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ABSTRACT

Workforce scheduling is one of the most importamd @ractical problems in the service of industrg an
continuous manufacturing settings. Solving thisbfem requires determining how many workers must be
assigned to each of the planning periods of warnletfor an organization. In this paper, our maireobye

is to solve the days-off scheduling problem witly tkesk constraints. This problem is naturally fotated

as 0-1 quadratic programming subject to linear waimgs. To solve the latter problem, we formulhtaes

an equivalent 0-1 quadratic programming with a emnwbjective function using two convexification
techniques, the first one is based on the smadlgsnhvalue and the second uses the semidefinézatin.
Some numerical examples and computational expetsrassess the effectiveness of the theoreticaltsesu
shown in this paper.

Keywords: Workforce Scheduling, Days-Off Scheduling, Convaadgatic Reformulation, Semidefinite
Programming, Quadratic Programming.

1. INTRODUCTION 1. For any day, the number of workers is
determined
Workforce scheduling is both an important and
common problem to all organizations, especially for”
organizations that operate seven days a week or 24
hours a day. The problem is to determine how marg. Allow to specify the classes of necessary
workers must be assigned to each of the planning workers for the tasks during a given period.
periods of work time for an organization.

Each worker has a fixed number of days off per
week

In this paper, our main objective is to present two
In the literature, the workforce schedulingmethods to solve the days-off scheduling problem
problems are traditionally classified into threehrough presenting a model in the form of a 0-1
categories [1]-[2]: Shift scheduling determinesteacquadratic program. The latter problem consists in
employee's work and break hours per day. Days-affinimizing a quadratic function subject to linear
scheduling determines each employee's work-dagsnstraint§QP) . A 0-1 quadratic program is often
and off days per week or multiple-week work cycleyeformulated before searching for its optimal
Tour scheduling combines the shift and days-ofy|ytion because the objective function is not

scheduling problems by determining eachonyex. Therefore, many approaches have been
employee's daily work hours and Weeklyworkdaysproposed to solve (QP) through 0-1 linear

In this paper, we consider the days-off schedulingeformulations [3] or 0-1 convex quadratic
problem which tries to give priority to the workerreformulations [4]-[5]. The most well known
and the company. It allows them to organize thapproaches are the 0-1 linear reformulations,
spare time while maximizing the number ofhowever; other methods have been proposed, for
consecutive off days and minimizing the costs oéxample, enumerative methods based on different
transport. This problem includes the followingtypes of relaxations such as, Lagrangian relaxation
constraints:

23



Journal of Theoretical and Applied Information Technology
10" March 2013. Vol. 49 No.1 N

© 2005 - 2013 JATIT & LLS. All rights reserved-

" A mmmm—
F7aYTTI]

ISSN: 1992-8645 www.jatit.org E-ISSI¥17-3195

semidefinite relaxation or convex quadratioealize a specific task for d&y with
relaxation [6]- [7]- [8]- [9] -[10] -[11]- [12]- [B]. o O{1,....n} andk 0{1,..,7}.

This paper is organ.izgd as follows: In sectioq 2 5 PROBLEM EORMULATION
we introduce a description of days-off scheduling _ _
problem and we provide a formulation of this In this section, we present a model of days-off
pr0b|em as 0-1 quadratic programm(@)_ In schedullng. problem In te_rms of 0-1 quadratlc
section 3, we apply two methods to sdi@®) , the program with linear constraints.
first one is based on the smallest eigenvalue ndethgor each workerd{1,.., p}, we introduce 7
and the second uses the semidefinite programminginary variablesx, fork 0{1,..,7}, such that:
Then, we turn our attention to present some
theoretical results that are able to convexify the (1 If day kisan off day for worker i
problem(QP) . Section 4 is devoted to giving some”k = o Otherwise

hints on how to generate the satisfiable instanfes Tris matrix is converted to a -vector. where
the days-off scheduling problem in a random way, =7p: '
and presenting some experimental results. '

