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ABSTRACT 
 

Software design metrics, since their apparition, suffer from a lack of formalism in their definition opening 
room to ambiguities and thus to misleading results. Although, several studies attempted to bring rigor to 
most well-known suite of metrics, the degree of formalism used to define them, constitutes a significant 
obstacle towards the built of solid tools support, considered as the key point to an easy integration of 
measurement in the industry. This paper is a logical continuation of a previous published work where a Z-
based formalization of the CK metrics is presented, offering an innovative and easy to follow methodology 
which successfully manages to provide a solid definition of metrics that deals with complexity, coupling 
and cohesion. While this work brings formalism at the classifier level, we proceed, in the present, to 
propose formalism for an overall quality measurement of the object-oriented systems, introducing the 
invisibility concept formalization and extending the quality indicator properties to encapsulation and 
polymorphism. 
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1. INTRODUCTION  
 
“It was a great step in science when men became 
convinced that, in order to understand the nature of 
things, they must begin by asking, not whether a 
thing is good or bad, noxious or beneficial, but of 
what kind it is? And how much is there of it? 
Quality and Quantity were then first recognized as 
the primary features to be observed in scientific 
inquiry” [21]. This quote of the Scottish physicist 
and mathematician James Clerk Maxwell (1831 - 
1879) highlights the importance of identifying the 
nature of the entity to take into consideration when 
it comes to quality and also the major role of 
measurement in any scientific field. As software 
engineering differentiates itself from other hard 
sciences such as mathematics and physics, 
especially for its subjectivity aspects, several 
studies and experiments have shown that software 
metrics, when applied earlier in the software life 
cycle (i.e. design phase), can help considerably the 
improvement and control of software quality over 
specific software properties such as efficiency, 
complexity, understandability and reuse [8]. Many 
software quality indicators have been identified and 
successfully verified in helping reduce risks, detect 
faultiness and thus managing both time and cost 
estimation control [20]. Some of the most relevant 

ones are encapsulation, inheritance and 
polymorphism.  
Encapsulation means hiding the internal 
specification of an object that do not contribute to 
its essential characteristics and showing only the 
external interface; typically, the structure of an 
object is hidden, as well as the implementation of 
its methods [19]. Inheritance is a relationship 
among classes, wherein one class shares the 
structure or behavior defined in one (single 
inheritance) or more (multiple inheritance) other 
classes [19]. Finally, polymorphism is a concept in 
type theory wherein a name (such as a variable 
declaration) may denote instances of many different 
classes as long as they are related by some common 
superclass [19].  
These concepts, according to theoretical and 
experimental results, have a strong capability to 
build a flexible system. 
Among existing suite of metrics defined that 
emphasize the above properties, we especially 
consider in this contribution, the well-known 
Metrics for Object Oriented Design suite [6], also 
called the MOOD metrics, for their commonly 
recognized ability to provide useful results and 
information about the whole object-oriented system 
quality. 
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This paper joins the multiple efforts done to 
facilitate the introduction of software design 
metrics into the industry field. Based on a recently 
published formalization methodology [4], it aims to 
provide precise and complete formalized definition 
of the proposed software design metrics. The 
choice of the Z language [1-2] is justified by its 
structure: the grouping concept introduced by 
schema, its maturity and the possibility of checking 
consistency using proof theorems [18]. 
The rest of this paper is organized as follows: 
Section 2 discusses related work. Section 3 presents 
a brief overview of the Z-based formalization 
approach. Section 4 illustrates the formal 
definitions of the MOOD metrics and finally, 
Section 5 draws conclusion and future work. 
 
2. RELATED WORK 
 

In this section we review existing sets of metrics 
that measure a system quality and existing 
formalization approaches up-to-date. 

Described below, the most relevant metrics suite 
concerned with the software design phase and 
which continues to attract interest nowadays due to 
their significant results considered as quality 
indicators. 

• Metrics for Object-Oriented Software 
Engineering (MOOSE): a metric suite for 
Object-oriented design defined by Chidamber 
and Kemerer [7], also known as the CK 
metrics. Even if, their definition contains some 
ambiguities due to the degree of formalism 
used to express them, they are still frequently 
cited in several contributions and improved by 
other authors for being useful as quality 
indicators over many characteristics related to 
complexity, inheritance, coupling, cohesion 
and messaging.  

