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ABSTRACT 

 
The D-stable robust reliable control for uncertain delta operator systems is mainly studied by this article. It 
proposes a sufficient condition of placing poles of the closed-loop systems in a specified circular disc, in 
terms of linear matrix inequalities by using state feedback. It also gives a design procedure of such 
controllers. The proposed results can also unify related results of continuous and discrete systems. 
Furthermore, a numerical example is provided to demonstrate the feasibility and the effectiveness of the 
design method. 
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1. INTRODUCTION 
 

The stability of linear systems has direct 
connection with the location of its poles. Therefore, 
pole assignment is one of the most significant 
research subjects on linear systems’ analysis and 
synthesis. By using the delta operator to describe 
discrete system can avoid the trouble when we 
handle problem of abnormal condition, and 
overcome the instability of sampling with high 
speed at the same time. The model of discretization 
of delta operator tends to continuous system model, 
and this would enable the controlled studies of 
continuous system and the discrete systems on the 
issue come down to study for delta operator 
systems. Studying on delta operator in China began 
in the 1990 of the 20th century. Zhang and Yang [1]   
published the first summary paper of delta operator 
method. In recent years, the study of delta operator 
systems control has got a large number of results 
[2]~[5]. In addition, a lot of achievements have 
been made in neural network, parameter estimation, 
and signal processing, and so on.  

Reliable control means for any fault of system 
components (actuator and sensor) that may appear, 
designs the appropriate controllers, ensures that the 
system can still operate correctly in the event of 
fault. D-stability control means placing the poles of 
the closed-loop system in the specified disk in the 
complex plane. Both researches possess practical 
meaning. Since Siljak made reliable control for the 
first time in the 1970 of the 20th century, the design 
method of robust controller has moved [6]~[8] 

In fact, as long as we assign the poles of the 
closed-loop systems in the complex plane with an 
appropriate area, the system will has some dynamic 
and stabilization characteristics. For instance, step 
response of second order systems with the poles: 

n djλ ζω ω= ± can be completely specified by natural 
frequency | |nω λ= , damping ratio ζ and damped 
natural frequency dω . The ζ , nω  and dω  can 
satisfy some given bounds by limiting λ  in the 
complex plane with an appropriate area. 
Consequently, we can make the systems have 
prescribed characteristics. 

This article mainly studies the delta operator 
systems with continuous fault models, and gives the 
existence condition and design method of the D-
stable robust reliable controller of the linear system 
with actuator continuous fault. 

2. PROBLEM FORMULATION  
 

Consider the following uncertain Delta operator 
system: 

( ) ( ) ( ) ( ) ( )x t A A x t B B u tδ = + ∆ + + ∆   (1) 

where δ  is symbol of  Delta, and 

( ) ( ) ( )

d , 0
d

, 0

x T
tx t

x t T x t
T

T

δ

 ==  + − ≠
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( ) nx t R∈ is the state, ( ) pu t R∈ is the control 

input; ,n n n pA R B R× ×∈ ∈ are known constant 
matrices; A∆  and B∆ are uncertainty of norm 
bounded type written as: 

1 2[ ] [ ]A B EF G G∆ ∆ =         (2) 

where E , 1G , 2G are known constant matrices 
with appropriate dimension, and define the structure 
of the uncertainty. And the parameter uncertainty 
F  satisfy F F IΤ ≤ , where I  is identity matrix 
with appropriate dimension.  

Using the state feedback, the form of the 
controller and the continuous fault model 
respectively are: 

                 ( ) ( )u t Kx t=                                 (3) 

                ( ) ( )fu t MKx t=                             (4) 

Where 1 2diag( , , , )nM m m m=  is continuous 
fault matrix, while 0im = , means outage of the thi  
actuator control signal. 1im =  means the  normal 
operation of thi actuator control signal. When 

 
di i uim m m≤ ≤ ,

 
1im ≠ , partial fault of the  thi  

actuator control signal occurs, 
where 0 1di uim m≤ ≤ ≤ , 1, 2,i n=  . 