2. DESCRIBING AND MODELING THE X= (XlllX12!""X17lX21!X22!""X27!""Xp11XpZI""Xp7)T
DAYS-OFF SCHEDULING PROBLEM The main objective is to maximize the number of

consecutive off days in the week. Then, we can

The days-off scheduling problem can bejefine the objective functiom(x) in the following
formulated in several ways. The mathematical

model discussed in this section is concerned witho>"

finding the solution that maximizes the number of P 6

consecutive off days for employees. We will first ~ 9(X) = Z(z Xi Xear + X7 %) = X QX
introduce the notation that we use throughout the 1=k

paper, and we give detai!ed formulatiqn of thi,SWhere QOIR™ and QODIR7><7 are the

problem as 0-1 quadratic programming. This . .

formulation is simple and general for anySYMMetric matrices:

companies. 0050 0 0 0O

2.1 DESCRIPTION OF PROBLEM 05 005 0 0 0 O
The days-off scheduling problem determines Q0.0 0050050 0 O

each employee’s work days and off days per week | 0 . . i '

or multiple-week work cycle. This paper considers?=| . - - g Q=0 0050 050 O

a specific type of days-off scheduling in which the 0O 0 0050 050

off days are assigned to the workers in order t@ha 0 - 0Q 0 00 00500

a maximum of consecutive off days. This problem ) '

is defined by [14]: 050 0 0 0 05

« p is the number of workers.
The linear constraints associated with this
* T, is the number of days-off for workérin ~ problem are defined by:

the week, with U{1,.., p} . « For each day, the number of workers who
>}ake this day off ip-n,. These constraints are

* ny is the number of workers needed on da
defined by:

k, withk 0{1,..,7}.

Maximizing the number of consecutive off days szik =p-n, kO{1,..7} < Ax=b
for employees in these conditions does not depict
real life. In this paper, we introduce a new class
constraints in order to satisfy daily labor demandshe matrix A, O IR™ and the vectob'T IR’ of
such that a specific task should be assigned t04d |inear constraints are:
class of workers who have skills for it. These
constraints are defined by a 6st {¢,C,,....C;},

where ¢, is the class ofq, workers needed to

i=1

e —
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10010 -0 10 -0 pn Without loss of generality, the modéQP) can
'%_0 R O B O TR 0. . g P be written as the following form:
o080 ol | :
Min f(x)=x"Qx
0--010--01:---- 0---01 p1y _
. Subject to
« Each worker hag; off-days in the week: (QP) Ax = b
! _ x0{o0,1} "
ink =T, i0{L..,p} = AX=T
k=1 Ab
The matrix A 0 IRP" and the vectoll OIRP of WithQ =-QUIR™, A=| A |JIR™"and
the linear constraints are: A
1..1...10...0...0...0...0...0 T b
: : o . : . . . T, b=|T|OIR", wherem=14+p andn=7p.
AZ0..0..01..1..1..0..0..0,T=: 0
oo s b ‘| 3. RESOLUTION OF THE 0-1 QUADRATIC
0..0..00...0...0...2...1...1 T PROGRAM (QP)

Maximizing the number of consecutive off days Consider the following li | ined 0-1
for workers in these conditions does not depict rea c()jn5|_er the o.owmg Inearly-constrained 0-
life because some tasks for each day of the wedltadratic program:

can have unique workers requirement. In this way, . T
we solve days-off scheduling problem with the Mm PO = xQx
constraints defined by day task. Every day task (Qp)J Subject to

should be assigned to a class of workers who have Ax =b
skills for it. In order to group some workers into x0{0,1} "

active consecutive days on the week:

» The constraints defined by day task are a set
C={c,C,,...C;}, Where ¢, is the class of Therefore, Q is nxn matrix with the general
a« 0{1,...,n.} workers needed to realize a specifiderm is denoted bg;;, A is mxn matrix and

task for dak[({1,.7}. These classes arep|R™. Wwithout loss of generality, we can

determined by the company and represented by tigppose tha@ is symmetric and also that diagonal
- 7 . . o

