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ABSTRACT

DE algorithm is a population-based heuristic gla®arch technology. The algorithm has simple fpiag
fewer control parameters, but has strong robustraass good optimization performance. This papes use
differential evolution algorithm for parameters mdiication of Wiener model. Firstly, we analyzeeth
influence of mutation rate F on global parallel rebaability and convergence in the process of
identification. Secondly, an adaptive mutated défeial evolution algorithm (ADE) is proposed. The
algorithm keeps individual diversity to avoid prama convergence during the early stage and redbees
mutation rate gradually so as not to damage thamaptsolution obtained during the later stage & th
search process. Finally numerical simulation ifgrered on Wiener model. The results show that ADE
algorithm has more effectiveness in parameter ifiestion problem than PSO. On the other hand,
compared with the general DE algorithm, ADE aldoritidentifies the parameters of Wiener model with
higher precision as well as shows lower sensititatthe algorithmic parameters.

Keywords: Differential Evolution; Adaptive Mutation; Parameter Identification; Wiener Model; Particle
Swarm Algorithm

1. INTRODUCTION differences among population. As an important

The actual industrial processes usually havlgranCh of evolutionary algorithm, DE s gradually

strong nonlinear characteristic, Nonlinear mode'ilttented by domestic and foreign scholars, it is

often can better describe the characteristics ef t@cr)?\ﬁgze(tjh g yclﬁglbnyesrhes\toz)nolsrr:g m}?%ie}gg?n;;ﬁ% for

e e ot 1 ominedn the general evaonary slgorifm(sich s
P A,PSO),DE principle is simple, easy to

3\;?6;2? nl:sgelo;;tg%"rsnhoeddelk;ba,\s/;dsrCoanrfgmcgnmeég%tmplement, strong robustness, fast convergence,
y y Jso has less controlled parameters. It is widely

is a linear subsystem and a static (no memory}. i, {he constrained optimizatfdmeural

nonlinear gain in series. Wiener —model .0 optimizatiol!,nonlinear  optimization
identification is mentioned in referené® wiener 9] ¢ 0]
0T S T , controf® filter desigi® and other aspects. At

model identification based on particle swarm

S ) present, apply DE to the system parameter
optimization (PSO). However, the disturbance has: e T . :

S ; éﬂennﬂcatlon is still less, therefore, it has artain

certain influence on algorithm performance and, ficance and potential application
identification results. Referencé” using GA 9 P PP '
algorithm approximates inverse function of Since DE principle is simple, strong robustness,
nonlinear gain, and applies least-square method ¢éc, combines it with the system parameter
identify  parameter of linear subsystem,dentification. The identification problem of
identification accuracy can not reach théViener model is equal to the nonlinear
requirements; Referenc€ based on quantum minimization problem with the estimated
particle swarm optimal(QPSO), QPSO algorithnparameters as the optimized variables. Via the
has stronger nonlinear identification ability,simulation experiment, analyzes the influence of
however, to some extent, increases the complexityutation rate F on global parallel search abilitg a
of the identification operation. convergence, on this basis, analysis of the imgtove
differential evolution algorithm, proposing an
a?daptive differential evolution algorithm with the
combination of the improved DE and the nonlinear

Differential evolution is a kind of heuristic gldba
random search algorithm based on individu
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system identification, searches the optimal ] L L -
estimation of Wiener model in the whole mémJ(k)=Z[y(k— 1= Yk=1J) (2)
parameters space. Compare the identification 1=

results of DE to PSO and QPSO, meanwhile
analysis shows that ADE is more advanced tha
DE. The simulation results show that the mode ; o
parameter identification by ADE is more effectivednd estimated value &— j(j =1,[LL) moment,
than other algorithm this paper introduced. y(k - j) can be obtained by the following formula:

' where L is identification window length,
P(k— i), ¥(k=j) are output measurement signal

In this paper, section 2 introduces the Wiener .
nonlinear model ; section 3 describes the Wiener Z(k-i):_al z(k-i-1)-----
model identification based on ADE algorithm;

oo
section 4 , we present the numerical simulation; an a,z(k-i-n)+
the section 5 gives the conclusion of this paper; 0o
than section 6 is the acknowledgement of the work byu(k-i-d)+---+ 3)
we do.

