
Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1822

HADOOP MAPREDUCE IN CLOUD ENVIRONMENTS FOR
SCIENTIFIC DATA PROCESSING

1KONG XIANGSHENG

1Department of Computer & Information, Xin Xiang University, Xin Xiang, China

E-mail: fallsoft@163.com

ABSTRACT

For the problem of massive scientific data storage on the network, and based on the Hadoop and virtual
technologies, the massive scientific data storage model based on cloud computing is proposed. The massive
scientific data is applied to the Hadoop platform and processed by MapReduce, the key algorithm of cloud
computing, and finally the data is stored in the virtual pool. This paper introduces a large scale scientific
data processing method based on cloud computing, builds a dynamic, scalable, cost-effective, easy to use
and high performance computing platform on a large of centralized or distributed inexpensive computer
cluster, and creates a cloud computing based framework for large scale data processing model. Based on
Hadoop MapReduce of cloud computing, we propose the detailed procedure of scientific data processing
algorithm which can improve the overall performance under the shared environment while retaining
compatibility with the native Hadoop MapReduce in this paper.

Keywords: MapReduce, scientific data flow processing, Cloud Computing; Hadoop; Distributed File
System

1. INTRODUCTION

Today, scientific workflow produces huge
amounts of scientific data which are stored in large
data warehouses in digital form [1]. Scientific
applications are usually complex and data intensive.
In many fields, such as astronomy, high-energy
physics and bioinformatics, scientists need to
analyse terabytes of data either from existing data
resources or collected from physical devices. The
scientific analyses are usually computation
intensive, hence taking a long time for execution.

In addition to enabling the creation and analysis
of scientific data, the digital form facilitates much
greater data sharing and reusing by others, which
has led to the spread of data-driven science
practices within scientific communities. Along with
these new opportunities for sharing and using
scientific data come new challenges for scientific
data stewardship. On the one hand, scientific data
centers, libraries, government agencies, and other
groups have moved rapidly to online digital data
access and services, drastically reducing usage of
traditional offline access methods. On the other
hand, practices for storage and preservation of these
digital data resources are far from the maturity and
reliability achieved for traditional non-digital media
[2]. On the industry front, Google Scholar and its
competitors(e.g. Microsoft, CNKI, Baidu Library)

have constructed large scale scientific data centers
to provide stable web search services with high
quality of response time and availability.

The high demanding requirements on scientific
data centers are reflected by the increasing
popularity of cloud computing [3,4]. Cloud
computing provides high performance and massive
storage required for scientific applications in the
same way, but with a lower infrastructure
construction cost among many other features,
because cloud computing systems are composed of
data centers which can be clusters of commodity
hardware datasets.

In this paper, we adopt Hadoop 2.0 as a principal
component in our architecture to design the
architecture of scientific data processing in the
cloud. The rest of the paper is structured as follows.
Section 2 discusses the related work. Section 3
introduces the proposed architecture and describes
the implemented environment. Section 4 outlines
the performances of our system through two
experiments. Section 5 concludes the paper and
describes the future research directions.

2. RELATED WORK

Both Cloud Computing and Hadoop MapReduce
are two technologies that have gained a lot of
popularity mainly due to its ease-of-use and its

http://www.jatit.org/
mailto:fallsoft@163.com

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1823

ability to scale up on demand. As a result,
MapReduce scientific data processing is a popular
application in the cloud [5,6].

2.1 The MapReduce
MapReduce is considered as a high productivity

alternative to traditional parallel programming
paradigms for enterprise computing and scientific
computing by removing the burden from
programmer, such as tasks scheduling, fault
tolerance, messaging, and data processing [7]. It
was developed first by Google in 2004 as a parallel
computing framework to perform distributed
computing on a large number of commodity
computers. MapReduce is a programming model
for data processing. This programming model
became popular because it is simple yet expressive
enough to perform a large variety of computing
tasks, from data mining to scientific computations.

With the MapReduce programming model,
programmers only need to specify two functions:
Map and Reduce [8]. MapReduce functions are as
follows.

Map:(in_key,in_value)→{keyj, valuej | j=1…k}

Reduce:(key, [value1, … , valuem]) → (key,
final_value)

The input parameters of Map are in_key and
in_value. The output of Map is a set of <key,value>.
The input parameters of Reduce is (key, [value1, ...,
valuem]). After receiving the parameters, Reduce is
run to merge the data which were get from Map and
output (key, final_value).

The map function takes an input pair and
produces a set of intermediate key/value pairs. It is
an initial transformation step, in which individual
input records can be processed in parallel [9]. The
Reduce function adds up all the values and
produces a count for a particular key. It is an
aggregation or summarization step, in which all
associated records must be processed together by a
single entity. It merges together these values to
form a possibly smaller set of values. Typically just
zero or one output value is produced per Reduce
invocation.

There are five main roles: the engine, the master,
the scheduling algorithm, mappers, and reducers
[10]. Fig.1 shows a high level view of our
architecture and how it processes the data.

