
Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1

A FORMAL DEFINITION OF METRICS FOR OBJECT
ORIENTED DESIGN: MOOD METRICS

MERYEM LAMRANI, YOUNES EL AMRANI, AZIZ ETTOUHAMI
Conception and System Laboratory, University Mohammed V Agdal,

Computer Science Departement PB 1014 Rabat, Morocco

E-mail: {lamrani, elamrani, touhami}@fsr.ac.ma

ABSTRACT

Software design metrics, since their apparition, suffer from a lack of formalism in their definition opening
room to ambiguities and thus to misleading results. Although, several studies attempted to bring rigor to
most well-known suite of metrics, the degree of formalism used to define them, constitutes a significant
obstacle towards the built of solid tools support, considered as the key point to an easy integration of
measurement in the industry. This paper is a logical continuation of a previous published work where a Z-
based formalization of the CK metrics is presented, offering an innovative and easy to follow methodology
which successfully manages to provide a solid definition of metrics that deals with complexity, coupling
and cohesion. While this work brings formalism at the classifier level, we proceed, in the present, to
propose formalism for an overall quality measurement of the object-oriented systems, introducing the
invisibility concept formalization and extending the quality indicator properties to encapsulation and
polymorphism.

Keywords: Formal Methods, Z Language, UML Metamodel, MOOD Metrics

1. INTRODUCTION

“It was a great step in science when men became
convinced that, in order to understand the nature of
things, they must begin by asking, not whether a
thing is good or bad, noxious or beneficial, but of
what kind it is? And how much is there of it?
Quality and Quantity were then first recognized as
the primary features to be observed in scientific
inquiry” [21]. This quote of the Scottish physicist
and mathematician James Clerk Maxwell (1831 -
1879) highlights the importance of identifying the
nature of the entity to take into consideration when
it comes to quality and also the major role of
measurement in any scientific field. As software
engineering differentiates itself from other hard
sciences such as mathematics and physics,
especially for its subjectivity aspects, several
studies and experiments have shown that software
metrics, when applied earlier in the software life
cycle (i.e. design phase), can help considerably the
improvement and control of software quality over
specific software properties such as efficiency,
complexity, understandability and reuse [8]. Many
software quality indicators have been identified and
successfully verified in helping reduce risks, detect
faultiness and thus managing both time and cost
estimation control [20]. Some of the most relevant

ones are encapsulation, inheritance and
polymorphism.
Encapsulation means hiding the internal
specification of an object that do not contribute to
its essential characteristics and showing only the
external interface; typically, the structure of an
object is hidden, as well as the implementation of
its methods [19]. Inheritance is a relationship
among classes, wherein one class shares the
structure or behavior defined in one (single
inheritance) or more (multiple inheritance) other
classes [19]. Finally, polymorphism is a concept in
type theory wherein a name (such as a variable
declaration) may denote instances of many different
classes as long as they are related by some common
superclass [19].
These concepts, according to theoretical and
experimental results, have a strong capability to
build a flexible system.
Among existing suite of metrics defined that
emphasize the above properties, we especially
consider in this contribution, the well-known
Metrics for Object Oriented Design suite [6], also
called the MOOD metrics, for their commonly
recognized ability to provide useful results and
information about the whole object-oriented system
quality.

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

2

This paper joins the multiple efforts done to
facilitate the introduction of software design
metrics into the industry field. Based on a recently
published formalization methodology [4], it aims to
provide precise and complete formalized definition
of the proposed software design metrics. The
choice of the Z language [1-2] is justified by its
structure: the grouping concept introduced by
schema, its maturity and the possibility of checking
consistency using proof theorems [18].
The rest of this paper is organized as follows:
Section 2 discusses related work. Section 3 presents
a brief overview of the Z-based formalization
approach. Section 4 illustrates the formal
definitions of the MOOD metrics and finally,
Section 5 draws conclusion and future work.

2. RELATED WORK

In this section we review existing sets of metrics
that measure a system quality and existing
formalization approaches up-to-date.

Described below, the most relevant metrics suite
concerned with the software design phase and
which continues to attract interest nowadays due to
their significant results considered as quality
indicators.

