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ABSTRACT 
 

Compressed sensing has been  widely used to reconstruct magnetic resonance(MR) images from highly 
under-sampled k-space data. Generally, there are two main types of dictionary: analytic dictionary and 
trained dictionary. In this paper, we propose a novel framework to adaptively learn the dictionary and 
reconstruct MR images from highly under-sampled k-space data. We use the beta-Bernoulli process as a 
Bayesian nonparametric prior, which can learn dictionary adaptively. This patch-based dictionary learning 
process can also infers the sparsity of each patch and the noise variance. Our numerical experiments 
demonstrate that our reconstruction is more accurate compared to existing algorithms.. 

Keywords: Magnetic Resonance Imaging(MRI), Compressed Sensing(CS), Dictionary Learning, Bayesian 
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1. INTRODUCTION  
 

Magnetic Resonance imaging (MRI) has been 
widely used in medical diagnosis, but its application 
is limited by the slowly imaging process. This is 
mainly because of the K-space data is acquired 
sequentially in time [1]. Recent years, sparse 
representation theory shows that high quality of MR 
images reconstruction from highly under-sampled 
k-space data is possible [2]. This enables fewer 
sampling data than traditional Nyquist Sampling, 
and still recovers images accurately. Different 
algorithms can be classified by the choice of 
dictionary. Generally, there are two main ways to 
build the dictionary [3]: (i) use mathematical model 
to build an analytic dictionary, such as wavelets, 
curvelets and contourlets; (ii) trained a dictionary 
based on a set of samples data, like MOD [4], 
KSVD [5]. 

Analytic dictionary employs fast mathematical 
transformation to shift the images to transform 
domain, like wavelets, contourlets. M. Lustig et al. 
use wavelets to build the dictionary [2], and can 
effectively reconstruct MR images from highly 
under-sampled k-space data. Junzhou Huang et al. 
use wavelets dictionary and TV norm regularization 
sub problems to obtain the reconstruction images 
[6]. Recently years, patch-based MR images 
denoising studies show that patch-based 
dictionaries can potential remove noise. A patch-

based directional wavelets dictionary is proposed by 
Xiaobo Qu et al. to reconstruct MR images from 
highly under-sampled k-space data [7]. However 
analytic dictionaries are built by some general 
mathematical transformations, they cannot describe 
the local image features suitable. So dictionary 
learning methods are developed to build better 
dictionary. 

Trained dictionaries, such as MOD [4], K-SVD 
[5], are learned from a set of samples, so the trained 
atoms are more suitable to the specific images. 
They use patch-based dictionary learning method to 
effectively capture local image features. The trained 
atoms can be regarded as elementary structures of 
the samples images. Therefore, we are able to 
reconstruct MR images with sufficient details 
information and obtain a better reconstruction 
result. But dictionary learning with these models 
needs to set an error threshold or sparsity level. In 
practice, we do not know them exactly. In year 
2001, Mingyuan Zhou et al. [8] uses beta process 
factor analysis method (BPFA) to learn dictionary 
automatically and adaptively estimate the number 
of coefficients are used for representation of each 
patch. This gives an adaptive way to learn 
dictionary. 

In this paper, we proposed a novel Bayesian 
framework for learning the dictionary and used the 
trained dictionary to reconstruct the MR images 
from highly under-sampled k-space data. We use 
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nonparametric factor analysis with beta process 
(BPFA) to learn the dictionary automatically and 
calculate the number of coefficients which are used 
for representation of each patch (or sparsity level). 
This avoids setting the sparsity and noise levels by 
hand. Meanwhile we can also obtain the noise 
variance of the MR image. 

The rest of this paper is organized as follows. 
Section 2 talks about related work in CSMRI and 
dictionary learning with BPFA. In section 3, we 
introduce our problem formulation for patch-based 
MR image reconstruction. Experiments are 
conducted in section 4. Section 5 gives a conclusion 
to our work. 

