supported (pan, zoom and rotate).

Keywords: WebGL, Vertex Shader, Fragment Shader

1. INTRODUCTION

We can use computers to create vivid scene to
gain realistic experience [1]. With the development
of Internet and virtual reality technology, creating
3D virtual world and providing real-time interactive
performance becomes the urgent needs of people on
the Internet. Early 3D virtual reality technology
include VRML [2, 3] and Java3D [4, 5], yet most of
them need to install plug-ins to browsers, which
will arouse disgusts to some users and hinder those
who are not professional. Meanwhile, there emerge
many algorithms to interact with the virtual scene
[6, 7].

WebGL is developed by the Khronos Group.
Google, Apple, Mozilla, Opera and other
companies and organizations are among the
members. WebGL runs on browser, currently
mainstream browsers including Google Chrome
browser, Opera browser, Firefox and Apple Safari
browser all support WebGL. WebGL is a JavaScript
API, which allows developers to embed interactive
3D graphics in the browser, what’s more, 3D
graphics support hardware acceleration, so web
developers can make use of graphics card to render
3D scenes and models in the browser more
smoothly, to create complex navigation and data
visualization [8], and the rendering speed is faster
than ray tracing algorithm [9]. The browser
supports WebGL natively, so there is no need to
install any plug-ins, and the browser as a platform
for Internet applications is already multi-platform
supported, including mobile platform, desktop
computers, smart phones, tablet PCs and smart TV.

2. WEBGL OVERVIEW

2.1. Vertex Shader And Fragment Shader

WebGL uses OpenGL ES 2.0 standard, in which
programmable shaders bring greater flexibility and
adaptability for GPU programming. In polygon-
based graphics system, the geometry pipeline
converts objects from 3D coordinate to 2D screen
coordinate, each vertex is attached to vertex color,
normal vector, texture coordinate and other
information; rendering pipeline calculates the
appearance of each vertex, firstly geometric objects
are decomposed into fragments corresponding to
the raster scan line, secondly fragments are filled in
the frame buffer to generate images [10].

Vertex Shader (referred to as VS below) can be
used to perform traditional vertex-based operations,
such as using matrix to transform vertex position,
vertex color, and texture coordinates, but we can
not generate a new vertex in VS.

Fragment is a pixels collection within a polygon
on the same scan line. Fragment Shader (referred to
as FS below) is commonly used to deal with scene
lighting and related effects, such as bump texture
mapping. We will use FS to calculate Phong
shading in this paper.

There are three commonly used shader variables.
“Attribute” is only used by VS, it carries variable
passed to it from the program, such as vertex
position array; “Uniform” can be used by both VS
and FS, it can not be changed, like a constant, such
as the modelview matrix and projection matrix;
“Varying” is a variable VS passed to FS, such as

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

379

gl_Position, which carries transformed vertex
coordinates.

2.2. Webgl Rendering Pipeline
Figure 1 is WebGL rendering pipeline. On each

call to drawArrays function, WebGL Uniform and
Attribute variables are passed to VS, VS calculated
results are stored in Varying and passed to FS; FS
calculates color of each pixel, and stores it in
gl_FragColor Varying variable; lastly, the output is
written to Frame Buffer, which is the image on the
screen.

Figure 1. Webgl Rendering Pipeline

3. REALISTIC RENDERING METHOD

One main purpose of computer graphics is to
generate pleasing, realistic graphics with computer.
To generate photo-like pictures, we need to
establish the geometric representation of the scene,
and use some kind of illumination model to
calculate lighting effects under the hypothetical
light source, texture and material properties. In the

end, we may hope to interact with the virtual scene
freely.

