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ABSTRACT 
 

For the problem of massive scientific data storage on the network, and based on the Hadoop and virtual 
technologies, the massive scientific data storage model based on cloud computing is proposed. The massive 
scientific data is applied to  the Hadoop platform and processed by MapReduce, the key algorithm of cloud 
computing, and finally the data is stored in the virtual pool. This paper introduces a large scale scientific 
data processing method based on cloud computing, builds a dynamic, scalable, cost-effective, easy to use 
and high performance computing platform on a large of centralized or distributed inexpensive computer 
cluster, and creates a cloud computing  based framework for large scale data processing model. Based on 
Hadoop MapReduce of cloud computing, we propose the detailed procedure of scientific data processing 
algorithm which can improve the overall performance under the shared environment while retaining 
compatibility with the native Hadoop MapReduce in this paper. 

Keywords:  MapReduce, scientific data flow processing, Cloud Computing; Hadoop; Distributed File 
System  

 
1. INTRODUCTION  
 

Today, scientific workflow produces huge 
amounts of scientific data which are stored in large 
data warehouses in digital form [1]. Scientific 
applications are usually complex and data intensive. 
In many fields, such as astronomy, high-energy 
physics and bioinformatics, scientists need to 
analyse terabytes of data either from existing data 
resources or collected from physical devices. The 
scientific analyses are usually computation 
intensive, hence taking a long time for execution. 

In addition to enabling the creation and analysis 
of scientific data, the digital form facilitates much 
greater data sharing and reusing by others, which 
has led to the spread of data-driven science 
practices within scientific communities. Along with 
these new opportunities for sharing and using 
scientific data come new challenges for scientific 
data stewardship. On the one hand, scientific data 
centers, libraries, government agencies, and other 
groups have moved rapidly to online digital data 
access and services, drastically reducing usage of 
traditional offline access methods. On the other 
hand, practices for storage and preservation of these 
digital data resources are far from the maturity and 
reliability achieved for traditional non-digital media 
[2]. On the industry front, Google Scholar and its 
competitors(e.g. Microsoft, CNKI, Baidu Library) 

have constructed large scale scientific data centers 
to provide stable web search services with high 
quality of response time and availability. 

The high demanding requirements on scientific 
data centers are reflected by the increasing 
popularity of cloud computing [3,4]. Cloud 
computing provides high performance and massive 
storage required for scientific applications in the 
same way, but with a lower infrastructure 
construction cost among many other features, 
because cloud computing systems are composed of 
data centers which can be clusters of commodity 
hardware datasets.  

In this paper, we adopt Hadoop 2.0 as a principal 
component in our architecture to design the 
architecture of scientific data processing in the 
cloud. The rest of the paper is structured as follows. 
Section 2 discusses the related work. Section 3 
introduces the proposed architecture and describes 
the implemented environment. Section 4 outlines 
the performances of our system through two 
experiments. Section 5 concludes the paper and 
describes the future research directions. 

2. RELATED WORK  
 

Both Cloud Computing and Hadoop MapReduce 
are two technologies that have gained a lot of 
popularity mainly due to its ease-of-use and its 
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ability to scale up on demand.  As a result, 
MapReduce scientific data processing is a popular 
application in the cloud [5,6]. 

2.1 The MapReduce 
MapReduce is considered as a high productivity 

alternative to traditional parallel programming 
paradigms for enterprise computing and scientific 
computing by removing the burden from 
programmer, such as tasks scheduling, fault 
tolerance, messaging, and data processing [7]. It 
was developed first by Google in 2004 as a parallel 
computing framework to perform distributed 
computing on a large number of commodity 
computers. MapReduce is a programming model 
for data processing. This programming model 
became popular because it is simple yet expressive 
enough to perform a large variety of computing 
tasks, from data mining to scientific computations. 

With the MapReduce programming model, 
programmers only need to specify two functions: 
Map and Reduce [8]. MapReduce functions are as 
follows. 

Map:(in_key,in_value)→{keyj, valuej | j=1…k} 

Reduce:(key, [value1, … , valuem]) → (key, 
final_value) 

The input parameters of Map are in_key and 
in_value. The output of Map is a set of <key,value>. 
The input parameters of Reduce is (key, [value1, ..., 
valuem]). After receiving the parameters, Reduce is 
run to merge the data which were get from Map and 
output (key, final_value). 

The map function takes an input pair and 
produces a set of intermediate key/value pairs. It is 
an initial transformation step, in which individual 
input records can be processed in parallel [9]. The 
Reduce function adds up all the values and 
produces a count for a particular key. It is an 
aggregation or summarization step, in which all 
associated records must be processed together by a 
single entity. It merges together these values to 
form a possibly smaller set of values. Typically just 
zero or one output value is produced per Reduce 
invocation. 

There are five main roles: the engine, the master, 
the scheduling algorithm, mappers, and reducers 
[10]. Fig.1 shows a high level view of our 
architecture and how it processes the data. 
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Fig.1.  Mapreduce Working Flow 

 
2.2 Hadoop 2.0 

Hadoop which is an open source project and 
operates under the auspices of the Apache Software 
Foundation today was in production use at 
established and emerging web companies in 2006. 
Hadoop stores the intermediate results of the 
computations in local disks, where the computation 
tasks are run, and then inform the appropriate 
workers to retrieve (pull) them for further 
processing. It hides the details of parallel 
processing and allows developers to write parallel 
processing programs that focus on their 
computation problem, rather than parallelization 
issues.  

Hadoop relies on its own distributed file system 
called HDFS (Hadoop Distributed File System): a 
flat-structure distributed file system that store large 
amount of data with high throughput access to data 
on clusters. HDFS is a mimic of GFS (Google File 
System). Like GFS, HDFS has a master/slave 
architecture, and multiple replicas of data are stored 
on multiple compute nodes to provide reliable and 
rapid computations [11,12].  