2. BACKGROUND AND RELATED WORK  
 

We use Nx C∈  to represent as a vector, which 

corresponding N N×   image which we want 

to reconstruct, and My C∈  represents the k-space 

measurements. The two are related as uy F x= ∗ , 

where M N
uF C ×∈ ,  M N< is the under-sampled 

Fourier encoding matrix. Let iR  be the ith  patch 

extraction operator, , 1, ,P
i iR x x C i I= ∈ = ⋅⋅⋅ . 

2.1 Csmri with Analytic Dictionary 
Compressed Sensing reconstructs the unknown 

x from the measurementsy , or equivalently solves 

an underdetermined system of linear equations 

uy F x= ∗  by minimizing the 0l  quasi norm of 

the sparsified image xΨ , where Ψ  represents a 
global, typically orthogonal sparsifying transform 
for the image. For example, Ψ may be the wavelets 
transform, so that xΨ  corresponds to the wavelets 
coefficients ofx and is assumed to be sparse. The 
corresponding optimization problem is 

0
min

x
xΨ  s.t. uy F x=                            (1) 

The typical formulation of the CS reconstruction 

problem uses 1l  relaxation of the 0l  quasi norm, 

and accounts for the noise in the k-space 
measurements in the following Lagrangian setup 

2

2 1
min u

x
F x y xλ− + Ψ                         (2) 

This problem formulation involves a global 
sparsity measure and an analytical, fast sparsifying 
transformΨ . However, common transforms such 

as wavelets result in artifacts such as Gibbs ringing 
in the reconstruction images. 

2.2 Trained Dictionary 
  The MR images reconstruction techniques with 

analytic dictionary are limited by the degree of 
under-sampling. Trained dictionary makes the 
higher under-sampling degree available and obtains 
better image reconstructions. 

K-SVD algorithm can learn a dictionary from a 
set of training data [1]. It performs the dictionary 
update step with singular value decomposition 
(SVD), where each atom of dictionary and 
corresponding coefficients are updated jointly for 
the image patches used currently. Saiprasad 
Ravishankar et al. use this algorithm to reconstruct 
MR images from highly under-sampled k-space 
data, and obtain a well result. 

Mingyuan Zhou et al. uses beta process factor 
analysis method (BPFA) to learn the dictionary 
automatically and adaptively estimate the number 
of coefficients is used for representation of each 
patch [8]. We use BPFA to train the dictionary and 
reconstruct MR images with the trained dictionary.  

Let the image patch asi i ix Dα ε= + , iε  is 

additive noise of input image patch, iDα  is ideal 

image patch. We also aim to solve a patch-based 
optimization problem: 

2

02 0, ,
min , . .i i i

x D
i

R x D s t T
α

α α− <∑        (3) 

In order to estimate each patch’s sparsity level, 

we let i i iz sα = o , where o  represents the 

Hadamard multiplication. The noise variance is 
unknown and we can estimate it. To train a 
dictionary with BPFA, we use the following steps: 

(1) construct a dictionary 1[ , , ]kD d d= ⋅⋅⋅ : 

1(0, )k Pd N P I−
� , 1, , .k K= ⋅⋅⋅  

(2) draw a probability kπ  to suit each kd  

0 0( , )k Beta a bπ � , 1, , .k K= ⋅⋅⋅  

(3) construct precision value 

0 0( , )s Gamma c dγ � , 0 0( , )Gamma e fεγ �  

(4) for every patch 

(a) Construct 1(0, )i s Ks N Iγ −
� . 
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(b) Draw a binary vector iz  with  

( )ik kz Bernoulli π�  

(c) Construct the image patches 

i i iR x Dα ε= +  , 1(0, )i PN Iεε γ −
�  

(5) Obtain the dictionary and noise variance 
after iteration. 

With this approach, the model constructs a 

dictionary matrixD , and assigns probabilitykπ  to 

vector kd . 

