
Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1876

OPTIMIZATION OF BDD BY CHAOTIC EVOLUTION
ALGORITHM AND ITS APPLICATION IN TEST OF STUCK-

OPEN FAULTS IN DIGITAL CIRCUITS

1PAN ZHONGLIANG, 2CHEN LING
1Department of Electronics, School of Physics and Telecommunications Engineering,

 South China Normal University, Guangzhou 510006, China.

E-mail: panz@scnu.edu.cn

ABSTRACT

The binary decision diagram (BDD) is an efficient graph representation of logic Boolean functions, it has
wide applications in a lot of areas, such as computer science, circuit design and test. The size of binary
decision diagram depends on the variable ordering which is used. A new approach is presented in this paper
for the variable ordering and the optimization of binary decision diagrams, the approach is based on a
chaotic evolution algorithm. The chaotic evolution algorithm proposed in this paper can combine the
features of chaotic systems and evolutionary algorithm, and can take full advantages of both the stochastic
properties and the global search ability. The application of the approach for the test of stuck-open faults in
digital circuits is investigated, a test algorithm of stuck-open faults is proposed. The experimental results
for a lot of digital circuits show that the binary decision diagrams with smaller number of nodes can be
obtained by using the approach proposed in this paper, and the test vectors of open faults in digital circuits
can be produced.

Keywords: Digital Circuits, Binary Decision Diagrams, Variable Ordering, Stuck-Open Faults, Test
Algorithm.

1. INTRODUCTION

A lot of problems in the computer science,
artificial intelligence, the design and test of digital
circuits can be expressed by a sequence of
operations on logic Boolean functions. The binary
decision diagram (BDD) is an efficient graph
representation of Boolean functions, the logic
Boolean manipulations can be performed by the
developments of fast and efficient algorithms based
on binary decision diagrams [1]. The BDD has wide
applications, for instance, the representation and
operation of set [2], circuit design and simulations
[3,4], reliability analysis [5,6], etc.

The number of nodes in a BDD depends on the
variable ordering which is used, therefore in order
to reduce the complexity of problems being tackled,
it is valuable to investigate the techniques that can
get the BDDs with lower number of nodes. Ebendt
et al discussed the lower bounds of BDD size, gave
the new lower bounds in dynamic variable
reordering [7], and investigated an approach based
on weigh for the variable ordering of BDD, which
used the goal-directed best-first search [8]. Nevo et

al discussed the dynamic BDD ordering in
distributing system over a number of computers to
improve ordering time and application time [9].
Rotaru et al used the cellular genetic algorithm for
the optimization of variable ordering for reduced
ordered binary decision diagrams [10].

Besides, for the specific applications of variable
ordering, Yuchang [11] investigated the BDD
variable ordering for reliability analysis of phased-
mission systems, and evaluated the efficiency of
variable ordering by using the fault trees having
different sizes and structures. Iwasaki et al [12]
investigated the variable ordering of the zero-
suppressed BDD, and gave its applications in data
mining.

In this paper, a new approach is presented for the
variable ordering and the optimization of binary
decision diagrams, the approach is based on chaotic
evolution algorithm. The chaotic evolution
algorithm proposed in this paper can combine the
features of chaotic systems and evolutionary
algorithm, and can take full advantages of both the
stochastic properties and the global search ability.
Besides, the application of the approach for the test

http://www.jatit.org/
mailto:panz@scnu.edu.cn

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1877

of stuck-open faults in digital circuits is
investigated, a test algorithm of stuck-open faults is
proposed.

2. BDD AND VARIABLE ORDERING

The logic Boolean functions are the fundaments
of digital circuits. Many problems in the design and
test of digital circuits can be expressed by a
sequence of operations on logic Boolean functions.
The binary decision diagram(BDD) is a graph
representation of logic Boolean functions, one main
feature of BDD is that a lot of practical problems
can be represented by the BDD with feasible sizes,
this feature allows the development of fast and
efficient algorithms to carry out logic Boolean
manipulations. In the following, suppose all
Boolean functions are expressed over the variables
x1, x2, ⋅⋅⋅, xn.