Let 

,1 ,2 ,diag( , , , )d d d d nM m m m=   

,1 ,2 ,diag( , , , )u u u u nM m m m=   

( ) ( )0 1
1 1,
2 2u d u dM M M M M M= + = −  

then 
1 1
2 2

0 1 1M M M M= + Σ  
where 

( )1 2diag , , , , 1, 1, 2, ,n i i nσ σ σ σΣ = ≤ =   

The system which is composed of (2) and (3) can 
be described as: 

( ) ( ) ( ) ( )x t A A BK BK x t Ax tδ = + ∆ + + ∆ =  (5) 

where A A A BK BK= + ∆ + + ∆ . 

The system which is composed of (2), (3) and (4) 
can be described as: 

( ) ( ) ( ) ( )x t A A BMK BMK x t Ax tδ = + ∆ + + ∆ =  (6) 

where A A A BMK BMK= + ∆ + + ∆ . 

The purpose of this paper is to determine the 
state feedback ( ) ( )u t Kx t=  such that the poles of 
the closed loop system (5) and (6) lie in the 
specified disc. 

3. MAIN RESULTS  
 

Lemma 1[9] Let D and E be given real matrices 
with appropriate dimension. Y  is a negative definite 
symmetric matrix; F is a time varying diagonal 
matrix with m dimension satisfying F F IΤ ≤ , then 

0Y DFE E F DΤ Τ Τ+ + <  
for all F, if and only if there exists a positive 

definite symmetric matrix  m mU R ×∈ , such that 

1 0Y DUD E U EΤ Τ −+ + <  
Lemma 2[10] Let X and Y be matrices with 

appropriate dimension, F is a time varying matrix 
with appropriate dimension satisfying F F IΤ ≤ , 
then, for any scalar quantity 0ε > , we have 

1XFY Y F X XX Y Yε εΤ Τ Τ Τ − Τ+ ≤ +  
Lemma 3[11] ( ) ( , )A D a rλ ⊂ if and only if there 

exists a positive definite matrix  X  satisfying  

0
rX aX AX

aX XA rXΤ

− − + 
< 

− + −    
Theorem 1 Let n nA R ×∈ , then ( ) ( , )A D a rλ ⊂  if 

and only if there exists a positive definite 
symmetric matrix n nP R ×∈ such that  

( ) ( ) 0a a
P PI TA I TA
T T

Τ+ + − <  

where 
( )1

a
A a r IA aIA I

rT T rT
− +−

= − =  

Proof   

( ) ( ) ( ) ( ), 0,A D a r A aI D rλ λ⊂ ⇔ − ⊂ ⇔  

( ) ( ) ( )0,1 0,1a
A aI D I TA D

r
λ λ−  ⊂ ⇔ + ⊂ ⇔ 
 

 
lemma 3. 

( )
( )

0
a

a

X I TA X

X I TA XΤ

 − +
  <
 + − 

 

By Schur complements lemma, the above 
inequality is equivalent to:  

( ) ( )1 0a aX X I TA X I TA XΤ −− + + + <  
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Multiplying 1X − on the both sides of the 
inequality above, and let 1P X −= , then we get 

( ) ( ) 0a aI TA P I TA PΤ+ + − <  
which implies 

( ) ( ) 0a a
P PI TA I TA
T T

Τ+ + − <  

Theorem 2 The delta operator system (5) is said 
to have a D-stable robust controller, if there exists a 
positive definite symmetric matrix 0X > , a matrix 
Y  and a scalar quantity 0ε >  satisfying the 
following inequality 

1 2

1

2

0 0

0

X

X EE
r

I

ε

ε

Τ

Τ Τ− Π Π

Π − + <

Π −

 
 
 
 
 
 