• Metrics for Object-Oriented Software
Engineering (MOOSE): a metric suite for
Object-oriented design defined by Chidamber
and Kemerer [7], also known as the CK
metrics. Even if, their definition contains some
ambiguities due to the degree of formalism
used to express them, they are still frequently
cited in several contributions and improved by
other authors for being useful as quality
indicators over many characteristics related to
complexity, inheritance, coupling, cohesion
and messaging.

• Metrics for Object-Oriented Design (MOOD):
introduced by Fernando Brito e Abreu [6] and
evaluated by many other authors, they have
shown their capabilities to measure efficiently
a whole quality system according to the
measured properties such as encapsulation,
inheritance and polymorphism. However, some
weaknesses have also been found resulting in
the extension to MOOD2 metrics that filled the
lack of measures of reuse and external coupling
of the initial MOOD suite.

• Quality Model for Object-Oriented Design
(QMOOD): proposed by Jagdish Bansiya and
Carl G Davis [9] and presented as a
hierarchical model. It aims to inform about six

quality factors that are functionality,
effectiveness, understandability, reusability,
flexibility and extendibility following the set of
ISO 9126 as an initial set of quality attributes.

Even though, we choose the MOOD metrics [6] for
their system-wide measurements, this contribution,
also, aims to demonstrate the ability of the
proposed formalism model [4] to adapt and expand
to any set of object-oriented metrics which are
likely to be defined over the UML metamodel [3].
Among design metrics formalization expressed on
top of metamodels, Monperrus et al. [10] define a
model-driven measurement approach also called
MDM approach where metrics are implemented as
an instance of a metric specification metamodel. El-
Wakil et al. [11] use XQuery language [12] to build
metrics expression for UML class diagrams. Baroni
et al. [13] propose a Formal Library for Aiding
Metrics Extraction (FLAME) [14] where OCL [15]
is used to express metrics definition. McQuillan et
al. [16] based their work on Baroni’s approach and
extended the UML metamodel 2.0 to offer a
framework for metric definitions. Likewise,
Reissing [17] extends the UML metamodel on
which metrics definitions are based and then use
this model to express known metrics suites with set
theory and first order logic. Similarly, Lamrani et
al. [4] presents an approach to formalize object-
oriented design metrics using Z language but
instead of extending the UML metamodel, it uses
the original OMG standard [3] specifications and
then proceeds to its formalization as a basis for the
formal metrics expressions.
All significant efforts in this area involve the use of
metamodels with non-formal (XQuery, SQL...) or
semi-formal languages, especially OCL [15] which
remains a language that was initially designed to
express constraints on UML class diagrams.
Although, OCL benefits from concise and friendly
syntax, it suffers from the absence of a
metamodeling approach since it uses an EBNF
grammar instead, preventing a complete integration
with the rest of UML. Besides, its semantics lack
formal definitions leading to misunderstanding and
unclear issues as explained in Baar [23] practice
report. It enumerates number of OCL weaknesses
such as restrictions on nested sets and the
undeterministic iterate-construct. As a
consequence, OCL limitations constitute significant
obstacles towards the rigorous expression of
software metrics definitions.
The formal approach [4] proposed in this
contribution benefits from a multi level
formalization which consists in expressing formally

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

3

the UML metamodel and then the metrics
definitions using the Z language, known for its
maturity and ability to apply proof theorems.

3. Z-BASED FORMALIZATION

This section describes the formal approach
adopted to express the metrics definitions
rigorously. This approach [4] is based on a leveled
formalization. At first, it gives a formal
specification of the UML metamodel [3] part on
which the second level, consisting on metrics
formalization, is defined.

Units

This methodology is an adaptation of the Laurent
Henocque contribution [5] about the formal
specification of object-oriented constraint programs
where we can find the following basics:

 ObjectReference: a set of object references as
an uninterpreted data type.

[ObjectReference]

 ReferenceSet: a finite set of object references
used to model object types.

ReferenceSet == Φ
ObjectReference

 CLASSNAME: class names defined using free
type syntax of Z.

CLASSNAME ::= ClassElement |
ClassNamedElement | ...