Hadoop2.0 which is the latest version has two 
major functionalities of the global 
ResourceManager (RM) and per-application 
ApplicationMaster (AM). RM has two main 
components: Scheduler and ApplicationsManager. 
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The Scheduler is responsible for allocating 
resources to the various running applications 
subject to familiar constraints of capacities, queues 
etc. The ApplicationsManager is responsible for 
accepting job-submissions, negotiating the first 
container for executing the application specific 
ApplicationMaster and provides the service for 
restarting the ApplicationMaster container on 
failure. 

The NodeManager is the per-machine framework 
agent who is responsible for launching the 
applications' containers, monitoring their resource 
usage (cpu, memory, disk, network) and reporting 
the same to the Scheduler. The per-application 

ApplicationMaster has the responsibility of 
negotiating appropriate resource containers from 
the Scheduler, tracking their status and monitoring 
for progress. 

3. SCIENTIFIC DATA PROCESSING 
USING HADOOP MAPREDUCE IN CLOUD 
ENVIRONMENTS 
 

As show in Fig.2, our system puts all essential 
functionality inside a cloud, while leaving only a 
simple Client at the experiment side for user 
interaction. In the cloud, we use Hadoop HDFS to 
store the scientific data. 

 

 
Fig.2. The Hadoop Architecture Based On Cloud Computing 

3.1 Scientific Data Processor Using Hadoop 
MapReduce in Cloud Environments 

Scientific data processor using Hadoop 
MapReduce in Cloud Environments consists of a 
front-end node called a JobTracker which is a 
simple master server and worker nodes called 
TaskTrackers which are slave servers. JobTracker 
is an interactive interface between users and the 
framework. When users submit the task to the 
JobTracker, JobTracker puts this task into the task 
queue and executes tasks according to the first 
come first served principle. JobTracker maintains 
the Map and Reduce tasks assigned to 
TaskTrackers [13]. TaskTracker executes 
instructions that get from JobTracker, and 
simultaneously deals with the exchange of data 
between Map and Reduce. Each node will 
periodically report the completed work and updated 
status to TaskTracker. If a TaskTracker doesn't 

communicate with JobTracker for a long time (it 
should be specified), JobTracker records this node 
as dead and assigns this node's data to other nodes. 

The architecture is inspired by a batch of 
processing system, such as MapReduce. [14] and 
chosen a simple query semantics using map() and 
reduce() functions over the more widely used SQL-
like approach. The resulting architecture allows for 
the seamless addition and removal of resources in a 
cloud environment. The map function takes a (key, 
value) pair and produces a list of pairs in a different 
domain. These tuples are then grouped under the 
same key. The resulting tuples of (key, [value]) 
pairs are processed by the reduce function that 
produces output values in a (possibly) different 
domain. 
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3.2 Scientific Data Processing Algorithm on 
MapReduce 

The messages consist of a value from an input 
array and its index in the input array. The master 
starts with sending such a message to each of the 
slaves. Then the master waits for any slave to return 
a result. As soon as the master receives a result, it 
will insert the result into the output array and 
provide further work to the slave if any is available. 
As soon as all work has been submitted to the 
slaves, the master will just wait for the slaves to 
return their last result. The master code would thus 
look like listed below. 

master (){ 
    foreach slave { 
        index , value = get_next_index_value_pair (); 
        send (( index , value ), slave ) 
    } 
    while ( work_available ) 
    { 
        result , slave = 
receive_message_from_any_slave (); 
        index , value = get_next_index_value_pair (); 
        send (( index , value ), slave ); 
        output [ result . index ] = result . value ; 
    } 
    foreach slave { 
        result , slave = 
receive_message_from_any_slave (); 
        halt ( slave ); 
        output [ result . index ] = result . value ; 
    } 
} 

The slave code would thus look like listed 
below. 

slave (){ 
    until ( halted ){ 
    work = receive_message_from_master (); 
    send (( work . index , work . value * work . 
value ), master ); 
    } 
} 

4. RESULTS 
 

We evaluate how sequence alignment algorithms 
perform in a cloud by executing master and slave 
algorithm in a variety of configurations. 
Preliminary testing was done in a cluster of 4 nodes 
with single core processor, of which 3 nodes were 
used as the tasktrackers where the actual 
computations in Hadoop take place. The nodes 
contained 90GB of hard disk space and 2GB of 
physical memory and 6GB of virtual memory. 

Apache Hadoop2.0 was setup with 2 map tasks per 
node. 

The web user interface of HADOOP framework 
contains the data related to the job that ran in the 
framework. The raw data of time consumed can be 
visualized as the graph shown in Fig.3.  Fig.3 
shows the pattern of execution of the Mapper job of 
the Reduce job, which contains the Reduce job, 
itself and the filter alignment job. TheReduce job 
aligns the sequences and the filter alignment job 
filters the aligned sequences according to the output 
requirement. 

 
Fig.3 Timeline Plot For The Mapper And  Reduce Job 

5. CONCLUSIONS AND FUTURE WORK 
 

In this paper, we presented our ongoing work 
towards creating a Hadoop MapReduce architecture 
that allows users to take advantage of resources 
from scientific clouds. The architecture takes care 
of provisioning Hadoop clusters and submitting 
jobs, allowing users to focus on writing their 
MapReduce application rather than managing cloud 
scientific resources.  

In future work, we envise to deploying more 
frameworks, such as MPI, Twister… and so on, 
over Hadoop 2.0 platform, and examining their 
efficiency through the implementation of complex 
algorithms using greater numbers of nodes. Also, 
we plan to extend the proposed architecture to use 
Public Cloud resources from providers like AWS or 
Google App Engine. 
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