    (7) 

where 1 a

BY
X TA X

r
Π + += , 1 22 G X G YΠ +=  

Proof According to theorem 1, we know that the 

( ) ( ),A D a rλ ⊂  if and only if there exists a 

positive definite symmetric matrix n nP R ×∈ such 
that 

( ) ( ) 0a a
P PI TA I TA
T T

Τ
+ + − <  

where
( )

a
A a r I

A
rT

− +
=  

Using Schur complements lemma; the above 
inequality is equivalent to: 

1

( )
0

( )
a

a

P I TA

I TA P

Τ

−

 − +
< 

+ −  
 

Multiplying 1diag( , )P I− on both sides of the 

inequality above, let 1X P−= , Y KX= , it follows 
from the matrix  inequality above that 

( ) 0X
X

Τ − ∆
< 

∆ −  
 

where 1 2
a

EFG X BY EFG YX TA
r

+ +
∆ = + +  

which implies 

2

1

X

X

Τ− Π
+

Π −

 
 
 

 

[ ] [ ]2 2
0 01 10 0 0F F
E Er r

Τ
Τ Τ   

Π + Π <   
   

  (8) 

By lemma 2, for any positive scalar 
quantity 0ε > , the inequality (8) is equivalent to: 

1

1

X

X

Τ− Π
+

Π −

 
 
 

 

[ ] [ ]
1

2 2
0 0

0 0 0
E Er r

ε ε
Τ −

Τ   
+ Π Π <   

   
   (9) 

Then by using Schur complements lemma, the 
inequality (9) is equivalent to the inequality (7). 

Therefore, the controller is obtained, which can 
ensure ( ) ( , )A D a rλ ⊂  and 1K YX −= . 

Theorem 3 The delta operator system (6) has a 
D-stable robust reliable controller, if there exists a 
positive definite symmetric matrix X , a diagonal 
matrix 0U > , a matrix Y  and a scalar quantity 

0ε >  satisfying the inequality (10)  

21 31 51

21 22 42

31 43

42 43

51

0

0 0

00 0

0 0
0 0 0

X

I
r

U
U

ε

Τ Τ Τ

Τ

Τ

 − Θ Θ Θ
 
Θ Θ Θ 
 

< Θ Θ
 
 Θ Θ − 
Θ −  

  (10) 

where      0
21 a

BM Y
X TA X

r
Θ = + +   

31 1 2 0G X G M YΘ = +  

22 X EE
r
ε ΤΘ = − +  

1
2

42 1UM BΤΘ =
1
2

43 21UM GΤΘ =
1
2

51 1M YΘ =  
Then the control gain matrix is given by 

1K YX −=  

Proof According to theorem 1, we know that the 
( ) ( , )A D a rλ ⊂  if and only if there exists a positive 

definite symmetric matrix n nP R ×∈ such that 

( ) ( ) 0a a
P PI TA I TA
T T

Τ+ + − <   

where
( )

a
A a r I

A
rT

− +
=


  

Using Schur complements lemma; the above 
inequality is equivalent to: 
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1

( )
0

( )
a

a

P I TA

I TA P

Τ

−

 − +
< 

+ −  




 

Multiplying 1diag( , )P I−  to the above inequality 

from the left and right respectively, let 1X P−= , 
Y KX= , it follows from the matrix inequality 
above that 

0
X

X

Τ − Γ
< Γ − 

 

where 
1 2

a
EFG X BMY EFG MYX TA

r
+ +

Γ = + +  

which implies that 

X

X

Τ−

Σ −

 Σ
+ 

 
 

  [ ] [ ]0 01 10 0 0F F
E Er r

Τ
Τ Τ   

Λ + Λ <   
   

 (11) 

where a
BMY

X TA X
r

Σ = + + , 1 2G X G MYΛ = +  

According to lemma 2, for any positive scalar 
quantity 0ε > , we have 

0 0X
E ErX

ε
ΤΤ     − Σ

+ +     Σ −      
 

[ ] [ ]
1

0 0 0
r
ε −

ΤΛ Λ <          (12) 

From Schur complements lemma, the inequality 
(12) is equivalent to: 

22 0 0

0

X

I
r
ε

Τ Τ
 
 −
 

Θ < 
 

− 
 

Σ Λ
Σ

Λ

       (13) 

