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ABSTRACT 

 
Workforce scheduling is one of the most important and practical problems in the service of industry and 
continuous manufacturing settings. Solving this problem requires determining how many workers must be 
assigned to each of the planning periods of work time for an organization. In this paper, our main objective 
is to solve the days-off scheduling problem with day task constraints. This problem is naturally formulated 
as 0-1 quadratic programming subject to linear constraints. To solve the latter problem, we formulate it as 
an equivalent 0-1 quadratic programming with a convex objective function using two convexification 
techniques, the first one is based on the smallest eigenvalue and the second uses the semidefinite relaxation. 
Some numerical examples and computational experiments assess the effectiveness of the theoretical results 
shown in this paper. 

Keywords: Workforce Scheduling, Days-Off Scheduling, Convex Quadratic Reformulation, Semidefinite 
Programming, Quadratic Programming.  

 
1. INTRODUCTION  
 

Workforce scheduling is both an important and a 
common problem to all organizations, especially for 
organizations that operate seven days a week or 24 
hours a day. The problem is to determine how many 
workers must be assigned to each of the planning 
periods of work time for an organization. 

In the literature, the workforce scheduling 
problems are traditionally classified into three 
categories [1]-[2]: Shift scheduling determines each 
employee's work and break hours per day. Days-off 
scheduling determines each employee's work-days 
and off days per week or multiple-week work cycle. 
Tour scheduling combines the shift and days-off 
scheduling problems by determining each 
employee's daily work hours and weekly workdays. 

In this paper, we consider the days-off scheduling 
problem which tries to give priority to the worker 
and the company. It allows them to organize the 
spare time while maximizing the number of 
consecutive off days and minimizing the costs of 
transport. This problem includes the following 
constraints: 

1. For any day, the number of workers is 
determined 

2.  Each worker has a fixed number of days off per 
week  

3. Allow to specify the classes of necessary 
workers for the tasks during a given period. 

In this paper, our main objective is to present two 
methods to solve the days-off scheduling problem 
through presenting a model in the form of a 0-1 
quadratic program. The latter problem consists in 
minimizing a quadratic function subject to linear 
constraints )(QP . A 0-1 quadratic program is often 

reformulated before searching for its optimal 
solution because the objective function is not 
convex. Therefore, many approaches have been 
proposed to solve )(QP  through 0-1 linear 

reformulations [3] or 0-1 convex quadratic 
reformulations [4]-[5]. The most well known 
approaches are the 0-1 linear reformulations, 
however; other methods have been proposed, for 
example, enumerative methods based on different 
types of relaxations such as, Lagrangian relaxation, 
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semidefinite relaxation or convex quadratic 
relaxation [6]- [7]- [8]- [9] -[10] -[11]- [12]- [13]. 

This paper is organized as follows: In section 2, 
we introduce a description of days-off scheduling 
problem and we provide a formulation of this 
problem as 0-1 quadratic programming )(QP . In 

section 3, we apply two methods to solve )(QP , the 

first one is based on the smallest eigenvalue method 
and the second uses the semidefinite programming. 
Then, we turn our attention to present some 
theoretical results that are able to convexify the 
problem )(QP . Section 4 is devoted to giving some 

hints on how to generate the satisfiable instances of 
the days-off scheduling problem in a random way 
and presenting some experimental results. 

2. DESCRIBING AND MODELING THE 
DAYS-OFF SCHEDULING PROBLEM 

 
The days-off scheduling problem can be 

formulated in several ways. The mathematical 
model discussed in this section is concerned with 
finding the solution that maximizes the number of 
consecutive off days for employees. We will first 
introduce the notation that we use throughout the 
paper, and we give detailed formulation of this 
problem as 0-1 quadratic programming. This 
formulation is simple and general for any 
companies. 

2.1 DESCRIPTION OF PROBLEM 
The days-off scheduling problem determines 

each employee’s work days and off days per week 
or multiple-week work cycle. This paper considers 
a specific type of days-off scheduling in which the 
off days are assigned to the workers in order to have 
a maximum of consecutive off days. This problem 
is defined by [14]:   

• p  is the number of workers. 

• iT  is the number of days-off for worker i  in 

the week, with }{1,.., pi ∈ . 

•  kn  is the number of workers needed on day

k , with {1,..,7}∈k . 