 ObjectDef: a predefined super class for all
future classes.

∪_ObjectDef_________________
→ref: ObjectReference
→class:CLASSNAME
∠_______________________

 Instances: a function mapping class names to
the set of instances of that class

→instances: CLASSNAME φ ReferenceSet

 NIL: Undefined Object

→NIL: ObjectDef

 Class: implemented via two constructs:

1. A class definition: a schema in which we
find, in its invariant part, both the class

attributes and the inheritance relationships
and in its predicate part, specification of class
invariants.

∪_ClassDefElement______________
→name: seq CHAR
∠_______________________

2. A class specification: a combination of a
class definition extended with the ObjectDef
and class references.

ClassSpecElement  ClassDefElement ƒ

[ObjectDef | class = ClassElement]

In the current contribution, this approach [4] is used
to formalize UML class structures consisting in
inheritance, relationships and aggregation. It is also
extended with the notion of visibility for the sake of
metrics formalization presented later on Section 5.

UML Metamodel Formalization

The following schema is extracted and combined
according to the UML metamodel specifications
[3]. It consists on the core package.

Element

NamedElement

Namespace

+namespace
0..1

Feature

StructuralFeature BehavioralFeature

Classifier

Parameter

+parameter*

0..1

Property

Class

Operation

RedefinableElement

Package

Method

1 *

1

*

*

+feature

0..1

*

Fig 1. A Partial Representation Of The UML Metamodel
Core Package

Since the formalization of the MOOD metrics
introduces the notion of visibility which is not
included in the described approach [4], we propose

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

4

in this paper, an extension that will incorporate this
notion as part of the Z-formalized approach:

The visibilities package is a subpackage of the
Abstractions package that provide the basic
constructs from which visibility semantics will be
constructed [3]. Represented in the UML
metamodel standard by the following (figure 1):

Fig 2. The Visibilities Package

Where the elements defined in this package are:

Fig 3. The Elements In The Visibilities Package

In our formal approach, we represent the
enumeration by its equivalent in Z language:

VisibilityKind ::= public | private | protected
| package

The visibilityKind is an enumeration type that
contains literals to determine the visibility of
elements in a model [3]

We, then, proceed to the redefinition of the
NamedElement Class already existing in the
previous approach. We, especially, add the
visibility attribute that will constrain the usage of a
namedElment either in namespaces or in access to
the element [3]. This attribute is defined as a power
set of the enumeration visibilityKind with a
predicate indicating that a namedElement will have
at most one kind of visibility.

∪_ClassDefNamedElement___________
→ClassDefElement
→visibility: Π VisibilityKind
∩____________________
→# visibility  1
∠_______________________

4. FORMAL DEFINITION OF MOOD
METRICS

The MOOD metrics suite [6] was proposed by F. B
e Abreu team. It aims to respond to a number of
criteria listed below:

1. Metrics determination should be formally
defined.

2. Non-size metrics should be system size
independent.

3. Metrics should be dimensionless or expressed
in some consistent unit system.

4. Metrics should be obtainable early in the life-
cycle.

5. Metrics should be down-scalable.
6. Metrics should be easily computable.
7. Metrics should be language independent.

MOOD metrics are all system-wide measurements;
they are indicators for the following properties:

1. Information hiding Factor: the
measurement of hiding factor of
encapsulation at attribute level and method
level. Two metrics of the MOOD set are
concerned: AHF for attribute and MHF for
method.

� AHF : Attribute Hidden Factor:

The ratio of hidden attributes (private
and protected) to total attributes
defined.

Where:

Ad: defined attributes;
Av: visible attributes;
Ah: hidden attributes
And: Ad (Ci) = Av (Ci) + Ah (Ci)

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

5

The Z specification of AHF:

→AHF: ObjectDef ξ Package φ Ρ
∩_______________
→Α o: ObjectDef; P: Package; p: Ζ; A: Π
Property; C: Π Class
→ | CN (o, P) > 1
→ ƒ PDAN (o, P) > 0
→ ƒ C = allClasses (o, P)
→ ƒ (Α c: C ∞ A = allAttributes (o, c))
→ ƒ (Α a: A ∞ p = p + 1 - APV (a, P))
∞ OHF (o, P) = p div PDAN (o, P)

Where 1 – APV(a,P) indicates the
percentage of the classes in the package
from which attributes is not visible.