Block
Block
…

Block

MaperReduce
Engine

Master

Scheduling
Algorithm

Mapper Mapper Mapper Mapper

DFS IO Input

Map Task

Reduce Task

query_info

Reducer
Reducer

…
Reducer

Output Result

Fig.1. Mapreduce Working Flow

2.2 Hadoop 2.0

Hadoop which is an open source project and
operates under the auspices of the Apache Software
Foundation today was in production use at
established and emerging web companies in 2006.
Hadoop stores the intermediate results of the
computations in local disks, where the computation
tasks are run, and then inform the appropriate
workers to retrieve (pull) them for further
processing. It hides the details of parallel
processing and allows developers to write parallel
processing programs that focus on their
computation problem, rather than parallelization
issues.

Hadoop relies on its own distributed file system
called HDFS (Hadoop Distributed File System): a
flat-structure distributed file system that store large
amount of data with high throughput access to data
on clusters. HDFS is a mimic of GFS (Google File
System). Like GFS, HDFS has a master/slave
architecture, and multiple replicas of data are stored
on multiple compute nodes to provide reliable and
rapid computations [11,12].

Hadoop2.0 which is the latest version has two
major functionalities of the global
ResourceManager (RM) and per-application
ApplicationMaster (AM). RM has two main
components: Scheduler and ApplicationsManager.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1824

The Scheduler is responsible for allocating
resources to the various running applications
subject to familiar constraints of capacities, queues
etc. The ApplicationsManager is responsible for
accepting job-submissions, negotiating the first
container for executing the application specific
ApplicationMaster and provides the service for
restarting the ApplicationMaster container on
failure.

The NodeManager is the per-machine framework
agent who is responsible for launching the
applications' containers, monitoring their resource
usage (cpu, memory, disk, network) and reporting
the same to the Scheduler. The per-application

ApplicationMaster has the responsibility of
negotiating appropriate resource containers from
the Scheduler, tracking their status and monitoring
for progress.

3. SCIENTIFIC DATA PROCESSING
USING HADOOP MAPREDUCE IN CLOUD
ENVIRONMENTS

As show in Fig.2, our system puts all essential
functionality inside a cloud, while leaving only a
simple Client at the experiment side for user
interaction. In the cloud, we use Hadoop HDFS to
store the scientific data.

Fig.2. The Hadoop Architecture Based On Cloud Computing

3.1 Scientific Data Processor Using Hadoop
MapReduce in Cloud Environments

Scientific data processor using Hadoop
MapReduce in Cloud Environments consists of a
front-end node called a JobTracker which is a
simple master server and worker nodes called
TaskTrackers which are slave servers. JobTracker
is an interactive interface between users and the
framework. When users submit the task to the
JobTracker, JobTracker puts this task into the task
queue and executes tasks according to the first
come first served principle. JobTracker maintains
the Map and Reduce tasks assigned to
TaskTrackers [13]. TaskTracker executes
instructions that get from JobTracker, and
simultaneously deals with the exchange of data
between Map and Reduce. Each node will
periodically report the completed work and updated
status to TaskTracker. If a TaskTracker doesn't

communicate with JobTracker for a long time (it
should be specified), JobTracker records this node
as dead and assigns this node's data to other nodes.

The architecture is inspired by a batch of
processing system, such as MapReduce. [14] and
chosen a simple query semantics using map() and
reduce() functions over the more widely used SQL-
like approach. The resulting architecture allows for
the seamless addition and removal of resources in a
cloud environment. The map function takes a (key,
value) pair and produces a list of pairs in a different
domain. These tuples are then grouped under the
same key. The resulting tuples of (key, [value])
pairs are processed by the reduce function that
produces output values in a (possibly) different
domain.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1825

3.2 Scientific Data Processing Algorithm on
MapReduce

The messages consist of a value from an input
array and its index in the input array. The master
starts with sending such a message to each of the
slaves. Then the master waits for any slave to return
a result. As soon as the master receives a result, it
will insert the result into the output array and
provide further work to the slave if any is available.
As soon as all work has been submitted to the
slaves, the master will just wait for the slaves to
return their last result. The master code would thus
look like listed below.

master (){
 foreach slave {
 index , value = get_next_index_value_pair ();
 send ((index , value), slave)
 }
 while (work_available)
 {
 result , slave =
receive_message_from_any_slave ();
 index , value = get_next_index_value_pair ();
 send ((index , value), slave);
 output [result . index] = result . value ;
 }
 foreach slave {
 result , slave =
receive_message_from_any_slave ();
 halt (slave);
 output [result . index] = result . value ;
 }
}

The slave code would thus look like listed
below.

slave (){
 until (halted){
 work = receive_message_from_master ();
 send ((work . index , work . value * work .
value), master);
 }
}

4. RESULTS

We evaluate how sequence alignment algorithms
perform in a cloud by executing master and slave
algorithm in a variety of configurations.
Preliminary testing was done in a cluster of 4 nodes
with single core processor, of which 3 nodes were
used as the tasktrackers where the actual
computations in Hadoop take place. The nodes
contained 90GB of hard disk space and 2GB of
physical memory and 6GB of virtual memory.