3. ALGORITHM 
 

We next present our problem formulation for 
reconstructing MR images from highly under-
sampled k-space data. As discussed in section II, 
we propose a formulation as follow: 

2

2
arg min ( ) .u

x

x v F x yλρ + −           (4) 

In [2], ( ) : ( )x Wavelet xρ = , it uses wavelets 

transform to build an analytic dictionary. We use 
patch-based image dictionary learning algorithm, so 
we have 

2

2
( ) : ( , )i i i

i

x R x D f Dρ α α= − +∑       (5) 

The additional function ( , )if Dα  is sparsity 

constraint. We use BPFA to learn the dictionary, so 
the function ( )f �  enforce sparsity and learning a 

D  matrix for which iα  is sparse. This problem 

can be solved by using an alternating minimization 
procedure, first fix x  to update dictionary and 
sparse coefficients, then fix dictionary and 
coefficients to obtain reconstruction image. The 
problem is show as  follow, where j  is the 

iteration . 

1 1

2 21 1 1

22

( , ) arg min ( )

arg min
i

j j j

j j j

i u
i

D x

x R x D v F x y

α ρ

α

+ +

+ + +

=

= − + −






∑
  (6) 

3.1 Dictionary Learning 
In first step, we fixx . Then we can rewrite the 

problem as 
2

02 0, ,
min , . .i i i

x D
i

R x D s t T
α

α α− <∑        (7) 

We can use Gibbs sampling to obtain variables 
posterior density for dictionary and coefficients, as 
show in the following   

( ) ( )1 1

1

( ), 0,( )
N

k i i i k P

i

d N x D s z I N d P Ip εγ − −

=

− ∏ o∝   (8) 

( )1 1( |~) ( ), ( | 0, )ik i i i p i s Ks N x D s z I N s Ip εγ γ− −
o∝  (9) 

( )1( |~) ( ), ( | )ik i i i p ik kz N x D s z I Bernoulli zp εγ π−
o∝ (10) 

With these variables posterior density, we can 
obtain dictionary and coefficients. 

3.2 Update Image:  
In this step, we fix dictionary and coefficients. 

We can also rewrite the problem as 

2 2

2 2
min .i i ux

i

R x D v F x yα− + −∑      (11) 

This is a simple least squares problem, the 
solution can rewrite as follow 

( )T H T H
i i u u i i u

i i

R R F F x R D F yν ω ν+ = +∑ ∑    (12) 

Solving (12) directly may take a long time, as it 
requires to invert the N N×  matrix 
premultiplying x . So the solution must be 
simplified. The term T

i i
i

R R∑  is a diagonal matrix, 

their values are the same as the number of 
overlapping patches contributing at those pixel 
locations. The diagonal entries become all equal if 
we wrap around the image at boundaries. Then we 
have the term T

i i N
i

R R PI=∑ . Another simplification 

is obtained by the quantity of transforming matrix 

F. Let N NF C ×∈  denote the full Fourier encoding 

matrix normalized such thatH
NF F I= . Then we 

can get  

( )H H T H
N u u i i u

i

F PI F F F Fx F R D FF yν ω ν+ = +∑    

(13) 

and rewrite as 

' '1
( )H H T H

N u u i i u
i

I FF F F Fx F R D FF y
P

ν ω ν+ = +∑   

(14) 

The matrix H H
u uFF F F  is a diagonal matrix 

with ones and zeros entries which correspond to 

sampled and unsampled data in k-space. HuFF y  

represents the zero-filled in unsampled k-space 
data.  
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    Let 0,

T
i i

Hi
u

F R D
S S FF y

P

ω
= =

∑
, the 

solution is then 

'
0

' '

                   ( , )  

,
 ( , )  

1 1

S i j

Fx i j v SS
i j

v v

∉Ω
= 

+ ∈Ω + +

( )       (15) 

,Fx i j( )  represents the updated k-space value at 

location (i, j), 0S  represents the zero-filled k-space 

data, and Ω  represents the subset of k-space data 
that has been sampled. We can get the 
reconstruction image by IFFT. 