• Metrics for Object-Oriented Design (MOOD):  
introduced by Fernando Brito e Abreu [6] and 
evaluated by many other authors, they have 
shown their capabilities to measure efficiently 
a whole quality system according to the 
measured properties such as encapsulation, 
inheritance and polymorphism. However, some 
weaknesses have also been found resulting in 
the extension to MOOD2 metrics that filled the 
lack of measures of reuse and external coupling 
of the initial MOOD suite.  

• Quality Model for Object-Oriented Design 
(QMOOD): proposed by Jagdish Bansiya and 
Carl G Davis [9] and presented as a 
hierarchical model. It aims to inform about six 

quality factors that are functionality, 
effectiveness, understandability, reusability, 
flexibility and extendibility following the set of 
ISO 9126 as an initial set of quality attributes. 

 

Even though, we choose the MOOD metrics [6] for 
their system-wide measurements, this contribution, 
also, aims to demonstrate the ability of the 
proposed formalism model [4] to adapt and expand 
to any set of object-oriented metrics which are 
likely to be defined over the UML metamodel [3].    
Among design metrics formalization expressed on 
top of metamodels, Monperrus et al. [10] define a 
model-driven measurement approach also called 
MDM approach where metrics are implemented as 
an instance of a metric specification metamodel. El-
Wakil et al. [11] use XQuery language [12] to build 
metrics expression for UML class diagrams. Baroni 
et al. [13] propose a Formal Library for Aiding 
Metrics Extraction (FLAME) [14] where OCL [15] 
is used to express metrics definition. McQuillan et 
al. [16] based their work on Baroni’s approach and 
extended the UML metamodel 2.0 to offer a 
framework for metric definitions. Likewise, 
Reissing [17] extends the UML metamodel on 
which metrics definitions are based and then use 
this model to express known metrics suites with set 
theory and first order logic. Similarly, Lamrani et 
al. [4] presents an approach to formalize object-
oriented design metrics using Z language but 
instead of extending the UML metamodel, it uses 
the original OMG standard [3] specifications and 
then proceeds to its formalization as a basis for the 
formal metrics expressions.  
All significant efforts in this area involve the use of 
metamodels with non-formal (XQuery, SQL...) or 
semi-formal languages, especially OCL [15] which 
remains a language that was initially designed to 
express constraints on UML class diagrams. 
Although, OCL benefits from concise and friendly 
syntax, it suffers from the absence of a 
metamodeling approach since it uses an EBNF 
grammar instead, preventing a complete integration 
with the rest of UML. Besides, its semantics lack 
formal definitions leading to misunderstanding and 
unclear issues as explained in Baar [23] practice 
report. It enumerates number of OCL weaknesses 
such as restrictions on nested sets and the 
undeterministic iterate-construct. As a 
consequence, OCL limitations constitute significant 
obstacles towards the rigorous expression of 
software metrics definitions. 
The formal approach [4] proposed in this 
contribution benefits from a multi level 
formalization which consists in expressing formally 
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the UML metamodel and then the metrics 
definitions using the Z language, known for its 
maturity and ability to apply proof theorems. 
 
3. Z-BASED FORMALIZATION 
 

This section describes the formal approach 
adopted to express the metrics definitions 
rigorously. This approach [4] is based on a leveled 
formalization. At first, it gives a formal 
specification of the UML metamodel [3] part on 
which the second level, consisting on metrics 
formalization, is defined.  

Units 

This methodology is an adaptation of the Laurent 
Henocque contribution [5] about the formal 
specification of object-oriented constraint programs 
where we can find the following basics: 

 

 ObjectReference: a set of object references as 
an uninterpreted data type. 

[ObjectReference] 
 

 ReferenceSet: a finite set of object references 
used to model object types. 

ReferenceSet == Φ 
ObjectReference 
 

 CLASSNAME: class names defined using free 
type syntax of Z. 

CLASSNAME ::= ClassElement | 
ClassNamedElement | ... 
 

 ObjectDef: a predefined super class for all 
future classes. 

 
∪_ObjectDef_________________ 
→ref: ObjectReference 
→class:CLASSNAME 
∠_______________________ 
 

 Instances: a function mapping class names to 
the set of instances of that class 

→instances: CLASSNAME φ ReferenceSet 

 
 NIL: Undefined Object 

→NIL: ObjectDef 
 

 Class: implemented via two constructs: 
 

1. A class definition: a schema in which we 
find, in its invariant part, both the class 

attributes and the inheritance relationships 
and in its predicate part, specification of class 
invariants. 