The BDD is a directed acyclic graph that
represents a Boolean function, it has two types of
nodes: terminal nodes and nonterminal nodes. The
terminal nodes are also called leaf nodes. Each leaf
node is labeled 0 or 1 which corresponds to the
value of the Boolean function. Each nonterminal
node is labeled by one of the variables x1, x2, ⋅⋅⋅,
xn, and has exactly two outgoing edges which are
called a 0-edge and a 1-edge, respectively. The 0-
edge corresponds to the case where the variable is
assigned 0, the 1-edge corresponds to the case
where the variable is assigned 1. Besides, there is a
nonterminal node that is the unique source node,
which is called the root node. Each path from the
root node to a leaf node corresponds to a truth table
entry where the edges in the path correspond to the
value assignments of the Boolean variables.

For example, the BDD is shown in Fig.1 for the
logic function x x xxx 32132 ⋅⋅+⋅=g . In Fig.1, the 0-
edge is shown by a dashed line, the 1-edge is shown
by a solid line.

The reduced ordered binary decision diagram
(ROBDD) is defined as follows: The ROBDD is a
BDD in which the input variables are ordered such
that each variable in every path appears only once
and appears in the same order. Each input variable
is associated with an integer index which denotes
its position in the ordering. One of the important
properties of a ROBDD is that it is a canonical
representation, i.e., if two logic Boolean functions
are equivalent, then their ROBDDs are isomorphic.

Fig.1 The BDD Of Function G.

x1

x2 x2

x3 x3

0 1

x1

x2

x3

x5

x4

x6

(a)

0 1

x1

x3

x5

x4

x2

x6

x3

x4

x2 x2

x2

x5 x5 x5

(b)

0 1

Fig.2 The BDD Of Function

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1878

In the Fig.1, the variable ordering is x1<x2<x3,
where the symbol < represents the ordering. For a
given logic function, the number of nodes in its
BDD depends on the variable ordering which is
used. For example, let h=x1x2+x3x4+x5x6. The
BDD of h is given in Fig.2(a) if the variable
ordering is x1<x2<x3<x4<x5<x6. The BDD of h is
shown in Fig.2(b) if the variable ordering is
x1<x3<x5<x2<x4 <x6. The number of nodes in the
Fig.2(a) and Fig.2(b) is 8 and 16, respectively.

Therefore, the choice of variable ordering largely
influences the number of nodes in a BDD. In the
following Section 3, a new approach is presented
for the optimization of BDD, the approach can
obtain the BDD with smaller number of nodes.

3. OPTIMIZATION OF BDD BY CHAOTIC
EVOLUTION ALGORITHM

In this Section 3, the optimization of BDD by

using a chaotic evolution algorithm is presented.
The chaotic evolution algorithm combines the
features of chaotic systems [13] and evolutionary
algorithm [14,15], and can take full advantages of
both the stochastic properties and the global search
ability.

There are following three aspects for the
implementations of the optimization of BDD by
chaotic evolution algorithm: (a) The representations
of individuals; (b) The definition of fitness
function; (c) The implementation steps of chaotic
evolution algorithm.

For the representation of an individual, an integer
string with length n is used as the coding of an
individual, where an individual is corresponding to
a variable ordering of a BDD, the n denotes the
number of variables in the BDD being considered.
For example, for the BDD of a circuit, the integer
string (6 7 1 3 5 2 4) is the representation of an
individual, which is corresponding to the BDD
under the variable ordering x6<x7<x1<x3<x5<x2<
x4.

For the definition of fitness function, the fitness
g(Z) of an individual Z is defined by the number of
nodes in the BDD under the variable ordering
corresponding to the individual Z.

In the following, the implementation steps of the
optimization of BDD by chaotic evolution
algorithm are given in detail.

The following chaotic system is used, which is
the logistic map being defined by the following
equation

 yk+1= 4⋅yk(1−yk) k = 0,1,2, ⋅⋅⋅ ⋅⋅⋅. (1)

Where the yk∈[0,1], the yk is variable y at the k-
th iteration. The chaotic map (1) has the special
features such as the stochastic property, sensitivity
dependences on initial conditions, etc.