matrix A, 0{0,1}"" such that: terms of Q are equal to O. If this matrix is not

1 The presencef theworker iisrequiredin dayk symmetric, it can be converted to the symmetric

K= , +Q'
{0 Otherwise form & and the linear termsy X, can be

substituted for the diagonal termg, x5, because

2
X = % forx, 0{0,1} .
Finally, we obtain the following 0-1 quadratic “ “ “

Then, the set linear constraints will satisfyx =0

program with linear constrain(QP) : Several approaches are proposed to 4O .
For example, the linear reformulations 0-1 [3],
Max g(x) = xTQ'x quadratic convex reformulations 0-1, the methods
Subject to enumerative based on the various relaxations as the
o lagrangian relaxation [15] and the semidefinite
(Q'P) AgX =D relaxation [16]-[17]-[18]. In this section, we pezg
Ax=T two methods to solve the quadratic progréQP)
A,x =0 using the quadratic convex reformulation [19]-[20].
x 0{0,1} " These methods are based on repeating a quadratic

optimization problem (QP) with an objective

e —
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function which is not convex in a quadraticTheorem 3.1

optlrr?|zat_|on problem QR,) -Wlth the obj_ectlve Let Q be anxn matrix, and letQ, be a7x7
function is convex. The obtained problem is solved atrix defined by:
by the general methods of resolution of the" y:

quadratic programs in mixed variables, with a 0050 O O O O
convex objective function and linear constraints. 05 0050 0 0 O
3.1 Convex Quadratic Reformulation Based On Q00 0050050 0 O
Smallest Eigenvalue M ethod 0o ..
S , Q=0 0 05 0 05 0 O
In this section, we present a method to sdhee t .. 0 0 0 0050 05 0
quadratic program (QP) using the quadratic 0 - 0=Q 0o 0 0o 0 05 O o5
convex reformulation based on the smallest ) R
eigenvalue method [20]. 05 0 0 0 00590
ForuOIR, let us define the perturbed functionThen
f,(X) in the following way: 1. The matrices Q and -Q, has the same
o 7 o 7 eigenvalues:  SpQ) = SH(-Qy)
- 2 -
fu(x)= f(x)+uxz2(>qk =% = )JQJX_UZZKK WhereSp(D) is the spectrum of a matri®
i=1k=1 i=1k=l

defined by: SED) ={A0IR/[x £ 0: Dx =A%

WithQ, =Q+uxl,, where |, is the identity 2- Amin(Q)= ~Amax(Q)=-1.
matrix of sizen. Proof.

We are going to determineJ IR such as: 1) If A0SH-Q,) then D(DIRS such that

. fu(x) is convex Q, is positive -Qx=AX.
semidefinite matrix).
We considery 0 IR?P such thay = (x Q...0)" .

e The optimal value of the continuous
P va nuou Thus, Qxy=Axy then A0SPQ) . This implies

relaxation QR),) is maximal.

that SH-Qp) 0 SRQ) .
p 7
Min £,00= X Qx-ud D % If A0SKQ) then [x=(xy, %z, X, ) DIRZP
(QP)! Subjecto 1oLk such that Qx= Ax. Thus,
Ax=hb Qx= (‘QoXL‘Qonv---:‘QoXp)T and
%, 040,13, i O{1,... ph, kO{L,...7}

/1x:/1(x1,x2,...,xp)T :(Axl,/}xz,...,Axp)T

Hammer and Rubin [20] propose reformulatings, ~Qx = Ax, O D{l 2 p}

non-convex 0-1 (QP) into convex quadratic ’ ’

programQR,), with u=-1,,(Q). Where
Amin(Q) is the smallest eigenvalue @f.

As the vector

xOIRZP then C0{12...,p}such as x OIR]
and -Qgx; = Ax, thenA O SH-Q,) . This implies
that SpQ) 0 SH—Qp) -

It is well known that a convex reformulation
using the smallest eigenvalue method i&inally, we conclude th&8pQ) = Sp(-Qp) -
computationally expensive, because the complexité/ _
of the problem for finding eigenvalues of the matri 2) We haveSH-Q) = ~SHQ,) then
increases rapidly with increasing its size. Buthis . o _ _
case, the following theorem determines the smalledfMN(SAQ)) = MIn(Sp-Qy)) = ~Max(SpQ))
eigenvalue of the matrix defining the objective
function of the mode[QP) independent of its size.