3.1. The Geometric Representation Of The
Model

When WebGL read the model, such variables as
vertexPositions, vertexNormals,
vertexTextureCoords and indices and other
information are needed to feed into program. Figure
2 is the wireframe of a model, which displays
topology connection clearly. JSON file of the
model is as follows:

"vertexPositions" : [-1,-1,2, -1,1,2, 0,2,2, 1,1,2,
1,-1,2, -1,-1,-2, -1,1,-2,0, 2,-2,1, 1,-2,1, -1,-2,-1,-1,-
2,-1,1,-2,-1,1,2,-1,-1,2,1,-1,2,1,1,2,1,1,-2,1,-1,-2,-
1,1,-2,0,2,-2,0,2,2,-1,1,2,1,1,2,0,2,2,0,2,-2,1,1,-2],

 "vertexNormals" : [0.0,0.0,1.0, 0.0,0.0,1.0,
0.0,0.0,1.0, 0.0,0.0,1.0, 0.0,0.0,1.0, 0.0,0.0,-
1.0,0.0,0.0,-0.0,0.0,0.0,-1.0,0.0,0.0,-1.0,0.0,0.0,-
1.0,-1.0,0.0,0.0,-1.0,0.0,0.0,-1.0,0.0,0.0,-
1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0
,0.0,-0.7,0.7,0.0,-0.7,0.7,0.0,-0.7,0.7,0.0,-
0.7,0.7,0.0,0.7,-0.7,0.0,0.7,-0.7,0.0,0.7,-0.7,0.0,0.7,-
0.7,0.0],

"vertexTextureCoords" : [0.0,0.0, 0.0,0.66,
0.5,1.0, 1.0,0.66, 1.0,0.0, 0.0,0.0, 0.0,0.66, 0.5,1.0,
1.0,0.66, 1.0,0.0, 0.0,0.0, 0.0,1.0, 1.0,1.0, 1.0,0.0,
0.0,0.0, 0.0,1.0, 1.0,1.0, 1.0,0.0, 0.0, 0.0, 0.0,1.0,
1.0,1.0, 1.0,0.0, 0.0,0.0, 0.0,1.0, 1.0,1.0, 1.0,0.0],

"indices" : [0,1,2, 0,2,3 ,0,3,4, 5,7,6, 5,8,7, 5,9,8,
10,11,12, 10,12,13, 14,15,16, 14,16,17, 18,19,20,
18,20,21, 22,23,24, 22,24,25]

Where “vertexPositions” are x, y and z
coordinates of a vertex; “vertexNormals” provide
normal of a vertex, which will be used in
illumiation step; “vertexTextureCoords” provide s
and t parameter in texture mapping step; and
“indices” are vertex indices to form a polygon,
usually a triangle.

Figure 2. The Wireframe Of A Model

3.2. Phong Illumination Model
WebGL does not support any illumination model

directly. This is a defect, but also, it brings more

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

380

freedom to programmers. We can program in
shaders to achieve Phong illumination model. As
shown in formula 1, light reflected by non-ideal
reflecting surface are composed of ambient
reflection component, diffuse reflection component
and specular reflection component,

(1)

Where Ka, Kd and Ks are the ambient reflection
coefficient, the diffuse reflection coefficient and
specular reflection coefficient of the model; Ia is
ambient light; Il is spot light source; N is the
normal vector, which comes from “vertexNormals”;
L is the light source direction; V is the sight
direction; R is the specular reflection direction; n is
the specular highlight index. Users can set these
parameters on the webpage, and then these
parameters are passed to WebGL by javascript.

Part of the code of Vertex Shader is as follows:

<script id="per-fragment-lighting-vs" type="x-
shader/x-vertex"> / / VS

void main (void) {
vPosition = uMVMatrix * vec4 (aVertexPosition,

1.0);
gl_Position = uPMatrix * vPosition;
vTextureCoord = aTextureCoord;
vTransformedNormal = (uNMatrix * vec4

(aVertexNormal, 1.0)). xyz ;
}
</ Script>

In Vertex Shader, after projection and modelview
transformation, transformed position of every
vertex of model is calculated, which is gl_Position.
vTextureCoord and vTransformedNormal are
transfered to Fragment Shader.