 
∪_ClassDefElement______________ 
→name: seq CHAR 
∠_______________________ 
 

2. A class specification: a combination of a 
class definition extended with the ObjectDef 
and class references.  

 
ClassSpecElement  ClassDefElement ƒ 

[ObjectDef | class = ClassElement] 
 

In the current contribution, this approach [4] is used 
to formalize UML class structures consisting in 
inheritance, relationships and aggregation. It is also 
extended with the notion of visibility for the sake of 
metrics formalization presented later on Section 5. 

UML Metamodel Formalization 

The following schema is extracted and combined 
according to the UML metamodel specifications 
[3]. It consists on the core package.  

Element

NamedElement

Namespace

+namespace
0..1

Feature

StructuralFeature BehavioralFeature

Classifier

Parameter

+parameter*

0..1

Property

Class

Operation

RedefinableElement

Package

Method

1 *

1

*

*

+feature

0..1

*

 

Fig 1. A Partial Representation Of The UML Metamodel 
Core Package 

 

Since the formalization of the MOOD metrics 
introduces the notion of visibility which is not 
included in the described approach [4], we propose 
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in this paper, an extension that will incorporate this 
notion as part of the Z-formalized approach: 

The visibilities package is a subpackage of the 
Abstractions package that provide the basic 
constructs from which visibility semantics will be 
constructed [3]. Represented in the UML 
metamodel standard by the following (figure 1): 

 

Fig 2. The Visibilities Package 

 

Where the elements defined in this package are: 

 

Fig 3. The Elements In The Visibilities Package  

 

In our formal approach, we represent the 
enumeration by its equivalent in Z language: 

 

VisibilityKind ::= public | private | protected 
| package 

 

The visibilityKind is an enumeration type that 
contains literals to determine the visibility of 
elements in a model [3] 

We, then, proceed to the redefinition of the 
NamedElement Class already existing in the 
previous approach. We, especially, add the 
visibility attribute that will constrain the usage of a 
namedElment either in namespaces or in access to 
the element [3]. This attribute is defined as a power 
set of the enumeration visibilityKind with a 
predicate indicating that a namedElement will have 
at most one kind of visibility. 

 

∪_ClassDefNamedElement___________ 
→ClassDefElement 
→visibility: Π VisibilityKind 
∩____________________ 
→# visibility  1 
∠_______________________ 

4. FORMAL DEFINITION OF MOOD 
METRICS 
 

The MOOD metrics suite [6] was proposed by F. B 
e Abreu team. It aims to respond to a number of 
criteria listed below: 

1. Metrics determination should be formally 
defined. 

2. Non-size metrics should be system size 
independent. 

3. Metrics should be dimensionless or expressed 
in some consistent unit system. 

4. Metrics should be obtainable early in the life-
cycle. 

5. Metrics should be down-scalable. 
6. Metrics should be easily computable. 
7. Metrics should be language independent. 

MOOD metrics are all system-wide measurements; 
they are indicators for the following properties: 

1. Information hiding Factor: the 
measurement of hiding factor of 
encapsulation at attribute level and method 
level. Two metrics of the MOOD set are 
concerned: AHF for attribute and MHF for 
method. 

�  AHF : Attribute Hidden Factor: 

The ratio of hidden attributes (private 
and protected) to total attributes 
defined.  

 

 

 
Where:  
 
Ad: defined attributes;  
Av: visible attributes;  
Ah: hidden attributes 
And:  Ad (Ci ) = Av (Ci ) + Ah (Ci ) 
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The Z specification of AHF: 

→AHF: ObjectDef ξ Package φ Ρ 
∩_______________ 
→Α o: ObjectDef; P: Package; p: Ζ; A: Π 
Property; C: Π Class 
→    | CN (o, P) > 1 
→      ƒ PDAN (o, P) > 0 
→      ƒ C = allClasses (o, P) 
→      ƒ (Α c: C ∞ A = allAttributes (o, c)) 
→      ƒ (Α a: A ∞ p = p + 1 - APV (a, P)) 
∞ OHF (o, P) = p div PDAN (o, P) 

 
Where 1 – APV(a,P) indicates the 
percentage of the classes in the package 
from which attributes is not visible. 
 