26
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We conclude that A.,;,(Q) = —A,,ax(Q) and the

maximum eigenvalue of the matr@, 0 IR’ is

Amax(Q0) =1, Let us define the perturbed functiofy(x) in the
Remark 3.1 following way:

— T
u= (Ull, U12,...,U17,U21, U22,...,U27,...,Upl, upz,,up7)

Using the smallest eigenvalue method to

p_7
convexify the model of days-off scheduling f,(x)= f(x)+22qk(>qk Xy )= X_Z Uy Xic
problem (QP) has many advantages: i =Lk=1 i=1k=1

e This reformulation consists of perturbing the
Q matrix by addingl in its diagonal in order And that f,(x) = f(x) for all x(J{0,1}"
to obtain a positive semidefinite matrix. T T
fuo(x)=x Q,x+cCyX
« We reformulate (QP) into an equivalent
program, with a convex objective functionWhereQ, =Q+ Diag(u), ¢, = -u and Diag(u) is
independent of computation time (see theorera square n-matrix with the elementswfon the
3.1). main diagonal.

 The days-off scheduling problem become 4t is obvious to notice that an equivalent problem
convex quadratic program independent of thgQP) is (QR,):
number of workers.

Consequently, the transformed problem can be N_"n fu(x)
solved by a standard solver that uses a Branch and (QR)) Subjectto
Bound algorithm. It is well known that the behavior xOyY

of the associated Branch and Bound algorithm is
very dependent on the bound at the root of the
search tree. In order to maximize the lower boun% to det JIR" hasf

obtained by solving the continuous relaxation @f th € are going to determine such as ,(x)

(QP,) problem, we are going to reformulate the's convex and the value of the continuous relaxatio

QP problem  using the semldeﬂnlteO (QR,) is maximal,

programming. The semidefinite positive relaxations can bedus

. . to solve the following generalized 0-1 quadratic
32 S%c;:i\é?i%::grrzt;;mdn%rnn;ulat|on Based On problem with linear constraif@R,). They are

linear programs over the cone of positive
In this section, we present a method to solvgemidefinite matrices. Most of the results quoted i

(QP)using the quadratic convex reformulationthis section can be found in standard matrix theory
based on the semidefinite programming [19]. Thibooks, as [21]-[22].
approach is divided into two steps: the first step . .
involves convexifing the objective function using The following constraini, {O]} can be
semidefinite programming. The second step/ritten in the following form:
concerns soIvmg(QPu*) using a Mixed-Integer Xy D{O,J},|D{1,.., P}, kO{1,..7}

Quadratic Programming solver. - Xn2< - %, =0,i0{L,.., p} kO{1,...7}

Let Y={x:Ax=Dbx0{0,1}"} be the set of = diag(xx")-x=0

feasible  solutions  of  problem (QP)  and Setting X = xx' can therefore be written as

\_(:{X:Ax:b,xD[O,l]”} the continuous set of

; vy =T
feasible solutions. Diag(X)-x =0, X = xx

For anyu IR withn = 7p We formulate this problen(QR,) using an

additional variableX = xx' :
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The resolution process of days-off scheduling
Min f,(X) problem using the semidefinite programming
(QP) Subjectto compared by the resolution using the smallest
. Ax=b eigenvalue method leads to a complex resolution

T . with a lot of indices on variables. The latter d¢zn
X =xx', Diag(X)=X  geen very hard to understand. We prefer to describe

We will use the notatiorX 20 to express that these processes by an example.

X is positive semidefinite matrix. An obvious 3.3 Example

method to obtain a semidefinite relaxation of To explain the main steps of or methods, we

(QR,) is to relax the last constraink = xx' to  consider the days-off scheduling problem defined
X = xx" , which is now convex with respect thatPY:
the set of (X,x)0S,xP" (S, is the space of p =3 is the number of workers.

symmetric nxn matrices) satisfyingX = xx' is T, is the number of days-off for worker in
closed and convex [10]. Actually:

the week, withi 0{1,2,3} such asT; =T; =3

X > T o {1 XT}ZO andT, =2.
x X * ny is the number of workers needed on Kay
Then, we obtain the following theorem: with kO{1,..,7} such as
Theorem 3.2 [19] n=n,=ns=ng =2, ny3=n,=1 and

. n, =3.
The optimal valuesy, ofu,, i0{1,.., p} and !