In Fragment Shader, color of every fragment or
pixel is calculated, which is gl_FragColor.
Fragment Shader is where Phong illumination
model is realized. Part of the code of Fragment
Shader is as follows:

<script id="per-fragment-lighting-fs" type="x-
shader/x-fragment"> / / FS

void main (void) {
vec4 textureColor = texture2D (uSampler, vec2

(vTextureCoord.s, vTextureCoord.t));
lightDirection = normalize (uLightPosition -

vPosition.xyz) ;/ / point source
vec3 normal = normalize

(vTransformedNormal);
float diffuseLightWeight = max (dot (normal,

lightDirection), 0.0) ;
vec3 eyeDirection = normalize (-

vPosition.xyz) ;/ / point of view is always at (0,0,0)

vec3 reflectionDirection = reflect (-
lightDirection, normal);

float specularLightWeight =pow (max (dot
(normalize (reflectionDirection), eyeDirection),
0.0), uMaterialShininess) ;/ / specular light

lightWeighting = uAmbientColor +
uDiffuseLightColor * uMaterialColor *
diffuseLightWeight

+ USpecularLightColor * uSpecularColor *
specularLightWeight;

gl_FragColor = vec4 (textureColor.rgb *
lightWeighting, textureColor.a);

}
</ Script>

3.3. Phong Shading
The illumination model determines the color of a

vertex on polygon, while the shading determines
the color of a pixel within the polygon. With Phong
shading, also known as normal interpolation
method, firstly we calculate the normal of the pixel
on a fragment by interpolating the normals of
polygon vertices, then we use Phong illumination
model to calculate the color of the pixel. The bold
type in the code above is the pixel’s normal, it is a
varying variable that VS passed to FS. Figure 3 is
an image with lighting and Phong shading. In figure
3, yellow small circle demonstrates specular
highlight, and red big circle demonstrates the
pleasing effect of Phong shading, with a spot light
fairly close to the model.

Figure 3. Phong Shading With Lighting

As you know, SMOOTH Shading mode in both

OpenGL and DirectX graphics API is just Gouraud
Shading (also known as color interpolation), which
cannot calculate the shading effect in the red circle
in this case. While in Phong shading, since every
fragment has its own normal, programmers can
generate more refined image with VS and FS.

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

381

3.4. Texture Mapping
Texture mapping is a technology to map texture

image onto 3D model surfaces. Texture can make a
simple geometry to produce a vivid image. Figure 4
is the model with brick texture and lighting, now it
looks more realistic. The italics and bold type in the
code above is textureColor, which is sampled color
from the texture image for each pixel in the
fragment, then textureColor is multiplied with the
color calculated by illumination, which turns out to
be the pixel’s gl_FragColor, to be written to frame
buffer.

Figure 4. Model With Texture And Lighting

To contrast with figure 4, figure 5 is the same

scene with different texture, now it looks more like
a wooden house, not a brick one. The fact proves
that texture is the most economical way to get
photorealistic effect. All we need to do is to load a
different image as texture, the geometric
representation of the model is the same from the
very beginning.

3.5. Scene Interactive

With javascript we can easily achieve 3D scene
roaming. In this paper, we use the mouse to control
rotation, and PgUp and PgDn on the keyboard to

control zoom in and zoom out. Interactive results
are shown in Figure 6 and Figure 7.

Firstly, let’s analyse mouse interactive. Three

varibles are defined and initialized. Three functions
are defined to response to mousedown, mouseup
and mousemove events. Part of the mouse
interactive code is as follows:

 var mouseDown = false;
 var lastMouseX = null;
 var lastMouseY = null;
 function handleMouseDown(event) {
 mouseDown = true;
 lastMouseX = event.clientX;
 lastMouseY = event.clientY;
 }
 function handleMouseUp(event) {
 mouseDown = false;
 }
 function handleMouseMove(event) {
 var newX = event.clientX;

Figure 7. Scene After Zoom In

Figure 5. Different Texture

Figure 6. Scene after rotation

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

382

 var newY = event.clientY;
 var deltaX = newX - lastMouseX
 var newRotationMatrix = new okMat4();

newRotationMatrix.rotY(OAK.SPACE_LOCAL,
deltaX / 10, true);

 var deltaY = newY - lastMouseY;

newRotationMatrix.rotX(OAK.SPACE_LOCAL,
deltaY / 10, true);

 moonRotationMatrix =
okMat4Mul(newRotationMatrix,
houseRotationMatrix);

 lastMouseX = newX
 lastMouseY = newY;
 }

Secondly, how to realize zoom in and zoom out.