� MHF:  Method Hiding Factor : 

The ratio of hidden methods (private and 
protected) to total methods defined  

 

 

 

Where:  
 
Md: defined methods;  
Mv: visible methods;  
Mh: hidden methods 
 
And : Md (Ci ) = Mv (Ci ) + Mh (Ci ) 
 

The Z specification of MHF: 

→MHF: ObjectDef ξ Package φ Ρ 
∩_______________ 
→Α o: ObjectDef; P: Package; p: Ζ; M: 
Π Operation; C: Π Class 
→    | CN (o, P) > 1 
→      ƒ PDON (o, P) > 0 
→      ƒ C = allClasses (o, P) 
→      ƒ (Α c: C ∞ M = allOperations (o, 
c)) 
→      ƒ (Α m: M ∞ p = p + 1 - OPV (m, 
P)) ∞ MHF (o, P) = p div PDON (o, P) 
 

Where 1 – OPV(m,P) indicates the 
percentage of the classes in the package 
from which operations is not visible. 
 

2. Inheritance Factor: The degree to which 
the class architecture of an Object-0riented 
system makes use of inheritance for both 
methods and attributes. 

1. AIF: Attribute Inheritance Factor: 

The ratio of inherited attributes to 
total attributes defined. 

 

 

Where:  
 
Aa: Attributes availables;  
Ad: Attributes defined;  
Ai: Attributes inherited (not ovverriden) 
 

And: Aa(Ci ) = Ad (Ci )+Ai(Ci )  /  Ad(Ci ) 
= An (Ci )+Ao(Ci ) 

The Z specification of AIF: 

→AIF: ObjectDef ξ Package φ Ρ 
∩_______________ 
→Α o: ObjectDef; P: Package | PAAN (o, 
P) > 0 
→    ∞ AIF (o, P) = PIAN (o, P) div PAAN 
(o, P) 

 

2. MIF: Method Inheritance Factor: 

     The ratio of inherited methods to total 
methods defined. 

 

Where:  
 
Ma: Methods availables;  
Md: Methods defined;  
Mi: Methods inherited (not overriden) 
 

And: Ma(Ci ) = Md (Ci )+Mi(Ci )  /  
Md(Ci ) = Mn (Ci )+Mo(Ci ) 
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The Z specification of MIF: 

→MIF: ObjectDef ξ Package φ Ρ 
∩_______________ 
→Α o: ObjectDef; P: Package | PAON (o, 
P) > 0 
→    ∞ MIF (o, P) = PION (o, P) div 
PAON (o, P) 
 

3. Polymorphism Factor: Measurement of the 
degree of overriding in the class 
inheritance tree. It represents the actual 
number of possible different distinct 
polymorphic situation for a class Ci. 

. 

 

 
Where:  
 
Mo: Methods overridden;  
Mn: New methods;  
DC: Descendants count 
 

The Z specification of PF: 

→PF: ObjectDef ξ Package φ Ρ 
∩_______________ 
→Α o: ObjectDef; P: Package | PAON (o, 
P) > 0 
→    ∞ PF (o, P) = POON (o, P) div 
PAON (o, P) 

4. Coupling Factor: informs about the 
relationship between modules. It 
represents the ratio of the maximum 
possible number of couplings in the 
system to the actual number of coupling. 
As a reminder, a class is coupled to 
another class if it calls methods of another 
class. 

 
 

Where:  
 

 is_client(C
c
,C

s
): the client - supplier 

 relationship; 

 TC: Total number of classes. 

 

The Z specification of COF: 

→COF: ObjectDef ξ Package φ Ρ 
∩_______________ 
→Αo:ObjectDef; P:Package |CN(o,P)>1 
∞ COF(o,P) = sqrt(ICLN(o,P) div → 
((CN(o,P)* CN(o,P))-CN(o,P))) 

 

ICLN stands for Internal Coupling Links 
Number and it represents the Number of 
distinct coupling relations where both the 
client and the supplier Classes belong to 
the current Package (excludes inheritance) 
[14]. 

 

→ICLN: ObjectDef ξ Package φ Ν 
∩_______________ 
→Αo:ObjectDef; P:Package; C: Π 
Classifier | 
→C=internalSupplierClasses(o,P) ∞ 
ICLN(o,P) = #C 

 

5. CONCLUSION AND FUTURE WORK 
 

Up to now, we presented a new approach to 
formally express software design metrics based on 
a formal definition of the UML metamodel. We 
then successfully applied this approach to the well-
know suite of metrics: the CK metrics and currently 
to the MOOD metrics, showing the ability of this 
model to be expanded, in one hand, to include new 
notions such as invisibility and to adapt, in other 
hand, to other suite of metrics based in their 
definitions on the UML metamodel. 