   Maximizing the number of consecutive off days 
for employees in these conditions does not depict 
real life. In this paper, we introduce a new class of 
constraints in order to satisfy daily labor demands 
such that a specific task should be assigned to a 
class of workers who have skills for it. These 
constraints are defined by a set },...,,{= 721 cccC , 

where kc  is the class of kq  workers needed to 

realize a specific task for dayk , with 
}{1,..., kk nq ∈ and {1,..,7}∈k . 

2.2  PROBLEM FORMULATION 

 In this section, we present a model of days-off 
scheduling problem in terms of 0-1 quadratic 
program with linear constraints. 

For each worker }{1,.., pi ∈ , we introduce 7  

binary variables ikx  for {1,..,7}∈k , such that:  





therwise

iworkerfordayoffaniskdayIf
xik O0

1
=

This matrix is converted to a n -vector, where
pn 7= :   

( )Tppp xxxxxxxxxx 721272221171211 ,...,,,...,,...,,,,...,,=

The main objective is to maximize the number of 
consecutive off days in the week. Then, we can 
define the objective function )(xg  in the following 

way:  

6

1 7 1
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    The linear constraints associated with this 
problem are defined by:   

    • For each dayk , the number of workers who 
take this day off is knp − . These constraints are 

defined by:  

bxAknpx kik

p

i

′⇔∈−∑ ={1,..,7},= 0
1=  

The matrix nIRA ×∈ 7
0  and the vector 7' IRb ∈  of 

the linear constraints are:   
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• Each worker has iT  off-days in the week:  

TxApiTx iik

k

=}{1,..,,= 1
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The matrix npIRA ×∈1  and the vector pIRT ∈  of 

the linear constraints are:  
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    Maximizing the number of consecutive off days 
for workers in these conditions does not depict real 
life because some tasks for each day of the week 
can have unique workers requirement. In this way, 
we solve days-off scheduling problem with the 
constraints defined by day task. Every day task 
should be assigned to a class of workers who have 
skills for it. In order to group some workers into 
active consecutive days on the week:  

    • The constraints defined by day task are a set
},...,,{= 721 cccC , where kc  is the class of 

}{1,..., kk nq ∈  workers needed to realize a specific 

task for day {1,..,7}∈k . These classes are 

determined by the company and represented by the 

matrix nA ×∈ 7
2 {0,1}  such that:  





Otherwise

kdayinrequiredsiworkertheofpresencehe
aik 0

iT1
=

 

Then, the set linear constraints will satisfy: 0=2xA  

 Finally, we obtain the following 0-1 quadratic 
program with linear constraints )( PQ′ : 
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Without loss of generality, the model )( PQ′  can 

be written as the following form:  













∈ n
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, where pm +14=  and pn 7= . 

3. RESOLUTION OF THE 0-1 QUADRATIC 
PROGRAM (QP) 

  

Consider the following linearly-constrained 0-1 
quadratic program:  













∈ n

T

x

bAx

toSubject

QxxxfMin

QP

{0,1}

=

=)(

)(

 

 

Therefore, Q  is nn×  matrix with the general 

term is denoted byikjlq , A  is nm×  matrix and

mIRb +∈ . Without loss of generality, we can 

suppose that Q  is symmetric and also that diagonal 

terms of Q  are equal to 0. If this matrix is not 

symmetric, it can be converted to the symmetric 

form 
2

TQQ +
 and the linear terms ikikik xq  can be 

substituted for the diagonal terms 2
ikikikxq , because 

ikik xx =2  for {0,1}∈ikx . 

Several approaches are proposed to solve)(QP . 

For example, the linear reformulations 0-1 [3], 
quadratic convex reformulations 0-1, the methods 
enumerative based on the various relaxations as the 
lagrangian relaxation [15] and the semidefinite 
relaxation [16]-[17]-[18]. In this section, we present 
two methods to solve the quadratic program )(QP  

using the quadratic convex reformulation [19]-[20]. 
These methods are based on repeating a quadratic 
optimization problem )(QP  with an objective 
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function which is not convex in a quadratic 
optimization problem ( uQP ) with the objective 

function is convex. The obtained problem is solved 
by the general methods of resolution of the 
quadratic programs in mixed variables, with a 
convex objective function and linear constraints. 