0o d
by, u(k-i-d-m)

2. WIENER NONLINEAR MODEL ] )
y(k-i) = f[z(k-i)}+e(k-i)

Wiener model is a linear subsystem and a

memoryless nonlinear gain links in series, ) )
connection mode is shown in figure 1, its Meanwhile, parameters of Wiener model to

differential equation is: meet:
A™)z(k) =g B(a™)u(k) g <f<6™ )
y(K) = f[z(K)] + € K) So identification problem of Wiener model is
(1) equivalent to identifying nonlinear minimum
optimization problem in formula (2) under solving
where the problem of equality constraints in formula (3)

A =1+aq*+[MFaq",B")=h,+bg™*+Hh,g™and inequality constraints in formula (4),parameter
are n , m order polynomial backward-shift estimationé is optimization variable.
operator,d is system delayu(k), y(k) are system 3 WIENER MODEL IDENTIFICATION

input and output,e(k) is Gaussian white noise, BASED ON ADE ALGORITHM
z(K) is the output of the linear part, not measured,

F) i | i in | d to?.l.TheBa_siqPrincipIeof Dealgori.thm. _
(Of is memoryless nonlinear gain. In order The basic idea of the DE algorithm is described

identify Wiener model, assuming,n,d and () 55 below. Firstly, initializes population randority

are known, that is the model structure ishe feasible solution space, using the difference

known. vector between the individuals of current parent to
ek) disturbance to realize individual variation.

qB(q?) z(k) g Secondly, according to a certain probability, paren
u(k)y—» Ao > f[Z(K)] ¥(k)  individual and variation individual to cross than
(@) getting the test individual. Finally, selects
individual between parent individual and test
individual according to the fitness value, take the

individual of better fithess as the offspring. DE
algorithm process is described as follows:

6=[a, (Ia, b, (Ib,]", identification target is to 1) Initialize population. NP D-dimensional real
parameter vector, each individual is expressed as:
X (G)(i =1,2,[NP) (i is individual sequence in

. . the population,G is evolution generation).Initial
6=[4 (T4, b, ]" ,make the squares of population generated randomly:

Figure 1 Wiener model

Definition vector parameter is

estimated according to the given input(k) and
output y(K) ,set estimate 4 is

output estimation bias minimum &t moment. X (0)= )ng +rand D(XUJ. - )gLJ.) (5)
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where x ; (0) represents the firs{ gene of the fixed real number betwed0,1], it is used to
control the amplification of the differential

first i individual of the first 0 generatioM\P is
variation(x (9) - x;(9)) . The algorithm is difficult

population size, D is the dimension of the

optimization problem; >§Uj ' )ﬁtj are parameters to determine the variation rate F and it is bighe
) ) n R concrete implementation process. DE algorithm is
boundariesrand is uniformly distributed random gjmilar to random search, having low search
number betweer(0,1). efficiency, and its accuracy about getting the glob
optimal solution is low; small mutation rate ledads
mUtanPeducing the diversity of population, easy to appea
premature. Therefore, proposes adaptive mutation
v, (g+1) operator, Early in the algorithm, adaptive mutation

(6)  operator was, - 2F,, it has great value and makes

=x,(9)+F -X izttt om0 0 :
o(9)+F Hx (@) xo(@)) (1 t,# 1% 1) the individuals diversity in the population at the
Where F is mutation rate, The randomly initial generations to overcome the premature. With

integerst,,t,,t; D[l NP] are chosen to be different the algorithm progress, mut.a'uon operator gradually
reduced, mutation rates is closed E later,