 We plan in the future to pursue our 
ongoing work to propose a relevant tool support 
that will automate the calculation of design metrics 
over proposed models. This tool will help to inform 
about the quality of a design model and is intended 
to facilitate the integration of measurements in the 
industry. 
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APPENDIX: 

The following is a formal description of the 
previously used functions throughout the metrics 
formalization expressions. It was entirely written 
and verified with Z/EVES tool [22]. 
Complementary functions are defined in the 
Annexe Section of the previous contribution [4]. 

 
% Subset of Attributes (from one set of Features) belonging to 
the current Classifier. 

 
→feature2AttributeSet: ObjectDef ξ Π Feature φ Π Property 
∩_______________ 
→Α o: ObjectDef; S: Π Feature 
→    | instances o.class = Feature 
→      ƒ S = {  f: Feature | oclIsKindOf (o, Property) = TRUE } 
→    ∞ feature2AttributeSet (o, S) = {  f: S | oclAsType (o, 
Property) = o } 
 
% Subset of Operations (from one set of Features) belonging to 
the current Classifier. 
 
→feature2OperationSet: ObjectDef ξ Π Feature φ Π Operation 
∩_______________ 
→Α o: ObjectDef; S: Π Feature 
→    | instances o.class = Feature 
→      ƒ S = {  f: Feature | oclIsKindOf (o, Operation) = TRUE } 
→    ∞ feature2OperationSet (o, S) = {  f: S | oclAsType (o, 
Operation) = o } 
 
% Set of Features declared in the Classifier, including 
overridden Operations. 
 
→definedFeatures: ObjectDef ξ ReferenceSet φ Π Feature 
∩_______________ 
→Α o: ObjectDef; C: ReferenceSet; p: Π Feature 
→    | instances o.class = Feature 
→      ƒ C = Classifier 
→      ƒ p = {  f: Feature | f ε C } ∞ definedFeatures (o, C) = p 
 
% Set of Classes from which the current GeneralizableElement 
derives directly. 
→parents: ObjectDef ξ RedefinableElement φ Π 
RedefinableElement 
∩_______________ 
→Α o: ObjectDef; r: instances ClassRedefinableElement 
→    | instances o.class = RedefinableElement 
→    ∞ parents (o, r) 
→        = {  r': RedefinableElement 
→               | instances ClassRedefinableElement χ instances 
o.class } 
 
 
% Set of directly derived Classes of the current 
GeneralizableElement. 
 

→children: ObjectDef ξ RedefinableElement φ Π 
RedefinableElement 
∩_______________ 
→Α o: ObjectDef; r: RedefinableElement | instances o.class = 
RedefinableElement 
→    ∞ children (o, r) 
→        = {  r': RedefinableElement 
→               | instances o.class χ instances 
ClassRedefinableElement } 
 
% Set containing all Features of the Classifier itself and all its 
inherited Features. 
 
→allFeatures: ObjectDef ξ Classifier φ Π Feature 
∩_______________ 
→Α o: ObjectDef; c: Classifier; r: RedefinableElement 
→    ∞ allFeatures (o, c) = Υ {(allFeatures ((oclAsType (o, 
Classifier)), c))} 
 
% Set containing all Attributes of the Classifier itself and all its 
inherited Attributes (both directly and indirectly). 
 
→allAttributes: ObjectDef ξ Classifier φ Π Property 
∩_______________ 
→Α o: ObjectDef; c: Classifier; S: Π Property 
→    | S = feature2AttributeSet (o, (allFeatures (o, c))) 
→    ∞ allAttributes (o, c) = S 
 
% Set containing all Operations of the Classifier itself and all its 
inherited Operations (both directly and indirectly). 
 
→allOperations: ObjectDef ξ Classifier φ Π Operation 
∩_______________ 
→Α o: ObjectDef; c: Classifier; S: Π Operation 
→    | S = feature2OperationSet (o, (allFeatures (o, c))) 
→    ∞ allOperations (o, c) = S 
 
% Set of Classes to which the current Class is coupled 
(excluding inheritance). 
 