The procedure of the optimization of BDD by
chaotic evolution algorithm is given as follows. Let
P(k) denote a population consisting of N
individuals.

Algorithm 1
Step 1. Set k=0;

Step 2. Generate the initial population P(0)
which consists of N individuals;

Step 3. Randomly select M individuals from the
population P(0), perform the local searches for the
M individuals by using the Algorithm 2, and
produce new M individuals. Set k:=k+1, and use the
new M individuals to replace the M individuals
selected from the population P(0). Thus the new
population P(k) is produced.

 Step 4. Generate a lot of new individuals by
performing the selection, crossover and mutation
operations for the population P(k). Let the ϕ1 is the
set of the new individuals.

 Step 5. Evaluate each new individual in the
ϕ1, i.e., calculate the fitness of each new individual.

Step 6. Constitute the population ψ1 that consists
of the M individuals with higher fitness in the union
of the P(k) and the ϕ1.

Step 7. Randomly select M individuals from the
population ψ1, perform the local searches for the M
individuals by using the Algorithm 2, and produce
M new individuals. Let the ϕ2 is the set of the M
new individuals.

Step 8. Evaluate each new individual in the ϕ2.

Step 9. Produce the population ψ2 being made up
of the M individuals with higher fitness in the union
of ψ1 and the ϕ2. The new population P(k+1) is the
population ψ2.

Step 10. If the stopping condition is satisfied,
then the procedure is terminated, otherwise, set
k:=k+1, go to Step 4.

For the Step 4 in Algorithm 1, the roulette wheel
selection mode and two-point crossovers are used
for the implementations of the selection and
crossover operations. In Algorithm 1, the integer
string is the representation of an individual, which

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1879

corresponds to a variable ordering of a BDD.
Therefore, the methods of the crossover and
mutation operations are as follows. For the
crossover operation, produce the offspring by
choosing the part between the cut positions from
one parent and preserving the position and order of
as many variables as possible from the second
parent. For example, let two parent individuals be
(4 1 3 2 6 5 7) and (3 2 6 1 7 4 5). If the cut
positions are the third and fourth, then the new
offspring individuals are (4 2 6 1 3 5 7) and (6 1 3 2
7 4 5). For the mutation operation, the two
component positions of a parent individual are
selected randomly, and the values of these two
positions are exchanged. For example, for the
individual (3 1 4 5 7 6 2), an offspring being
produced is (3 7 4 5 1 6 2).

For a given individual X, a new individual X′ is
produced by using the following Algorithm 2.

Algorithm 2
Step 1. Select an initial value z0 for the chaotic

system defined by equation (1).

Step 2. Choose a component Xs of individual X
by the following mode. Produce the values of
chaotic variables y1, y2, ⋅⋅⋅, yn by the equation (1).
Define the values of variables z1, z2, ⋅⋅⋅, zn as
follows: the value of zi is 1 if the value of yi is
greater than 0.5, otherwise the value of zi is 0. Let
the s be an integer, the s=1+(z1+ z2 + ⋅⋅⋅ +zn) mod
n. Therefore, the s-th component Xs of the
individual X is chosen.

Step 3. Randomly generate an integer j, where
1≤j≤n.

Step 4. Produce a new individual X′ as follows:
swap the s-th component Xs and the j-th component
Xj of the individual X.

In the Algorithm 2, the integer string is the
representation of an individual, for instance, X=(6 7
1 3 5 2 4). The new individual X′ is also an integer
string, for instance, X′=(6 5 1 3 7 2 4). Therefore,
the Algorithm 2 can generate the new individuals
by swapping the components in parent individuals.

The above approach in this Section 3 for the
optimization of BDD by using chaotic evolution
algorithm has been implemented in C++, the
following Section 5 in this paper will give the
experimental results.