� MHF: Method Hiding Factor :

The ratio of hidden methods (private and
protected) to total methods defined

Where:

Md: defined methods;
Mv: visible methods;
Mh: hidden methods

And : Md (Ci) = Mv (Ci) + Mh (Ci)

The Z specification of MHF:

→MHF: ObjectDef ξ Package φ Ρ
∩_______________
→Α o: ObjectDef; P: Package; p: Ζ; M:
Π Operation; C: Π Class
→ | CN (o, P) > 1
→ ƒ PDON (o, P) > 0
→ ƒ C = allClasses (o, P)
→ ƒ (Α c: C ∞ M = allOperations (o,
c))
→ ƒ (Α m: M ∞ p = p + 1 - OPV (m,
P)) ∞ MHF (o, P) = p div PDON (o, P)

Where 1 – OPV(m,P) indicates the
percentage of the classes in the package
from which operations is not visible.

2. Inheritance Factor: The degree to which
the class architecture of an Object-0riented
system makes use of inheritance for both
methods and attributes.

1. AIF: Attribute Inheritance Factor:

The ratio of inherited attributes to
total attributes defined.

Where:

Aa: Attributes availables;
Ad: Attributes defined;
Ai: Attributes inherited (not ovverriden)

And: Aa(Ci) = Ad (Ci)+Ai(Ci) / Ad(Ci)
= An (Ci)+Ao(Ci)

The Z specification of AIF:

→AIF: ObjectDef ξ Package φ Ρ
∩_______________
→Α o: ObjectDef; P: Package | PAAN (o,
P) > 0
→ ∞ AIF (o, P) = PIAN (o, P) div PAAN
(o, P)

2. MIF: Method Inheritance Factor:

 The ratio of inherited methods to total
methods defined.

Where:

Ma: Methods availables;
Md: Methods defined;
Mi: Methods inherited (not overriden)

And: Ma(Ci) = Md (Ci)+Mi(Ci) /
Md(Ci) = Mn (Ci)+Mo(Ci)

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

6

The Z specification of MIF:

→MIF: ObjectDef ξ Package φ Ρ
∩_______________
→Α o: ObjectDef; P: Package | PAON (o,
P) > 0
→ ∞ MIF (o, P) = PION (o, P) div
PAON (o, P)

3. Polymorphism Factor: Measurement of the
degree of overriding in the class
inheritance tree. It represents the actual
number of possible different distinct
polymorphic situation for a class Ci.

.

Where:

Mo: Methods overridden;
Mn: New methods;
DC: Descendants count

The Z specification of PF:

→PF: ObjectDef ξ Package φ Ρ
∩_______________
→Α o: ObjectDef; P: Package | PAON (o,
P) > 0
→ ∞ PF (o, P) = POON (o, P) div
PAON (o, P)

4. Coupling Factor: informs about the
relationship between modules. It
represents the ratio of the maximum
possible number of couplings in the
system to the actual number of coupling.
As a reminder, a class is coupled to
another class if it calls methods of another
class.

Where:

 is_client(C
c
,C

s
): the client - supplier

 relationship;

 TC: Total number of classes.

The Z specification of COF:

→COF: ObjectDef ξ Package φ Ρ
∩_______________
→Αo:ObjectDef; P:Package |CN(o,P)>1
∞ COF(o,P) = sqrt(ICLN(o,P) div →
((CN(o,P)* CN(o,P))-CN(o,P)))

ICLN stands for Internal Coupling Links
Number and it represents the Number of
distinct coupling relations where both the
client and the supplier Classes belong to
the current Package (excludes inheritance)
[14].