→coupledClasses: Classifier φ Π Classifier 
∩_______________ 
→Α c: Classifier; S: Π Classifier 
→    | S = {  c': Classifier | hasAttribute (c, c') = TRUE } 
→    ∞ coupledClasses c = S 
 
→allClientOperations: ObjectDef ξ Classifier φ Π Operation 
∩_______________ 
→Α o: ObjectDef; c: Classifier; C: Π Classifier; M: Π 
Operation 
→    | coupledClasses c = C ƒ M = Υ {  c': C ∞ (allOperations 
(o, c')) } 
→    ∞ allClientOperations (o, c) = M 
 
% Number of Classes in the Package. 
 
→CN: ObjectDef ξ Package φ Ν 
∩_______________ 
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν | C = 
allClasses (o, P) ƒ →n = # C   ∞ CN (o, P) = n 
 
% Number of Classes in the considered Package where the 
Attribute  can be accessed. 
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→AVN: Property ξ Package φ Ν 
∩_______________ 
→Α a: Property; P: Package; n: Ν | n = FVN (a, P) ∞ AVN (a, 
P) = n 
 
% Number of Classes in the considered Package where the 
Operation can be accessed. 
 
→OVN: Operation ξ Package φ Ν 
∩_______________ 
→Α m: Operation; P: Package; n: Ν | n = FVN (m, P) ∞ OVN 
(m, P) = n 
 
% Percentage of Classes in the considered Package where the 
Attribute can be accessed (excludes the Classifier where the 
Attribute is declared). 
 
→APV: Property ξ Package φ Ζ 
∩_______________ 
→Α o: ObjectDef; a: Property; P: Package; q: Ζ 
→    | CN (o, P) > 1 ƒ q = (AVN (a, P) - 1) div (CN (o, P) - 1) 
→    ∞ APV (a, P) = q 
 
% Percentage of Classes in the considered Package where the 
Operation can be accessed (excludes the Classifier where the 
Operation is declared). 
 
→OPV: Operation ξ Package φ Ζ 
∩_______________ 
→Α o: ObjectDef; m: Operation; P: Package; q: Ζ 
→    | CN (o, P) > 1 ƒ q = (OVN (m, P) - 1) div (CN (o, P) - 1) 
→    ∞ APV (m, P) = q 
 
% Number of Attributes defined in the Class 
 
→definedAttributes: ObjectDef ξ Classifier φ Π Property 
∩_______________ 
→Α o: ObjectDef; C: Classifier; A: Π Property 
→    | A = feature2AttributeSet (o, (definedFeatures (o, 
Classifier))) 
→    ∞ definedAttributes (o, C) = A 
 
% Number of Operations defined in the Class 
→definedOperations: ObjectDef ξ Classifier φ Π Operation 
∩_______________ 
→Α o: ObjectDef; C: Classifier; O: Π Operation 
→    | O = feature2OperationSet (o, (definedFeatures (o, 
Classifier))) 
→    ∞ definedOperations (o, C) = O 
 
% Number of Defined Attributes in the Classifier 
 
→DAN: ObjectDef ξ Classifier φ Ν 
∩_______________ 
→Α o: ObjectDef; C: Classifier; A: Π Property | A = 
definedAttributes (o, →C) ∞ DAN (o, C) = # A 
 
% Number of Defined Operations in the Classifier 
 
→DON: ObjectDef ξ Classifier φ Ν 
∩_______________ 
→Α o: ObjectDef; C: Classifier; O: Π Operation | O = 
definedOperations →(o, C)  ∞ DON (o, C) = # O 
 
 
% Number of Available Attributes in the Classifier. 
 

→AON: ObjectDef ξ Classifier φ Ν 
∩_______________ 
→Α o: ObjectDef; C: Classifier; O: Π Operation | O = 
allOperations (o, →C)  ∞ AON (o, C) = # O 
 
% Number of Available Operations in the Classifier. 
 
→AAN: ObjectDef ξ Classifier φ Ν 
∩_______________ 
→Α o: ObjectDef; C: Classifier; A: Π Property | A = 
allAttributes (o, C) 
→    ∞ AAN (o, C) = # A 
 
% Set of directly inherited Features. 
 