4. TEST OF STUCK-OPEN FAULTS BY BDD

As the feature size goes smaller for the circuit

design and manufacturing, it is very necessary to
perform the circuit test that can detect the defects or
faults in the circuits. The circuit test can improve
the quality of circuits. So far, a lot of circuit test
methods have been developed and successfully
applied to various types of faults like stuck-at fault,
bridging fault, etc.

The open faults are breaks or scaling in the
interconnects such as wires, contacts, and vias. For
the circuit design with increasing the number of
vias and contacts, the open faults are becoming
more and more frequently [16]. There are two types
of open faults: a completely disconnected open, and
a resistive open. The disconnected open fault is also
called stuck-open fault, which is used in this paper.
To detect a stuck-open fault, a sequence of two
input vectors needs to be applied to the primary
inputs of the circuit under test.

Let the v=(v1, v2) be a test vector of a stuck-open
fault, where the v1 and v2 are the input vectors of
circuit. In the following, a test algorithm of stuck-
open faults is proposed, the algorithm is based on
BDD. The test algorithm consists of seven steps,
which is given in Algorithm 3. Suppose the signal
line L has a stuck-open fault.

Algorithm 3

Step 1. Choose a variable ordering for the circuit
under test.

Step 2. The BDD corresponding to the normal
circuit is constructed, the BDD is called as BDDN,
where the normal circuit is the circuit that there are
not faults in the circuit.

Step 3. The BDD is constructed for the circuit
that the signal line L has a stuck value 0, the BDD
is called as BDD0.

Step 4. Another BDD is constructed for the
circuit that the signal line L has a stuck value 1, the
BDD is called as BDD1.

Step 5. Construct a BDD by the XOR operation
of the BDD0 and BDDN. For the BDD, each input
assignment that leads to the leaf node labeled 1 is
the first vector v1 of the test vector v.

Step 6. Construct a BDD by the XOR operation
of the BDD1 and BDDN. For the BDD, each input
assignment that leads to the leaf node labeled 1 is
the second vector v2 of the test vector v.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1880

Step 7. If the v1 and v2 can be obtained by the
Step 5 and Step 6, then the v=(v1, v2) is a test
vector of the stuck-open fault on signal line L. If
there is not the v1 or v2 in the Step 5 or Step 6, then
the stuck-open fault can not be detected, there are
not the test vectors for the fault.

We take the open fault of signal line e4 in the
C17 circuit shown in Fig.3 as an example to
demonstrate the procedure of the Algorithm 3.

The BDDN of C17 circuit is shown in Fig.4(a).
The BDD0 only has a leaf node labeled 1. The
BDD by performing XOR operation of BDDN and
BDD0 is shown in Fig.4(b). From the Fig.4(b), the
first vector v1 can be obtained, for example, one of
this vectors is v1=(x1 x2 x3 x4 x5)=(0 1 0 1 0).
Similarly, the BDD1 is constructed for the open
fault of signal line e4, the second vector v2 can be
obtained, one of this vectors is v2=(x1 x2 x3 x4 x5)=
(0 0 0 1 1). Thus, a test vector v is as follows:
v=(v1, v2)=((0 1 0 1 0), (0 0 0 1 1)).

For the C17 circuit, when apply the test vector v1

and v2 to the normal circuit, the primary outputs are
y1=0, y2=0, and y1=0, y2=1, respectively, where
the value of y2 changes from 0 to 1 when applying
v1 and v2 sequentially. If there is an open fault on
the signal line e4, when apply the test vector v1 and
v2 to the faulty circuit, the value of primary output

y1 is 0, i.e., y1=0, but the value of y2 does not
change. Therefore, the open fault is detected.

5. EXPERIMENTAL RESULTS

The approach in this paper for the optimization

of BDD by using chaotic evolution algorithm has
been implemented in C++ language, and the
approach has been applied to generate the test
vectors of open faults in digital circuits. A lot of
experiments have been carried out on a personal
computer with 3.0GHz and 512MB memory under
Windows operation system. The ISCAS’85
benchmark circuits are used in these experiments.