    The proposed algorithm uses zero-filled k-
space data to initialize inputx , and S  to fill the 
unsampled location. 

 
(a)                   (b)                      (c) 

Fig.1 The images we used in the test. (a) Circle (b) brain 
(c) shoulder. 

 
4. EXPERIMENTS 
 

In this section, the experiments are performed at 
a variety of highly under-sampled ratio. The images 
we used in the test are in vivo MR data (see Fig. 1). 
The sampling schemes we used in k-space data 
include random phase encoding in Cartesian 
sampling and pseudo random sampling (see Fig. 2). 
We use Cartesian sampling mask as its wide use for 
k-space data acquisition. However our method 
works well for non-Cartesian sampling schemes. 
The k-space data acquisition was simulated by 2D 
discrete Fourier transform of the MR images. We 
obtain more data in low frequencies, and less data 
in high frequencies. Our experiments are compared 
with SparseMRI, FCSA and PBDW (as DLMRI do 
not provide experiment code, we can't compare 
with it). 

In our experiments, we conduct k-space data both 
with noise and without noise. The parameters were 
set as patch size N=36, dictionary size 36*72, 
v=100. All the reference MR images for the 
experiments were normalized such that the 
intensities of them have range [0, 1]. All the 
experiments are implemented with Matlab 2008 

with Intel Celeron CPU E3200 at 2.40GHz and 
1.96G memory. We under-sample k-space data, and 
fill the unsampled location with zero, then use 
different algorithms to reconstruct the MR images 
from the under-sampled k-space data and compare 
their results. 

  
(a)                             (b) 

Fig.2 sample mask (a) Cartesian sample mask. (b) 
Random sample mask. 

 

  
(a)                            (b)  

  
(c)                           (d)  

  
(d)                            (e) 

Fig.3  The reconstruction images. (a) orignal image. (b) 
Reconstruction image with zero filled in unsampled pixes. 

(c) - (d) reconstruction images by SparseMRI, FCSA, 
PBDW, and BPFA. 
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(a)                               (b) 

 
(c)                              (d) 

 
(e)                                  (f) 

Fig. 4 PSNR of the different images. (a)-(b) circle image 
with Cartesian and Random sampling. (c)-(d) shoulder 

image with Cartesian and Random sampling. (e)-(f) brain 
image with Cartesian and Random sampling. 

 

  
(a)                                      (b) 

Fig. 5 the reconstruction images with noise data in k-
space. (a) SparseMRI result. (b) BPFA result. 

 
Fig. 3 shows the reconstruction images of 

noiseless k-space data with the Cartesian sampling 
at 35% sampling rate. The SparseMRI and FCSA 
algorithms are unable to remove the aliasing very 
well, and the reconstruction has significant error in 
image texture. The PBDW results can get a better 
reconstruction than SparseMRI and FCSA in image 
texture, but from the zoom in patches we can find 
that our reconstruction image can obtain a clear 
edge feature. The reconstruction of sparseMRI has 
a PSNR of 27.67 dB, FCSA with 27.29 dB, PBDW 
with 31.29 dB and BPFA with 33.11 dB. The PSNR 
and reconstruction images both show that BPFA 
performs better than other algorithms we compared. 

Fig. 4 is the PSNR of different sampling rates with 
two sampling mask. 

Fig. 5 shows the reconstruction images with 
noise data in k-space (the data is get from Lustig's 
website). We use 25% Cartesian sampling mask to 
under-sample the k-space data. The result shows 
that the proposed algorithm can effectively remove 
aliasing and preserve better detail. 

5. CONCLUSION 
 

In this paper, a novel framework is proposed to 
learn a dictionary for a specific image and 
reconstruct MR images from highly undersampled 
k-space data. Beta-Bernoulli process was used as a 
Bayesian nonparametric prior to learn a dictionary 
adaptively and determine the sparsity level. Our 
experiments show that our patch-based dictionary 
learning method can effectively remove aliasing 
and noise in reconstructing images from highly 
undersampled k-space data. 
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