→ICLN: ObjectDef ξ Package φ Ν
∩_______________
→Αo:ObjectDef; P:Package; C: Π
Classifier |
→C=internalSupplierClasses(o,P) ∞
ICLN(o,P) = #C

5. CONCLUSION AND FUTURE WORK

Up to now, we presented a new approach to
formally express software design metrics based on
a formal definition of the UML metamodel. We
then successfully applied this approach to the well-
know suite of metrics: the CK metrics and currently
to the MOOD metrics, showing the ability of this
model to be expanded, in one hand, to include new
notions such as invisibility and to adapt, in other
hand, to other suite of metrics based in their
definitions on the UML metamodel.

 We plan in the future to pursue our
ongoing work to propose a relevant tool support
that will automate the calculation of design metrics
over proposed models. This tool will help to inform
about the quality of a design model and is intended
to facilitate the integration of measurements in the
industry.

REFRENCES:

[1] M. Spivey: The Z Notation. Prentice-Hall,

1992.

[2] J. Woodcock and J. Davies, “Using Z:
Specification, Proof and Refinement,” Prentice

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

7

Hall International Series in Computer Science,
1996.

[3] The Object Management Group, UML 2.3
superstructure specification, 2010.
http://www.omg.org/spec/uml/2.3/

[4] M. Lamrani, Y. El Amrani and A. Ettouhami,
“Formal Specification of Software Design
Metrics,” in The Sixth International
Conference on Software Engineering Advances
(ICSEA) Barcelona, October 2011.

[5] L. Henocque, “Z specification of Object
Oriented Constraint Programs” RACSAM,
2004.

[6] F. B Abreu, “The MOOD Metrics Set In
Proc.’” ECOOP'95 Workshop on Metrics,
(1995).

[7] S. R. Chidamber and C. F. Kemerer, “A metric
suite for Object Oriented Design,” Journal
IEEE Transactions on Software Engineering
vol. 2, pp. 476 – 493, 1994.

[8] K. Mazhar, R. A. Khan and M. H. Khan,
“Significance of Design Properties in Object
Oriented Software Product Quality
Assessment,” In TECHNIA – International
Journal of Computing Science and
Communication Technologies, vol. 3, January,
2011. (ISSN 0974-3375)

[9] B. Jagdish, “A Hierarchical Model for object-
oriented Design Quality Assessment,” In IEEE
Transaction on software engineering, vol. 28,
January, 2002.

[10] M. Monperrus, J. M. Jézéquel, J.Champeau
and B. Hoeltzener, “A Model-driven
Measurement Approach,” In Proceedings of
the ACM/IEEE 11th International Conference
on Model Driven Engineering Languages and
Systems (MODELS'2008), 2008.

[11] M. M. El-Wakil, A. El-Bastawisi, M. B. Riad
and A. Fahmy, “A novel approach to formalize
Object-Oriented Design,” In 9th International
Conference on Empirical Assessment in
Software Engineering (EASE 2005), April,
2005.

[12] XQuery 1.0 Standard by W3C XML Query
Working Group.
http://www.w3.org/TR/2010/REC-xquery-
20101214/

[13] A. L. Baroni and F.B. Abreu, “An OCL-Based
Formalization of the MOOSE Metric Suite,” In
Proceedings of the 7th International ECOOP
Workshop on Quantitative Approaches in
Object-Oriented Software Engineering
(QUAOOSE'2003), Darmstadt, 2003.

[14] A. L. Baroni and F. B. Abreu, “A Formal
Library for Aiding Metrics Extraction,” In
International Workshop on Object-Oriented
Re-Engineering at ECOOP, 2003.

[15] The Object Management Group, Object
Constraint Language 2.2, 2010
http://www.omg.org/spec/OCL/2.2/

[16] J.A. McQuillan and J. F. Power, “Towards re-
usable metric definitions at the meta-level,” In
PhD Workshop of the 20th European
Conference on Object-Oriented Programming
(ECOOP 2006) Nantes, July 2006.

[17] R. Reissing, “Towards a model for object-
oriented design measurement,” In ECOOP'01
Workshop QAOOSE, 2001.

[18] R. Barden, S. Stepney and D. Cooper, “The use
of Z. In J. E. Nicholls, editor,” In Proceedings
of the 6th Z User Meeting, York, UK, 1991,
Workshops in Computing, pp. 99–124.
Springer, 1992.