3.1  Convex Quadratic Reformulation Based On 
Smallest   Eigenvalue Method 

    In this section, we present a method to solve the 
quadratic program )(QP  using the quadratic 

convex reformulation based on the smallest 
eigenvalue method [20]. 

For IRu∈ , let us define the perturbed function 
)(xfu  in the following way: 

ik

k

p

i

u
T

ikik

k

p

i

u xuxQxxxuxfxf ∑∑∑∑ −−×+
7

1=1=

2
7

1=1=

=)()(=)(

 

With nu IuQQ ×+= , where nI  is the identity 

matrix of sizen . 

We are going to determine IRu∈  such as:   

• )(xfu  is convex ( uQ  is positive 

semidefinite matrix).  

• The optimal value of the continuous 
relaxation ( uQP ) is maximal.  















∈∈∈

− ∑∑
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T
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    Hammer and Rubin [20] propose reformulating 
non-convex 0-1 )(QP  into convex quadratic 

program )( uQP , with )(= Qu minλ− . Where 

)(Qminλ  is the smallest eigenvalue ofQ . 

     It is well known that a convex reformulation 
using the smallest eigenvalue method is 
computationally expensive, because the complexity 
of the problem for finding eigenvalues of the matrix 
increases rapidly with increasing its size. But in this 
case, the following theorem determines the smallest 
eigenvalue of the matrix defining the objective 
function of the model )(QP  independent of its size. 

 

Theorem 3.1  

Let Q  be a nn×  matrix, and let 0Q  be a 77×  

matrix defined by: 

0
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Then   

1. The matrices Q  and 0Q−  has the same 

eigenvalues:        )(=)( 0QSpQSp −  

       Where )(DSp  is the spectrum of a matrix D  

defined by:  }:0/{)( xDxxIRDSp λλ =≠∃∈=   

2. 1=)(=)( 0 −− QQ maxmin λλ .  

Proof.  

1) If )( 0QSp −∈λ  then 7
∗∈∃ IRx  such that

xxQ λ=0− . 

We consider pIRy 7
∗∈  such that ( )Txy 0,...,0,= . 

Thus,  yyQ ×× λ=  then )(QSp∈λ . This implies 

that                    )()( 0 QSpQSp ⊂− . 

If )(QSp∈λ  then ( ) pT
p IRxxxx 7

21 ,...,, ∗∈=∃   

such that xQx λ= . Thus, 

( )TpxQxQxQQx 02010 ,...,,= −−− and  

 

( ) ( )Tp
T

p xxxxxxx λλλλλ ,...,,=,...,,= 2121  

So { }pixxQ ii 1,2,...,,=0 ∈∀− λ . As the vector
pIRx 7

∗∈  then { }pi ,...,2,1∈∃ such as 7
∗∈ IRxi   

and ii xxQ λ=0− then )( 0QSp −∈λ . This implies 

that      )()( 0QSpQSp −⊂ . 

Finally, we conclude that )(=)( 0QSpQSp − .  

2)  We have )(=)( 00 QSpQSp −−  then  

))((=))((=))(( 00 QSpMaxQSpMinQSpMin −−  
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We conclude that )(=)( 0QQ maxmin λλ −  and the 

maximum eigenvalue of the matrix 77
0

×∈ IRQ  is: 

1=)( 0Qmaxλ .  

Remark 3.1  

    Using the smallest eigenvalue method to 
convexify the model of days-off scheduling 
problem )(QP  has many advantages:   

• This reformulation consists of perturbing the 
Q  matrix by adding 1 in its diagonal in order 

to obtain a positive semidefinite matrix.  

• We reformulate )(QP  into an equivalent 

program, with a convex objective function 
independent of computation time (see theorem 
3.1).  

• The days-off scheduling problem become a 
convex quadratic program independent of the 
number of workers.  

    Consequently, the transformed problem can be 
solved by a standard solver that uses a Branch and 
Bound algorithm. It is well known that the behavior 
of the associated Branch and Bound algorithm is 
very dependent on the bound at the root of the 
search tree. In order to maximize the lower bound 
obtained by solving the continuous relaxation of the 

)( uQP  problem, we are going to reformulate the 

)(QP  problem using the semidefinite 

programming. 