Traditionally, we use right key of mouse to control
zoom in and zoom out. However, in webpage, right
key of mouse is always binded with short cuts
already. So keyboard is used instead, which is also
a tradition in game playing. Part of the keyboard
interactive code is as follows:

 var zoom = 0;
 function handleKeys() {
 if (currentlyPressedKeys[33]) {
 zoom-=0.1; // Page Up
 } else if (currentlyPressedKeys[34]) {
 zoom+=0.1; // Page Down
 }
}

4. CONCLUSION

In this paper, we use WebGL to render a virtual
house. VS and FS programming are used to achieve
realistic graphics, including Phong illumination
model, Phong shading and texture mapping, and
users can interact with the scene. Since browser
support WebGL natively, there is no need to install
any plug-ins to enjoy 3D scene, and WebGL is
cross-platform. The future work can commence in
two ways: 1) to import 3D models generated with
3DMax or others; 2) collision detection and LOD
technology to improve real-time rendering
performance.

ACKNOWLEDGMENT

This work was partly supported by Shanghai
Private Education Research Projects (No.
AAM12002), Shanghai Municipal Education
Committee Scientific Research Innovation

Project(No.11YZ284) and Shanghai Municipal
Education Committee Dawn Project (No.
AASH0910).

REFRENCES:

[1] Chen Yong, Ma Chunyong, Chen Ge, “VC /

OpenGL Virtual Navigation System of Sea
Campus”, Computer Aided Design and
Computer Graphics, Vol. 19, No. 2, 2007, pp.
263-267.

[2] Qiu Wei, Zhang Lichen, “Design and
Realization of Web3D-based Virtual Scene
Roaming”, Micro-computer information, Vol
23, No 4, 2007, pp. 57-59

[3] Peng Shengze, Ge Wengeng, “Research on
Application of 3D Modeling Technique Based
on Network in Drawing Education”, Journal
of Theoretical and Applied Information
Technology, Vol. 44, No. 2, 2012, pp. 221 –
227.

[4] Yansong Deng, Kaiyu Qin, Guangming Xie,
“3-D Space Flight Formation Control for
UAVS Based on MAS”, Journal of
Theoretical and Applied Information
Technology, Vol. 47, No. 2, 2013, pp. 653 –
659.

[5] He Tonglin, Chang ice, “Java3D Based Virtual
Scene”, Computer applications, Vol. 6, No. 27,
2007, pp. 291-292.

[6] Jin Tonghong, Dou Zhongjiang, “Collision
Detection in Large Virtual Scene”,
Engineering Graphics, Vol. 17, No. 1, 2007,
pp. 33-36.

[7] Shi Hongbing, Zhang Yibin, “Virtual Scene
Path Planning Algorithm for Automatic
Roaming”, Computer Aided Design and
Computer Graphics, No. 18, 2006, pp.592-
597.

[8] Tan Wenwen, Ding Shiyong, Li Guiying,
“Design and Implementation of WebGL and
HTML5 Based Web 3D Animation”,
Computer Knowledge and Technology, Vol. 7 ,
No. 28, 2011, pp. 6981-6983.

[9] Liu Huaxing, Yang Geng, “HTML5 - the Next
Generation of Web Development Standards”,
Computer Technology and Development, Vol.
21, No. 8, 2011, pp. 54-58.

[10] Steve Cunningham, Computer graphics., First
Edition, Machinery Industry Press (2008)