The BDD corresponding to a digital circuit is
constructed by the following two steps: (a) First of
all, a digital circuit consists of many circuit blocks,
where a circuit block realizes a specific logic
function. The logic function of whole circuit is
expressed by a sequence of operations on the logic
Boolean functions realized by these circuit blocks.
(b) Secondly, the BDD corresponding to whole
circuit is constructed by a following forward
process: start from the primary inputs of the circuit,
each gate output is expressed in terms of its inputs,
then these BDDs corresponding to the gate outputs
are constructed. Repeat this process, until the BDDs
corresponding to the primary outputs of circuit are
constructed.

For the optimization of BDD, the parameters
used in the Algorithm 1 are: the maximal number of
evolution generations is 500, the population size N
is 80. In the Step 4 of Algorithm 1, the crossover
rate is 0.87; mutation rate is 0.001, the roulette
wheel selection mode and two-point crossover are
used.

Besides, we have performed another experiments
for the optimization of BDD by using conventional
genetic algorithms(CGA) in order to compare the
approach in this paper with CGA. The parameters
used in conventional genetic algorithm are: the
maximal number of evolution generations is 500,
population size is 80, crossover rate is 0.85;
mutation rate is 0.0001, the roulette wheel selection
scheme and two-point crossover are used.

The stopping conditions of both the Algorithm 1
and CGA are given as follows: The maximal
number of evolution generations is reached, or the
maximal fitness and average fitness do not change
in successive three generation populations P(k),
P(k+1) and P(k+2), where the k is an integer.

Every algorithm (i.e., Algorithm 1 and CGA) is
carried out 20 times repeatedly for a benchmark

x5

Fig.3 C17 Circuit.

x1
x2
x3

x4

e1

e2
e3

e4

y1

y2

x2

x4
x3

0 1

x5

x2

x4
x3

1 0

x5

Fig.4 Two Bdds.
(a) (b)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1881

circuit. The experimental results are shown in the
Table 1.

Table 1 The Results For ISCAS’85 Benchmark Circuits.

Circuit Inputs Outputs Lines CGA Algorithm 1

C432 36 7 432 2521 1562
C499 41 32 499 43072 28306
C1355 41 32 1355 38014 23115
C1908 33 25 1980 7683 6732
C2670 233 140 2670 4729 2947
C5135 233 140 2670 3841 2423

In the Table 1, the column “Circuit” shows the
names of benchmark circuits. The columns “Inputs”
and “Outputs” show the numbers of primary inputs
and primary outputs in the circuits, respectively.
The column “Lines” gives the total number of
signal lines in a circuit. The columns “Algorithm 1”
and “CGA” show the numbers of nodes in the
BDDs obtained by the Algorithm 1 in this paper
and by conventional genetic algorithm,
respectively.

For the test vector of open faults, we randomly
choose 50 open faults for every benchmark circuit,
and use the Algorithm 3 in this paper to produce the
test vectors. The variable orderings obtained by the
Algorithm 1 is used to construct the BDDs of these
circuits. The experimental results show that if there
are test vectors for an open fault, then the test
vectors can be produced by the Algorithm 3. The
time of producing all test vectors of an open fault is
less than one minute for all these benchmark
circuits.

Summarize these experimental results, it is
shown that the approach proposed in this paper can
obtain the BDD with smaller number of nodes than
conventional genetic algorithms. The test vectors of
open faults can be produced if there are test vectors
for the open faults.

6. CONCLUSIONS

The BDD can be used to represent the logic

functions of digital circuits. The number of nodes in
a BDD depends on the orderings of input variables.
In this paper, a new approach based on chaotic
evolution algorithm is presented for the variable
ordering and the optimization of BDD, and the
application of the approach for the test of stuck-
open faults in digital circuits is given. One
advantage of the approach is that all test vectors of
an open fault can be obtained. Some work needs to

be done in the future such as investigating the
features of the optimal variable ordering.

ACKNOWLEDGEMENTS

This work were supported by National Natural
Science Foundation of China (No.61072028), the
Project of Department of Education of Guangdong
Province (No.2012KJCX 0040), Guangdong
Province & Chinese Ministry of Education
Cooperation Project of Industry, Education and
Academy (No.2009B090300339).