3.2   Convex Quadratic Reformulation Based On 
Semidefinite Programming  

    In this section, we present a method to solve 
)(QP using the quadratic convex reformulation 

based on the semidefinite programming [19]. This 
approach is divided into two steps: the first step 
involves convexifing the objective function using 
semidefinite programming. The second step 
concerns solving )( *u

QP  using a Mixed-Integer 

Quadratic Programming solver. 

Let }{0,1},=:{= nxbAxxY ∈  be the set of 

feasible solutions of problem )(QP  and 

}[0,1],=:{= nxbAxxY ∈  the continuous set of 

feasible solutions. 

For any nIRu ∈  with pn 7= , 

( )Tppp uuuuuuuuuu 721272221171211 ,...,,,...,,...,,,,...,,=

 

Let us define the perturbed function )(xfu  in the 

following way: 

ikik

k

p

i

u
T

ikikik

k

p

i

u xuxQxxxuxfxf ∑∑∑∑ −−+
7

1=1=

2
7

1=1=

=)()(=)(

 

And that )(=)( xfxfu  for all nx {0,1}∈  

xcxQxxf T
uu

T
u +=)(  

Where )(= uDiagQQu + , ucu −=  and )(uDiag  is 

a square n-matrix with the elements of u  on the 
main diagonal. 

It is obvious to notice that an equivalent problem to 
)(QP  is )( uQP : 









∈ Yx

toSubject

xfMin

QP
u

u

)(

)(

 

 

We are going to determine nIRu ∈  such as )(xfu  

is convex and the value of the continuous relaxation 
of )( uQP  is maximal. 

    The semidefinite positive relaxations can be used 
to solve the following generalized 0-1 quadratic 
problem with linear constraint )( uQP . They are 

linear programs over the cone of positive 
semidefinite matrices. Most of the results quoted in 
this section can be found in standard matrix theory 
books, as [21]-[22]. 

    The following constraint { }0,1∈ikx  can be 

written in the following form: 

{ }

0=)(   

{1,..,7}},{1,..,0,=      

{1,..,7}},{1,..,,0,1          
2

xxxdiag

kpixx

kpix

T
ikik

ik

−⇔
∈∈−⇔

∈∈∈
 

Setting TxxX =  can therefore be written as 

 
TxxXxXDiag =0,=)( −  

We formulate this problem )( uQP  using an 

additional variable := TxxX  
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xXDiagxxX

bAx
toSubject

xfMin

QP

T

u

u

=)(,=

=

)(

)(  

    We will use the notation 0≥X  to express that 
X  is positive semidefinite matrix. An obvious 
method to obtain a semidefinite relaxation of 

)( uQP  is to relax the last constraint TxxX =  to
TxxX ≥ , which is now convex with respect that 

the set of n
nSxX Ρ×∈),(  ( nS  is the space of 

symmetric nn×  matrices) satisfying TxxX ≥  is 
closed and convex [10]. Actually:  

0
1 ≥












⇔≥

Xx

x
xxX

T
T  

Then, we obtain the following theorem:  

Theorem 3.2 [19] 

The optimal values *iku  of iku , }{1,.., pi ∈  and 

{1,..,7}∈k  are given by the optimal values of the 

dual variables associated with constraints (1)  in the 

problem )(SDP :  
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kpixX
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XqMin
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S,

0
1
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(1){1,..,7}},{1,..,,=
)(

7

1=1=

7
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Where ikjlq  is the general term of matrixQ , which 

defines the initial objective function.  

Remark 3.2  

    For each instance of the days-off scheduling 
problem, we reformulate it into a convex quadratic 
program using the semidefinite programming 

)(SDP . The computation time required to obtain 

this convexification depends on the number of 
workers, but it maximizes the lower bound obtained 
by solving the continuous relaxation of this 
instance. The improved bounds obtained by 
reformulation can be expected to lead to a reduction 
in the number of branch-and-bound nodes. 

    The resolution process of days-off scheduling 
problem using the semidefinite programming 
compared by the resolution using the smallest 
eigenvalue method leads to a complex resolution 
with a lot of indices on variables. The latter can be 
seen very hard to understand. We prefer to describe 
these processes by an example.  

3.3   Example 

    To explain the main steps of or methods, we 
consider the days-off scheduling problem defined 
by:   

•  3=p  is the number of workers.  