2) Mutation. For each target vector,
vector is generated as bellow:

from the running indexi . F controls the o
amplification of the differential Preserve the excellent individuals, enhance the
variation( x,(g)-X(g) ) X (g) represents the probability of obtaining the global optimum.
numberi individual of the numbeg generation. flf\dapt'Ve mutation operator is designed as
ollows:

3) Crossover: once the mutant vector is o e
ger?grated, the perturbed F=F Qe(l—gen_maxﬂ—ooum) ©)
|nd|V|duaI,vi'j(g+1):(vli (9+1)...v,; (g+1)), and
the current population membex, ; = (x;; 4. X,i.4 ) Where F; is mutation parametergen_ maxis

are then subject to the crossover operation, thEtaximum evolution generatiorcount is current
finally generates the population of candidates, dvolution generation. At the beginning of the
“trial” vectors, algorithm, mutation rate id =2F,, with large
U (@+1)=(u1(g+1),,u ,(g+1)), as follows:  mutation rate, so as to keep the individual ditgrsi
_ o mutation rate is reduced gradually with the
u _(g+1):{vi,i(g+1)' it rand <CR or ] = j 4 (7)  algorithm progress, mutation rate closeRpat the
v x%;(9),  otherwise end of algorithm, avoiding the destruction of the
optimal solution. In ADE algorithm, mutation rate
where CR is crossover probability,j., IS F is determined by adaptive mutation operator (ie,
random integer betweeffl,2,(ID], rand is formula (9)).

uniformly distributed random number betweers 3 \Wiener Model | dentification Based on ADE

0.2). For Eq(2) the optimization problem, sm:é,
4) Selection. If the new individual is better tharparticle dimension iD = n+m+1 fitness function

the original one then the new individual is to e ais F(k) =J(k) .The specific steps for wiener

offspring n the next generatioG =t+1 else the model identification based on ADE are as follows:
new individual is discarded and the original one is

retained in the next generation.
(gep=[HED T FU@+ DS KON (g) o -
A %(9),  otherwise Step 2 Set the range of the individual position
x- and x’ , iteratons k=0 initial

Where f () is the fitness functionf (u()) is the population( x(0) (=1,2[ILNP) ) generated
fitness values of trial individual.

Step 1 Parameter settings and produce uniform
white noisee(k) ;

randomly: x ;(0) = x-, +rand O(X, =X, );
3.2. Adaptive M utation De algorithm
In the identification of the process of DE
algorithm, mutation rate generally is selected a
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Step 3 Calculate the fitnes§ (0) of each  The definiton of root mean square error
individual of initial generation, getting the optin measures the identification accuracy.
fitness valuek,, and optimal individualX, ;

M
_ _ 2Ly =92
Step 4 Calculate mutation rate F according to S
. RMSE =
formula (9); M

11)

Step 5 Realize individual variation for the fidst Where M is the amount of data for verification,
generation {x ()} according to formula (6), set M =500, y(j),§(j) are output measured
generate intermediatefv, (k +1)} and limit the value and estimate value of the first j process.

range of individuals; ITERATION is a minimum iterations when

identified the estimated parameters.
Step 6 Crossover between the fiksigeneration

. . . . Start
population {)g (k)} and variable intermediates
{Vl (k + l)} according to formula (7) to get | Parameter settings,initial population X (0)|
{Ui (k + l)} X | Calculate fitness F (0).get Foes Xpex
[
Step 7 Adopt greedy algorithm for selecting _
. h | Calculate mutation rate F by (9) |
operation according to formula (8), choose 7
individuals to enter the next generation of . . .
. . | Realize crossover,mutation,selection by (6),(7).(8) |
population; i
Step 8 Compar§b&q Wlth F| (k) for the flrS“ | Calculate the value of fitness function |
individual, if F (K) < R , make Cpdaie e X,

Fres = Fi(K) ) Xpee =% (K) 5

No
Step 9 Sek =k +1, go to Step 4 to repeat the
above steps, if reach maximum iterating times

gen

iteration is terminated.

max ? ; ;
| Output the optimal solution |

4, NUMERICAL SIMULATION Fig. 2 Flow chart of ADE algorithm

The algorithm flow chart is shown in Figure 2.