k0{1,..,7} are given by the optimal values of the * C ={c1C2,C5,Cs,¢;} is the set of classes of

dual variables associated with constraifity in the workers required to perform a task on the day
problem(SDP) : i, withc; = {Worker3} ,Cy = {Worker 2},
Cs = {Worker 1} , Cg= {Worker 2} and
p 7 p 7
: c ={Worker1 worker2 Worker3}.
Min Ot Xixi 7 ' '
subject to This problem is modeled in the form of a quadratic
on X = % Lot KO{L, 7} (1) program with 0-1 variables by:
AXT=b Min f(x) = x'Qx
1 x .
>0 Subject to
[x x]> (Qp){ > b
ORrR  ,  XO B
X S x0{0,1} 2

Where 0y is the general term of matigX, which
Where A is a17x 21 matrix andbJ IR . Then,

an equivalent problem t(QP) is(QR,):

defines the initial objective function.
Remark 3.2

For each instance of the days-off scheduling T P
problem, we reformulate it into a convex quadratic (QR) W X QX‘“ZZW
program using the semidefinite programming =Lk
(SDP). The computation time required to obtainynarey = (x0{0,1)%, Ax = b}.
this convexification depends on the number of
workers, but it maximizes the lower bound obtained The quadratic convex reformulation using the
by solving the continuous relaxation of thissmallest eigenvalue method solvEQR,) with
instance. The improved bounds obtained by, =_j (Q)=1.
reformulation can be expected to lead to a redactio mn
in the number of branch-and-bound nodes.

e ——
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The quadratic convex reformulation using theandomly generating days-off scheduling problem
semidefinite programming solV@R,), where instances.

udl IR? is given by the optimal values of the dualy 1 Generation Of Satisfiable Instances
variables associated with constrain(s) in the The goal of this subsection is to describe a
semidefinite progran{SDP) (see theorem 3.2). generator of instances that have a specified degree
of interchangeability.
The fOIIOWing table sums up the results ObtainedTo realize this program, we use the fo”owing
by these reformulations: assumptions:
« Each day has the same number of workers.
« All classes have the same number of workers.
Optimal Smallest eigenvalue method Each class of random days-off scheduling problem

Value CPU 1 Bound | GAP nodes instances is defined by:

5 0.07 9.93 98.71 11 * p denotes the number of workers.

e r denotes the number of workers needed on
each dayr =n, 0Ok0O{1,.7} .

Optimal SDP method e ( denotes the number of workers of the class

f h weekdayq = g, Ok O{1,..7} .
Value 5 TBound | GAP | nodes or each weekdayq = dx L7}

5 0.07 | 7.89 5782 10 To generate random days off scheduling problem

instance, we need to generate random numbers of
days-off in the week of each worker. We generate

these numbers by the following steps:

Then, we obtain the exact solution of quadratic 1. Let m=7p-7r be an integer.

program(QP) with these techniques. 2. Calculate the remainden and the quotient
v of the integer division ofn by p.

Choose the number of days-off for workier
in the week, withi 0{1,.., p} such that:

x=(1,1,1,0,00,0,0,0,11,0,0,0,00,0,1,1,10)" 3

By applying the following coding, for
k0O{1,.,7} ,and i0{1,2,3} :

v+l If i0{1,.., u}
_ |1 If day kisanoff day for worker i Ti= v If i0{u+1,.,p}
K = 0 Otherwise
We obtain the solution of days-off scheduling Finally, we present a new method to generate
problem. random hard satisfiable instances for the days-off

scheduling problem. These instances have
computational properties more similar to real-world
(industrial) instances.

» The consecutive off days of worker 1:
Monday, Tuesday, Wednesday.

e The consecutive off days of worker 2:

Wednesday, Thursday. 4.2 Numerical Results

For evaluating and showing the practical irgere
of these reformulations, we have effectuated the
series of experimentations to solve the days-off
4, COMPUTATIONAL RESULTS scheduling problem. These experiments are

effectuated in personal computer with processor

In order to test the performance of theséntel Corei3 2,53 GHz, and 3 Go of RAM. We use
convexification algorithms for solving days-off Cplex v12.1 [23] to solve the convex quadratic
scheduling problem, one needs a benchmark. Asrogramming problem(QP) and we choose to
easy way to build such a benchmark consists igy|ve (SDP) using CSDP [24].

e The consecutive off days of worker 3:
Thursday, Friday, Saturday.
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Tablel: Comparison Of Smallest Eigenvalue Method SDP Method