•  iT  is the number of days-off for worker i  in 

the week, with {1,2,3}∈i  such as 3== 31 TT  

and 2=2T .  

• kn  is the number of workers needed on dayk , 

with {1,..,7}∈k  such as 

2,==== 6521 nnnn  1== 43 nn  and  

3.=7n  

• { }76521 ,,,,= cccccC  is the set of classes of 

workers required to perform a task on the day
j , with { }3=1 workerc , { }2=2 workerc ,

{ }1=5 workerc , { }2=6 workerc  and 

{ }32,1,=7 workerworkerworkerc .  

This problem is modeled in the form of a quadratic 
program with 0-1 variables by: 













∈ 21{0,1}

=

=)(

)(

x

bAx

toSubject

QxxxfMin

QP

T

 

 

Where A  is a 2117×  matrix and 17
+∈ IRb . Then, 

an equivalent problem to )(QP  is )( uQP :  

ik

k

p

i

u
T

Yx
u xuxQxMinQP ∑∑−

∈

7

1=1=

)(

 

Where }.=,{0,1}{= 21 bAxxY ∈  

     The quadratic convex reformulation using the 
smallest eigenvalue method solve )( uQP  with

1=)(= Qu minλ− . 
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     The quadratic convex reformulation using the 
semidefinite programming solve )( uQP , where 

21IRu∈  is given by the optimal values of the dual 
variables associated with constraints (1)  in the 

semidefinite program )(SDP  (see theorem 3.2). 

   The following table sums up the results obtained 
by these reformulations:  

 

Optimal 
Value 

Smallest eigenvalue method 

CPU   Bound  GAP   nodes  

5  0.07   9.93  98.71   11  

 

Optimal 
Value 

SDP  method 

CPU   Bound  GAP   nodes  

5  0.07  7.89 57.82  10 

 

Then, we obtain the exact solution of quadratic 
program )(QP  with these techniques.  

( )Tx 00,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,=  

By applying the following coding, for
{1,2,3},{1,..,7} ∈∈ iandk : 





therwise

iworkerfordayoffaniskdayIf
xik O0

1
=

We obtain the solution of days-off scheduling 
problem.   

• The consecutive off days of worker 1: 
Monday, Tuesday, Wednesday.  

• The consecutive off days of worker 2: 
Wednesday, Thursday.  

• The consecutive off days of worker 3: 
Thursday, Friday, Saturday.   

4. COMPUTATIONAL RESULTS 
    
    In order to test the performance of these 
convexification algorithms for solving days-off 
scheduling problem, one needs a benchmark. An 
easy way to build such a benchmark consists in 

randomly generating days-off scheduling problem 
instances. 
 
4.1 Generation Of Satisfiable Instances  
    The goal of this subsection is to describe a 
generator of instances that have a specified degree 
of interchangeability. 
To realize this program, we use the following 
assumptions:  
  • Each day has the same number of workers.  
  • All classes have the same number of workers.  
 Each class of random days-off scheduling problem 
instances is defined by:  
 
• p  denotes the number of workers.  

• r  denotes the number of workers needed on 
each day: {1,..,7}= ∈∀knr k .  

• q  denotes the number of workers of the class 

for each weekday: {1,..,7}= ∈∀kqq k . 

  
    To generate random days off scheduling problem 
instance, we need to generate random numbers of 
days-off in the week of each worker. We generate 
these numbers by the following steps:  

1. Let rpm 77= −  be an integer.  

2. Calculate the remainder u  and the quotient 
v  of the integer division of m  by p .  

3. Choose the number of days-off for worker i  
in the week, with }{1,.., pi ∈  such that:  

 

 



+∈
∈+

}1,..,{

}{1,..,1
=

puiIfv

uiIfv
Ti

 
 
    Finally, we present a new method to generate 
random hard satisfiable instances for the days-off 
scheduling problem. These instances have 
computational properties more similar to real-world 
(industrial) instances.  
 
4.2   Numerical Results 
    For evaluating and showing the practical interest 
of these reformulations, we have effectuated the 
series of experimentations to solve the days-off 
scheduling problem. These experiments are 
effectuated in personal computer with processor 
Intel Core i3 2, 53 GHz, and 3 Go of RAM. We use 
Cplex 12.1v  [23] to solve the convex quadratic 
programming problem )(QP  and we choose to 

solve )(SDP  using CSDP [24].  
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Table1: Comparison Of Smallest Eigenvalue Method And SDP Method 

Legend of the Table 1   
• Opt : Value of the optimal or best known 

solution.  
• CPU : Total CPU time required by CPLEX 12.1 

to solve )(
min

QPλ .  