[19] G. Booch: Object-Oriented Analysis and
Design with Applications (2nd ed.), Benjamin
Cummings, 1994.

[20] Y. Jiang, B. Cukic, T. Menzies and N. Bartlow,
“Comparing Design and Code Metrics for
Software quality Prediction,” In PROMISE,
2008.

[21] L. C. W. Garnett, “Valentine from A Telegraph
Clerk ♂ to a Telegraph Clerk ♀,” The Life of
James Clerk Maxwell, 631, 1882.

[22] I. Meisels and M. Saaltink, “The Z/EVES 2.0
Reference Manual,” Technical Report TR-99-
5493-03e, ORA Canada, October, 1999.

[23] T. Baar, “Experiences with the UML/OCL-
Approach to Precise Software Modeling: A
Report from Practice, ” In Proc.
Net.ObjectDays, Erfurt, 2000.

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

8

APPENDIX:

The following is a formal description of the
previously used functions throughout the metrics
formalization expressions. It was entirely written
and verified with Z/EVES tool [22].
Complementary functions are defined in the
Annexe Section of the previous contribution [4].

% Subset of Attributes (from one set of Features) belonging to
the current Classifier.

→feature2AttributeSet: ObjectDef ξ Π Feature φ Π Property
∩_______________
→Α o: ObjectDef; S: Π Feature
→ | instances o.class = Feature
→ ƒ S = { f: Feature | oclIsKindOf (o, Property) = TRUE }
→ ∞ feature2AttributeSet (o, S) = { f: S | oclAsType (o,
Property) = o }

% Subset of Operations (from one set of Features) belonging to
the current Classifier.

→feature2OperationSet: ObjectDef ξ Π Feature φ Π Operation
∩_______________
→Α o: ObjectDef; S: Π Feature
→ | instances o.class = Feature
→ ƒ S = { f: Feature | oclIsKindOf (o, Operation) = TRUE }
→ ∞ feature2OperationSet (o, S) = { f: S | oclAsType (o,
Operation) = o }

% Set of Features declared in the Classifier, including
overridden Operations.

→definedFeatures: ObjectDef ξ ReferenceSet φ Π Feature
∩_______________
→Α o: ObjectDef; C: ReferenceSet; p: Π Feature
→ | instances o.class = Feature
→ ƒ C = Classifier
→ ƒ p = { f: Feature | f ε C } ∞ definedFeatures (o, C) = p

% Set of Classes from which the current GeneralizableElement
derives directly.
→parents: ObjectDef ξ RedefinableElement φ Π
RedefinableElement
∩_______________
→Α o: ObjectDef; r: instances ClassRedefinableElement
→ | instances o.class = RedefinableElement
→ ∞ parents (o, r)
→ = { r': RedefinableElement
→ | instances ClassRedefinableElement χ instances
o.class }

% Set of directly derived Classes of the current
GeneralizableElement.

→children: ObjectDef ξ RedefinableElement φ Π
RedefinableElement
∩_______________
→Α o: ObjectDef; r: RedefinableElement | instances o.class =
RedefinableElement
→ ∞ children (o, r)
→ = { r': RedefinableElement
→ | instances o.class χ instances
ClassRedefinableElement }

% Set containing all Features of the Classifier itself and all its
inherited Features.

→allFeatures: ObjectDef ξ Classifier φ Π Feature
∩_______________
→Α o: ObjectDef; c: Classifier; r: RedefinableElement
→ ∞ allFeatures (o, c) = Υ {(allFeatures ((oclAsType (o,
Classifier)), c))}

% Set containing all Attributes of the Classifier itself and all its
inherited Attributes (both directly and indirectly).

→allAttributes: ObjectDef ξ Classifier φ Π Property
∩_______________
→Α o: ObjectDef; c: Classifier; S: Π Property
→ | S = feature2AttributeSet (o, (allFeatures (o, c)))
→ ∞ allAttributes (o, c) = S

% Set containing all Operations of the Classifier itself and all its
inherited Operations (both directly and indirectly).