→directlyInheritedFeatures: ObjectDef ξ Classifier φ Π Feature 
∩_______________ 
→Α o: ObjectDef; C: Classifier; F: Π Feature; R: Π 
RedefinableElement 
→    | R = parents (o, C) 
→      ƒ F 
→          = Υ {  r: R 
→                   ∞ (definedFeatures ((oclAsType (o, Classifier)), 
→                                       RedefinableElement)) } 
→    ∞ directlyInheritedFeatures (o, C) = F 
 
% Set of all inherited Attributes (both directly and indirectly). 
 
→allInheritedAttributes: ObjectDef ξ Classifier φ Π Property 
∩_______________ 
→Α o: ObjectDef; C: Classifier; A: Π Property 
→    | A = feature2AttributeSet (o, (allInheritedFeatures (o, C))) 
→    ∞ allInheritedAttributes (o, C) = A 
 
% Set containing all Operations of the Classifier itself and all its 
inherited Operations (both directly and indirectly). 
 
→allInheritedOperations: ObjectDef ξ Classifier φ Π Operation 
∩_______________ 
→Α o: ObjectDef; C: Classifier; O: Π Operation 
→    | O = feature2OperationSet (o, (allInheritedFeatures (o, 
C))) 
→    ∞ allInheritedOperations (o, C) = O 
 
% Number of inherited Attributes in the Classifier. 
 
→IAN: ObjectDef ξ Classifier φ Ν 
∩_______________ 
→Α o: ObjectDef; C: Classifier; A: Π Property 
→    | A = allInheritedAttributes (o, C) ∞ IAN (o, C) = # A 
 
% Number of inherited Operations in the Classifier. 
 
→ION: ObjectDef ξ Classifier φ Ν 
∩_______________ 
→Α o: ObjectDef; C: Classifier; O: Π Operation 
→    | O = allInheritedOperations (o, C) ∞ ION (o, C) = # O 
 
% Number of Operations defined in the Class that override 
inherited ones. 
→overriddenOperations: ObjectDef ξ Classifier φ Π Operation 
∩_______________ 
→Α o: ObjectDef; C: Classifier; IO, DO: Π Property 
→    | IO = allInheritedOperations (o, C) ƒ DO = 
definedOperations (o, C) 
→    ∞ overriddenOperations (o, C) = IO Ι DO 
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% Number of overridden Operations in the Classifier 
 
→OON: ObjectDef ξ Classifier φ Ν 
∩_______________ 
→Α o: ObjectDef; C: Classifier; O: Π Operation 
→    | O = overriddenOperations (o, C) ∞ OON (o, C) = # O 
 
% Number of defined Attributes in the Package 
→PDAN: ObjectDef ξ Package φ Ν 
∩_______________ 
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν 
→    | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + DAN (o, c)) 
∞ PDAN (o, P) = n 
 
% Number of defined Operations in the Package 
 
→PDON: ObjectDef ξ Package φ Ν 
∩_______________ 
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν 
→    | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + DON (o, c)) 
∞ PDON (o, P) = n 
 
% Number of inherited Attributes in the Package. 
 
→PIAN: ObjectDef ξ Package φ Ν 
∩_______________ 
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν 
→    | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + IAN (o, c)) 
∞ PIAN (o, P) = n 
 
% Number of available Attributes in the Package. 
→PAAN: ObjectDef ξ Package φ Ν 
∩_______________ 
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν 
→    | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + AAN (o, c)) 
∞ PAAN (o, P) = n 
% Number of available Operations in the Package. 
→PAON: ObjectDef ξ Package φ Ν 
∩_______________ 
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν 
→    | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + AON (o, c)) 
∞ PAON (o, P) = n 
 
% Number of inherited Operations in the Package. 
 
→PION: ObjectDef ξ Package φ Ν 
∩_______________ 
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν 
→    | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + ION (o, c)) 
∞ PION (o, P) = n 
 
% Number of overridden Operations in the Package 
 
→POON: ObjectDef ξ Package φ Ν 
∩_______________ 
→Α o: ObjectDef; P: Package; C: Π Class; n: Ν 
→    | C = allClasses (o, P) ƒ (Α c: C ∞ n = n + OON (o, c)) 
∞ POON (o, P) = n 
 
% Set of supplier Classes in the current Package. 
 
→internalSupplierClasses: ObjectDef ξ Package φ ΠClassifier 
∩_______________ 
→Αo: ObjectDef; P: Package; C: ΠClassifier | 
C=supplierClasses(o,P) ∞ internalSupplierClasses(o,P) = C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