REFRENCES:

[1] O.Keren, I.Levin, R.Stankovic. “Determining

the number of paths in decision diagrams by
using autocorrelation coefficients”. IEEE
Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol.30, no.1,
2011, pp.31-44.

[2] O.Lhotak, S.Curial, J.N.Amaral. “An optimal
encoding to represent a single set in an
ROBDD”. IEEE Trans. on Computers, vol.59,
no.4, 2010, pp.574-575.

[3] J.A.Carrasco, V.Sune. “An ROBDD-based
combinatorial method for the evaluation of
yield of defect-tolerant systems-on-chip”. IEEE
Trans. on Very Large Scale Integration (VLSI)
Systems, vol.17, no.2, 2009, pp.207-220.

[4] M.A.Kochte, S.Kundu, K.Miyase, W.Xiaoqing,
H.Wunderlich. “Efficient BDD-based fault
simulation in presence of unknown values”.
Proceedings of Asian Test Symposium, New
Delhi (India), November 20-23, 2011, pp.383-
388.

[5] A.P.Ulmeanu. “Analytical method to determine
uncertainty propagation in fault trees by means
of binary decision diagrams”. IEEE Trans. on
Reliability, vol.61, no.1, 2012, pp.84-94.

[6] X.Liudong, O.Tannous, J.B.Dugan.
“Reliability analysis of nonrepairable cold-
standby systems using sequential binary
decision diagrams”. IEEE Trans. on Systems,
Man and Cybernetics, Part A: Systems and
Humans, vol.42, no.3, 2012, pp.715-726.

[7] R.Ebendt, R.Drechsler. “Effect of improved
lower bounds in dynamic BDD reordering”.
IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol.25, no.5,
2006, pp.902-909.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1882

[8] R.Ebendt, R.Drechsler. “Approximate BDD
minimization by weighted A*”. IEEE
International Symposium on Circuits and
Systems, Taipei (Taiwan), May 24-27, 2009,
pp.2974-2977.

[9] Z.Nevo, M.Farkash. “Distributed
dynamic BDD reordering”. Proceedings of
Design Automation Conference, San Francisco
(USA), July 24-28, 2006, pp.223-228.

[10] C.Rotaru, O.Brudaru. “Multi-grid cellular
genetic algorithm for optimizing variable
ordering of ROBDDs”. Proceedings of IEEE
Congress on Evolutionary Computation,
Brisbane (Australia), June 10-15, 2012, pp.1-8.

[11] M.Yuchang. “Variable ordering to
improve BDD analysis of phased-mission
systems with multimode failures”. IEEE Trans.
on Reliability, vol.58, no.1, 2009, pp.53-57.

[12] H.Iwasaki, S.I.Minato, T.Zeugmann. “A
method of variable ordering for zero-
suppressed binary decision diagrams in data
mining applications”. Proceedings of IEEE
International Workshop on Databases for Next
Generation Researchers, Istanbul (Turkey),
April 15-16, 2007, pp.85-90.

[13] F.Pareschi, G.Setti, R.Rovatti. “Implement-
ation and testing of high-speed CMOS true
random number generators based on chaotic
systems”. IEEE Trans. on Circuits and Systems
I: Regular Papers, vol.57, no.12, 2010,
pp.3124-3137.

[14] C.K.Chow, S.Y.Yuen.
“An evolutionary algorithm that makes
decision based on the entire previous search
history”. IEEE Trans. on Evolutionary
Computation, vol.15, no.6, 2011, pp.741-769.

[15] A.Essalmi, H.Mahmoudi. “Neuro-genetic
input-output linearization control of permanent
magnet synchronous motor”. Journal of
Theoretical and Applied Information
Technology, vol.37, no.1, 2012, pp.105-111.

[16] V.Champac, J.Hernandez, S.Barcelo,R.Gomez,
C.Hawkins, J.Segura. “Testing of stuck-open
faults in nanometer technologies”. IEEE
Design & Test of Computers, vol.29, no.4,
2012, pp.80-91.

http://www.jatit.org/

	1PAN ZHONGLIANG, 2CHEN LING