Consider Wiener model in reference [2] DE algorithm mainly involves population scale
NP, mutation rateF ,crossover probabilityCR

M) =LK1~ 0.KKk- 2¢ this 3 control parameters. Population sci@
uk-1)+031k-2), generally takes a value betwebB and10D, D
W(K) = f[X(K)] +€K), (10) is the number of decision variables about objective

function, no less than 4,otherwise you can notycarr
f[xK)] = X(K)/2, X(k)ZO, on the mutation opetqtion;_ Mut_ation rafte is used
—\/—X(T)/Z,X(k)< 0. to control the population diversity and convergence

generally takesF ([0,1] ;Crossover probability

_ _ _ CR is used to control each dimension of individual
Where e(k) is the noise, varianc&, =0.1; participation of the crossover, generally takes

input signal u(k) is zero mean Gaussian white CRO[0,1] An the test, set

noise sequence, varianag, =1 .To identify the NP=40,C_R=O.9,muta_1ti0n _r_atel_: for different
true parameter vector .. values the influence of identification results show

6=[a a, b, b]" =[-1.5 0.7 1.0 0.5] set table 1.
L =500, O8N =300, )ﬁL = _2,)§U =2,D=4.
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Tab.1 NP =20. CR= 0.9, Different F To |dentification Results Influence

NP F CR a a, b b, RMSE ITERATION

40 0 0.9 0.0908 - 09051 1.1156 0.8989 5
0.6314

40 0.1 0.9 -0.6109 - 0.6938 1.8083 0.5173 15
0.1808

40 0.2 0.9 -1.3880 0.6010 0.6503 0.9781 0.2087 25

40 0.3 0.9 -1.4957 0.6941 1.1605 0.4903 0.0488 40

40 0.4 0.9 -1.5000 0.7000 0.9999 0.5000 6.67e-005 5 3

40 05 0.9 -1.5000 0.7000 1.0000 0.5000 1.28e-012 0O 4

40 0.6 0.9 -1.5000 0.7000 1.0000 0.5000 4.81e-015 0O 5

40 0.7 0.9 -1.5000 0.7000 1.0000 0.5000 1.42e-012 o 7

40 0.8 0.9 -1.5000 0.7000 1.0000 0.5000 5.92e-009 0 9

40 09 09 -1.5000 0.7000 1.0000 0.5000 4.16e-007 15 1

40 1.0 09 -1.5000 0.7000 1.0000 0.5000 3.31e-006 40 1

As can be seen from Table 1, whEnis large, than avoids damaging the optimal solution,
DE algorithm can identify the estimationincreases the probability of searching the global
parameters, but algorithm approximates randowptimal solution.

search, _the S.Wa"ESt lterations corresponding $ecre The simulation experiment indicates that the
when identified the estimate value, search

L . : ideal control parameters oADE algorithm are
efficiency is low, and the accuracy of getting the o
NP =40, F, =0.4,CR=0.9.ldentification results

global optimal solutions is low; whek is small,
the population diversity decreases, easily falingf ADE algorithm and PSO , QPSO , DE

into local optimal solution, thus appearingalgorithm are shown in Table 2.Table 2 shows that
premature phenomenon with low identification ADE algorithm can accurately convergence to the
accuracy. Therefore, this paper proposes adaptiyg| value of parameter, fully displays the fediibi
mutation operator, according to the progress of thg,q  effectiveness  of applicating ADE
search algorithm, mutation rate is determinegyentification method. Compared with

adaptively, the algorithm in the initial has largerpqny QPSO and DE identification results
mutation rate remaining individual diversity and ' '

avoiding premature; later in the algorithm, mutatio
rate gradually reduces and keeps good informatio

ADE algorithm can more accurately getting the
peal value.