Apache Hadoop2.0 was setup with 2 map tasks per
node.

The web user interface of HADOOP framework
contains the data related to the job that ran in the
framework. The raw data of time consumed can be
visualized as the graph shown in Fig.3. Fig.3
shows the pattern of execution of the Mapper job of
the Reduce job, which contains the Reduce job,
itself and the filter alignment job. TheReduce job
aligns the sequences and the filter alignment job
filters the aligned sequences according to the output
requirement.

Fig.3 Timeline Plot For The Mapper And Reduce Job

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our ongoing work
towards creating a Hadoop MapReduce architecture
that allows users to take advantage of resources
from scientific clouds. The architecture takes care
of provisioning Hadoop clusters and submitting
jobs, allowing users to focus on writing their
MapReduce application rather than managing cloud
scientific resources.

In future work, we envise to deploying more
frameworks, such as MPI, Twister… and so on,
over Hadoop 2.0 platform, and examining their
efficiency through the implementation of complex
algorithms using greater numbers of nodes. Also,
we plan to extend the proposed architecture to use
Public Cloud resources from providers like AWS or
Google App Engine.

REFRENCES:

[1] Xiao Liu, "Key Research Issues in Scientific

Workflow Temporal Verification," THE
FIRST CS3 PHD SYMPOSIUM 2010, pp. 49-
51, 2010.

[2] Robert R. Downs and Robert S. Chen, "Self-
Assessment of a Long-Term Archive for
Interdisciplinary Scientific Data as a
Trustworthy Digital Repository," JoDI: Journal
of Digital Information, Vol. 11, 2010.

[3] Chao Jin and Rajkumar Buyya, "MapReduce
Programming Model for .NET-based
Distributed Computing," Technical report, The

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1826

University of Melbourne, Australia, October
2008.

[4] Sangmi Lee Pallickara, Shrideep Pallickara and
Marlon Pierce, "Scientific Data Management in
the Cloud: A Survey of Technologies,
Approaches and Challenges," Handbook of
Cloud Computing Springer Science+Business
Media, 2010, pp. 517-527.

[5] R. Campbell, I. Gupta, M. Heath, S. Ko, M.
Kozuch, M. Kunze, T. Kwan, K. Lai, H. Lee
and M. Lyons, "Open CirrusTM Cloud
Computing Testbed: Federated Data Centers
for Open Source Systems and Services
Research," In USENIX Workshop on Hot
Topics in Cloud Computing, 2009, pp. 1-1.

[6] H. Yang, A. Dasdan, R. Hsiao, and S. Parker,
"Map-Reduce-Merge: Simplified Relational
Data Processing on Large Clusters," In
Proceedings of the ACM SIGMOD
International Conference on Management of
Data, 2007, pp. 1029–1040.

[7] Bill Howe, Peter Lawson, Renee Bellinger,
Erik W. Anderson, Emanuele Santos, Juliana
Freire, Carlos Eduardo Scheidegger, Antonio
Baptista, and Claudio T. Silva, "End-to-End
eScience: Integrating Workflow, Query,
Visualization, and Provenance at an Ocean
Observatory," In eScience '08: Proceedings of
the 4th IEEE International Conference on
eScience, 2008, pp. 127–134.

[8] Zhifeng Xiao and Yang Xiao, "Accountable
MapReduce in Cloud Computing," The First
International Workshop on Security in
Computers, Networking and Communications,
2011, pp.1099-1104.

[9] Jaliya Ekanayake and Shrideep Pallickara,
"MapReduce for Data Intensive Scientific
Analyses," Fourth IEEE International
Conference on eScience , 2008, pp. 277-284.

[10] Cheng T. Chu, Sang K. Kim, Yi A. Lin,
Yuanyuan Yu, Gary R. Bradski, Andrew Y.
Ng, and Kunle Olukotun, "Map-Reduce for
machine learning on multicore," In Advances
in Neural Information Processing Systems 19
(NIPS 2006), 2006, pp. 281–288.

[11] Sangwon Seo, Ingook Jang1, Kyungchang
Woo, Inkyo Kim, Jin-Soo Kim,and Seungryoul
Maeng, "HPMR: Prefetching and pre-shuffling
in shared MapReduce computation
environment," In Proceedings of the 2009
IEEE Cluster, 2009, pp.1−8.

[12] B.Thirumala Rao and L.S.S.Reddy, "28 Survey
on Improved Scheduling in Hadoop
MapReduce in Cloud Environments,"

International Journal of Computer
Applications, vol.34, 2011, pp. 28-32.

[13] DING Jian-li and YANG Bo, "A New Model
of Search Engine based on Cloud Computing,"
International Journal of Digital Content
Technology and its Applications. vol. 5, 2011,
pp.236-243.

[14] W. Kleiminger, E. Kalyvianaki, and P.
Pietzuch, "Balancing load in stream processing
with the cloud," In Proceedings of the 6th
International Workshop on Self Managing
Database Systems, 2011, pp. 16-21.

http://www.jatit.org/

	1KONG XIANGSHENG