• SCPU : Total CPU time required byCSDP.  

• CCPU : Total CPU time required by CPLEX 12.1 

to solve )( ∗u
QP .  

• Bound: Optimal value of the continuous 
relaxation of )(

min
QPλ  or )( ∗u

QP .  

• 100||= ∗−
opt

optBound
GAP .  

• nodes: Number of nodes in the search tree.  
     Table 1 summarizes the results of the executions 
of these approaches on these randomly generated 
instances. The column SCPU  denotes the CPU  

time spent by CSDP program to solve the 
associated semidefinite relaxation to obtain the 
optimal parameters for the convex reformulation. 

This CPU  time depends on the number of 
workers, but the smallest eigenvalue method is a 
very quick transformation: We add one to each 
term of the Hessian diagonal. Generally, SDP is 
better than smallest eigenvalue: It is consumes less 
time. Note that the GAP obtained by SDP method 
is better than smallest eigenvalue method. 
 
5. CONCLUSION 
 
In this paper, we discuss the use of various convex 
reformulations to find a solution for days-off 
scheduling problem with day task constraints. This 
problem has been presented as 0-1 quadratic 
programming subject to linear constraints. To solve 
this problem, we have used the quadratic convex 
reformulation based on two techniques, the first one 
is based on the smallest eigenvalue method and the 
second uses the semidefinite programming. Some 
numerical examples which assess the effectiveness 
of the theoretical results as well as the advantages 
of this model are shown in this paper. Several 
directions can be investigated to try to improve this 

  Instances   
Opt

 

Smallest eigenvalue method SDP method 

p   r   q    CPU   Bound  GAP   nodes  SCPU

 
CCPU

  

Bound  GAP   nodes 

6  3  1  15  0.33  27.05  80.32   6478  0.06  0.27  24.81  65.41   5766 

7  4  2  14  0.23  25.71   83.64   3954  0.03  0.16  22.82  63.01   1847 

8  4  2  18  0.45  30.75   69.86   9501  0.03  0.42  29.24  62.43   8526 

8  5  3  11  0.22  23.13  110.25   4109  0.07  0.14  19.60  78.17   2106 

9  5  3  16  0.31  28.65   79.05   5916  0.09  0.20  24.85  55.31   3635 

9  6  3  12  2.39  27.73  131.10  59401  0.07  1.00  23.14  92.82   20270 

12  7   4  20  110.67  39.32   96.59   2739334  0.12  83.37  36.07  80.33   2028010 

12  8   5  14  33.95  32.81  134.39   876316  0.20   2.14  24.47   74.82   48211 

12  9   5   9  121.06  29.76  230.72   2944369  0.15  13.82  21.22  135.78   330119 

12  9   6   8  2.50  25.72  221.49   63584  0.15   1.12  20.19  152.38   25719 

14  9   5  18  428.55  40.04  122.47   9259950  0.14  67.50  32.75   81.96   1515657 

14 10   6  12  217.73  33.36  177.97   5034857  0.23  11.51  24.79  106.55   265771 

14 10   7  14  192.22  35.77  155.47   4512576  0.15  39.58  29.89  113.51   909904 

14 11   7   6  403.64  29.64  394.01   8164777  0.15  72.27  20.87  247.91   1602462 

14 11   8   6  49.83  28.15  369.16   1213658  0.15  11.18  19.04  217.40   256839 

16 10   7  23  2855.47 46.15  100.66  46442044  0.26  67.67  39.03   69.71   1345552 

16 11   8  16  162.88  38.79  142.43   3791387  0.20  19.27  30.16   88.52   434666 

16 12   8  12  368.71  35.56  196.31   7565007  0.18   7.49  25.21  110.11   160488 

18 14  10   7  270.43  30.95  342.20   5885938  0.24  68.73  22.12  216.06   1465095 

20 15  12  12  985.57  38.05  217.11  17787035  0.37   3.56  27.21  126.76   79965 
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method, such as using the constraint satisfaction 
problem [18] and neural networks approaches [25].  
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