Tab. 4 Comparison Of Four Algorithms Identification Results

True Estimate
Parameterg value PSO RMSE QPSC RMSE DE RMSE ADE RMSE
a -1.5 -1.4998 - - -
1.4999 1.5000 1.500

0

07 06998 2.47e-008 07004 1.07e-009 07000 1.32e-012 07 O4.2e-014
0

1.0 1.0000 0.9999 1.000pD 1.000
0

0.5 0.4999 0.500( 0.5000D 0.500
0

Figure 3, 4, 5 and 6 are identification results of
Wiener model based oSO , QPO , DE and
ADE algorithm. Even if the influence of noise,
ADE , DE , PSO , QPO algorithm can identify
the true value of Wiener model within 50 iterations

but the accuracy ofADE identification is more
highter.
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15 — CR=0.9 , variation parameter F, is
5 e 0.1,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,respectively
E B —bl . . . .
gospyie - — - —— - — - — m , maximum evolution generation 800 .When
% variation parametefr, takes each value, the two
g o9 algorithms reciprocity for 10 different randomly
g U ] generated initial population respectively. Then
Eagpii ] analyzes the number of getting optimal solution in
" ‘ ‘ ‘ ‘ ‘ all 10 times optimization process, the result is
° 0 M0 ens 20 0 shown in Figure 7.
Fig. 3 Real Value And Estimate Of Wiener Model
|dentification Based On PSO —
g e
1 7:; 3 8| / \
L 5 s / \\q
- g s’s \\\
%-0.5 — g at j‘j \ \\\ 1
2_1_5!.3&_ - g 7 \ |
g N
2 | % “02 o4 os 0.8 12 14 16 18 2
25 X X X X X Variation parameter
SO 00 ens 0 B0 %0 Fig. 7 Compare The Number Of Getting Optimal
Fig. 4 Real Value And Estimate Of Wiener Model Solution Between ADE And DE

I dentification Based OnQPSO ) ] ) o
Abscissa of the figure is variation parameter

2

s - F, ;ordinate is the number of times getting optimal
3 il/x o solution; in the figure, star represents the nunaer
g P i times getting optimal solution in different variti
é o ] parameterF, based onADE ,square represents the
g-os 1 number of times getting optimal solution in
%ﬂ '1J‘ ] different variation parameteF, ( F ) based on
12 W ] DE .As can be seen from the figure, when
C T s F,0[0.4,0.8], ADE algorithm reaches the best
Fig.5 Real Value And Estimate Of Wiener Model optimization results, all getting optimal solutiad
|dentification Based On DE times; however, only whef,=0.8 DE algorithm
2 . . .
el S reaches the best optimization results, all gettireg
A1 o optimal solution 10 times. When
Oj@ iiiiiiiiiiiiii F,0[0.4,1] , ADE algorithm has better

optimization performance; but only when
F, 0[0.8,1], DE algorithm has better optimization

performance. The sensitive degree of variation
parameter byADE algorithm is significantly lower
g 0 100 150 200 250 300 than that byDE algorithm.

Iterations
Identification Based On ADE '

Range of parameter identification
T
g 9

o
]
]
1

N

In this paper, usingADE algorithm for a class
of known model structure in industrial process
which can be described as Wiener model of

Set the same operating parameters of the twmnlinear system to obtain optimal estimation of
algorithms, including the same initial populationmodel parameters by searching parallel. First, via
population scaleNP =40 ,crossover probability simulation experiment, analyzes the influence of
mutation rate on identification results; on thisiba

s
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making using of improved differential evolution[6]

algorithm to identify parameters of Wiener model.
Simulation results show that the sensitive degfee o

variation

parameter

significantly lower than that byDE algorithm, it
reflects that ADE is more advanced thabE .

ADE algorithm has less parameters to select, strong
robustness and
simulation
accuracy is satisfied based odNDE and DE ,

it is easy to
results shows that

implement and
identification

indicating the feasibility and effectiveness ofsthi
method. This next work is aiming at applying the
algorithm to concrete engineering examples.
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