→allOperations: ObjectDef ξ Classifier φ Π Operation
∩_______________
→Α o: ObjectDef; c: Classifier; S: Π Operation
→ | S = feature2OperationSet (o, (allFeatures (o, c)))
→ ∞ allOperations (o, c) = S

% Set of Classes to which the current Class is coupled
(excluding inheritance).

→coupledClasses: Classifier φ Π Classifier
∩_______________
→Α c: Classifier; S: Π Classifier
→ | S = { c': Classifier | hasAttribute (c, c') = TRUE }
→ ∞ coupledClasses c = S

→allClientOperations: ObjectDef ξ Classifier φ Π Operation
∩_______________
→Α o: ObjectDef; c: Classifier; C: Π Classifier; M: Π
Operation
→ | coupledClasses c = C ƒ M = Υ { c': C ∞ (allOperations
(o, c')) }
→ ∞ allClientOperations (o, c) = M

% Number of Classes in the Package.

→CN: ObjectDef ξ Package φ Ν
∩_______________
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν | C =
allClasses (o, P) ƒ →n = # C ∞ CN (o, P) = n

% Number of Classes in the considered Package where the
Attribute can be accessed.

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

9

→AVN: Property ξ Package φ Ν
∩_______________
→Α a: Property; P: Package; n: Ν | n = FVN (a, P) ∞ AVN (a,
P) = n

% Number of Classes in the considered Package where the
Operation can be accessed.

→OVN: Operation ξ Package φ Ν
∩_______________
→Α m: Operation; P: Package; n: Ν | n = FVN (m, P) ∞ OVN
(m, P) = n

% Percentage of Classes in the considered Package where the
Attribute can be accessed (excludes the Classifier where the
Attribute is declared).

→APV: Property ξ Package φ Ζ
∩_______________
→Α o: ObjectDef; a: Property; P: Package; q: Ζ
→ | CN (o, P) > 1 ƒ q = (AVN (a, P) - 1) div (CN (o, P) - 1)
→ ∞ APV (a, P) = q

% Percentage of Classes in the considered Package where the
Operation can be accessed (excludes the Classifier where the
Operation is declared).

→OPV: Operation ξ Package φ Ζ
∩_______________
→Α o: ObjectDef; m: Operation; P: Package; q: Ζ
→ | CN (o, P) > 1 ƒ q = (OVN (m, P) - 1) div (CN (o, P) - 1)
→ ∞ APV (m, P) = q

% Number of Attributes defined in the Class

→definedAttributes: ObjectDef ξ Classifier φ Π Property
∩_______________
→Α o: ObjectDef; C: Classifier; A: Π Property
→ | A = feature2AttributeSet (o, (definedFeatures (o,
Classifier)))
→ ∞ definedAttributes (o, C) = A

% Number of Operations defined in the Class
→definedOperations: ObjectDef ξ Classifier φ Π Operation
∩_______________
→Α o: ObjectDef; C: Classifier; O: Π Operation
→ | O = feature2OperationSet (o, (definedFeatures (o,
Classifier)))
→ ∞ definedOperations (o, C) = O

% Number of Defined Attributes in the Classifier

→DAN: ObjectDef ξ Classifier φ Ν
∩_______________
→Α o: ObjectDef; C: Classifier; A: Π Property | A =
definedAttributes (o, →C) ∞ DAN (o, C) = # A

% Number of Defined Operations in the Classifier

→DON: ObjectDef ξ Classifier φ Ν
∩_______________
→Α o: ObjectDef; C: Classifier; O: Π Operation | O =
definedOperations →(o, C) ∞ DON (o, C) = # O

% Number of Available Attributes in the Classifier.

→AON: ObjectDef ξ Classifier φ Ν
∩_______________
→Α o: ObjectDef; C: Classifier; O: Π Operation | O =
allOperations (o, →C) ∞ AON (o, C) = # O

% Number of Available Operations in the Classifier.

→AAN: ObjectDef ξ Classifier φ Ν
∩_______________
→Α o: ObjectDef; C: Classifier; A: Π Property | A =
allAttributes (o, C)
→ ∞ AAN (o, C) = # A

% Set of directly inherited Features.