Instances Smallest eigenvalue method SDP method
Opt

p ro CPU  Bound GAP nodes | CPUg CPU; Bound GAP nodes
6 3 1 15| 0.33 27.05 80.32 6478 0.06 0.27 2481 65.41 5766
7 4 2 14| 0.23 25.71 83.64 3954 0.03 0.16 22.82 3.0 1847
8 4 2 18| 0.45 30.75 69.86 9501 0.03 0.42 29.24 $2.4 8526
8 5 3 11| 0.22 23.13 110.25 4109 0.07 0.14 19.60 78.1 2106
9 5 3 16| 0.31 28.65 79.05 5916 0.09 0.20 2485 B5.3 3635
9 6 3 12| 2.39 27.73 131.10 59401 0.07 1.00 23.14 22.8 20270

12 7 4 | 20| 110.67 39.32 96.59 2739334 0.12 83.37 36.080.33 2028010
12 8 5| 14| 33.95 32.81 134.39 876316 0.20 2.14 24.4774.82 48211
12 9 5 9| 121.06 29.76 230.72 2944369 50.1 13.82 21.22 135.78 330119
12 9 6 2.50 25.72 221.49 63584 0.15 1.12 20.19 152.38 25719
14 9 5| 18| 428.55 40.04 122.47 925995 0.14 67.50 32.781.96 1515657
14 10 6| 12| 217.73 33.36 177.97 5034857 0.23 11.51 24.7906.55 265771
14 10 7 14| 192.22 35.77 155.47 4512576 0.15 39.58 29.8913.51 909904
14 11 7 403.64 29.64 394.01 8164777 50.1 72.27 20.87 247.91 1602462
14 11 8 6| 49.83 28.15 369.16 1213658 0.1511.18 19.04 217.40 256839
16 10 7| 23| 2855.47 46.15 100.66 46442044 0.26 67.67 39.0%9.71 1345552
16 11 8| 16| 162.88 38.79 142.43 3791387 0.20 19.27  30.1@8.52 434666
16 12 8 | 12| 368.71 35.56 196.31 7565007 0.18 7.49 25.2110.11 160488
18 14 10| 7 270.43 30.95 342.20 5885938 0.24 68.732.12 216.06 1465095
20 15 12| 12 | 985.57 38.05 217.11 17787035 0.37 3.56 27.2126.76 79965
Legend of the Table 1 This CPU time depends on the number of
* Opt: Value of the optimal or best known workers, but the smallest eigenvalue method is a

solution. very quick transformation: We add one to each
« CPU: Total CPU time required by CPLEX 12.1term of the Hessian diagonal. GeneralyDP is

to solve(QP, ). t_)etter than smallest eigenvall_Je: It is consumes les

min time. Note that the GAP obtained ISDP method

» CPUg: Total CPU time required lySDP. is better than smallest eigenvalue method.
* CPU;: Total CPU time required by CPLEX 12.1

o solve(QPuD). 5. CONCLUSION
+ Bound: Optimal value of the continuous In this paper, we discuss the use of various convex

relaxation of(QP, ) or (QP,). reformu!ations to fin_d a solution for (_jays-off_

min u scheduling problem with day task constraints. This

. GAPH| Bound_0pt|[n00. problem has been presented as 0-1 quadratic

programming subject to linear constraints. To solve

. this problem, we have used the quadratic convex

* nodes Number of nodes in the search tree. ; . ,
reformulation based on two techniques, the firg on

Table 1 summarizes the results of the exeustio isOPased on the smallest eigenvalue method and the
of these approaches on these randomly generaté

) second uses the semidefinite programming. Some
instances. The columCPUg denotes theCPU numerical examples which assess the effectiveness

time spent by CSDP program to solve the of the theoretical results as well as the advastage
associated semidefinite relaxation to obtain thef this model are shown in this paper. Several
optimal parameters for the convex reformulationdirections can be investigated to try to improvie th

e ——
30




Journal of Theoretical and Applied Information Technology

10" March 2013. Vol. 49 No.1 B
© 2005 - 2013 JATIT & LLS. All rights reserved- T
ISSN: 1992-8645 www.jatit.org E-1SSI¥17-3195

method, such as using the constraint satisfaction
problem [18] ancheural networks approaches [25].
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