→directlyInheritedFeatures: ObjectDef ξ Classifier φ Π Feature
∩_______________
→Α o: ObjectDef; C: Classifier; F: Π Feature; R: Π
RedefinableElement
→ | R = parents (o, C)
→ ƒ F
→ = Υ { r: R
→ ∞ (definedFeatures ((oclAsType (o, Classifier)),
→ RedefinableElement)) }
→ ∞ directlyInheritedFeatures (o, C) = F

% Set of all inherited Attributes (both directly and indirectly).

→allInheritedAttributes: ObjectDef ξ Classifier φ Π Property
∩_______________
→Α o: ObjectDef; C: Classifier; A: Π Property
→ | A = feature2AttributeSet (o, (allInheritedFeatures (o, C)))
→ ∞ allInheritedAttributes (o, C) = A

% Set containing all Operations of the Classifier itself and all its
inherited Operations (both directly and indirectly).

→allInheritedOperations: ObjectDef ξ Classifier φ Π Operation
∩_______________
→Α o: ObjectDef; C: Classifier; O: Π Operation
→ | O = feature2OperationSet (o, (allInheritedFeatures (o,
C)))
→ ∞ allInheritedOperations (o, C) = O

% Number of inherited Attributes in the Classifier.

→IAN: ObjectDef ξ Classifier φ Ν
∩_______________
→Α o: ObjectDef; C: Classifier; A: Π Property
→ | A = allInheritedAttributes (o, C) ∞ IAN (o, C) = # A

% Number of inherited Operations in the Classifier.

→ION: ObjectDef ξ Classifier φ Ν
∩_______________
→Α o: ObjectDef; C: Classifier; O: Π Operation
→ | O = allInheritedOperations (o, C) ∞ ION (o, C) = # O

% Number of Operations defined in the Class that override
inherited ones.
→overriddenOperations: ObjectDef ξ Classifier φ Π Operation
∩_______________
→Α o: ObjectDef; C: Classifier; IO, DO: Π Property
→ | IO = allInheritedOperations (o, C) ƒ DO =
definedOperations (o, C)
→ ∞ overriddenOperations (o, C) = IO Ι DO

Journal of Theoretical and Applied Information Technology
 10th March 2013. Vol. 49 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

10

% Number of overridden Operations in the Classifier

→OON: ObjectDef ξ Classifier φ Ν
∩_______________
→Α o: ObjectDef; C: Classifier; O: Π Operation
→ | O = overriddenOperations (o, C) ∞ OON (o, C) = # O

% Number of defined Attributes in the Package
→PDAN: ObjectDef ξ Package φ Ν
∩_______________
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν
→ | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + DAN (o, c))
∞ PDAN (o, P) = n

% Number of defined Operations in the Package

→PDON: ObjectDef ξ Package φ Ν
∩_______________
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν
→ | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + DON (o, c))
∞ PDON (o, P) = n

% Number of inherited Attributes in the Package.

→PIAN: ObjectDef ξ Package φ Ν
∩_______________
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν
→ | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + IAN (o, c))
∞ PIAN (o, P) = n

% Number of available Attributes in the Package.
→PAAN: ObjectDef ξ Package φ Ν
∩_______________
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν
→ | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + AAN (o, c))
∞ PAAN (o, P) = n
% Number of available Operations in the Package.
→PAON: ObjectDef ξ Package φ Ν
∩_______________
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν
→ | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + AON (o, c))
∞ PAON (o, P) = n

% Number of inherited Operations in the Package.

→PION: ObjectDef ξ Package φ Ν
∩_______________
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν
→ | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + ION (o, c))
∞ PION (o, P) = n

% Number of overridden Operations in the Package

→POON: ObjectDef ξ Package φ Ν
∩_______________
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν
→ | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + OON (o, c))
∞ POON (o, P) = n

% Set of supplier Classes in the current Package.

→internalSupplierClasses: ObjectDef ξ Package φ ΠClassifier
∩_______________
→Αo: ObjectDef; P: Package; C: ΠClassifier |
C=supplierClasses(o,P) ∞ internalSupplierClasses(o,P) = C