Replacing 

1 1
2 2

0 1 1M M M M= + Σ  in (13), then the 
inequality (13) can be described as: 

21

3

21

1

31

22 0

0

X

I
r
ε

Τ Τ
 
 − Θ Θ
 

Θ + 
 

− 
 

Θ

Θ

 

1 1
2 2

51 511 1
1 1
2 2

2 21 1

0 0

0 0 0 0 0BM BM

G M G M

Τ

Τ Τ

   
   
   

Σ Θ + Θ Σ <         
   
   
   

(14

) 

From lemma 1, there exists a positive definite 
symmetric matrix m mU R ×∈ , such that 

21

3

21

1

31

22 0

0

X

I
r
ε

Τ Τ
 
 − Θ Θ
 

Θ + 
 

− 
 

Θ

Θ

 

1 1
12 2

1 1
1 1
2 2

2 1 2 1

0 0

BM UU U BM

G M G M

Τ

−

   
   
    +
   
   
      

 

51 51
10 0 0 0 0UΤ −      Θ Θ <     (15) 

by Schur complements lemma, the inequality 
(15) is equivalent to the inequality (10), the proof is 
completed. Therefore, the controller is obtained, 
which can ensure ( ) ( , )A D a rλ ⊂  and 1K YX −= . 

Remark As the model of discretization of delta 
operator tends to continuous system model when 
the sampling interval 0T = , and then this would 
enable the controlled studies of continuous systems 
and the discrete systems on the issue boil down to 
study for delta operator systems. Therefore, the 
theorems in this paper are suitable for both 
continuous system and discrete system. 

4. NUMERICAL EXAMPLE  
 

Consider the delta operator system (5) and (6) 
with parameters: 

1.6 0.5 1.8 0.5 0.1 0.7 0.3
0.6 2.5 0.3 , 0.2 1.1 0.4 0.6

0 0.3 2 0.7 0.2 1.3 0.9
A B

− − −   
   = − = −   
   − −   

1

0.2 0.1
0.9 0.1 0.5

0.2 0.3 ,
6 0.3 0.8

0.1 0.2
E G

− 
−  = − =    −  −   

2

0.4 0.5 0.7 0.2
0.1 0.8 0.3 0.9

G
− 

=  −   
0 diag(0.65,0.85,0.55,0.9)M =  

1 diag(0.45,0.45,0.45,0.3)M = [ ]0 1,1,1x Τ
=  
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The circular region is chosen to 
be ( , ) (3, 2)D a r D=  and the sampling 
interval 0.2T = .  By computing, we can obtain 

4.6867 1.5663 5.8136
1.5663 16.0118 2.9055
5.8136 2.9055 7.7683

X
 
 =  
  

 

22.6307 2.2102 28.4492
7.2924 2.9898 6.9251
0.4807 0.6733 0.3807
24.2081 2.0117 33.5490

Y

− 
 − − − =
 − −
 
− − − 

 

10.2480ε =  
2.6241 0.7541 1.9805
6.8331 0.3052 4.3364
2.5676 0.1593 2.0301

4.2695 0.8799 7.8430

K

− 
 − − =
 − −
 

− 

 

for system (5),  and we also get 
200.6513 30.7523 92.3671
30.7523 165.5072 19.7571
92.3671 19.7571 109.3019

X
 
 =  
  

 

24.6513 15.0061 0.8992
21.8165 9.1494 6.8921
29.6271 10.2168 28.4365

105.2655 47.4640 144.0314

Y

− − 
 − − =
 − − −
 
− − − 

 

diag(159.2589,16.4131,75.7912,138.3129)U =  

445.2022ε =  
0.2209 0.1108 0.1749
0.1398 0.0763 0.0413
0.0427 0.0276 0.2191

0.1515 0.1455 1.4195

K

− − 
 − =
 − − −
 

− − 

 

for system (6). 

Fig 1 shows the pole distribution of delta 
operator system (5) with D-stable robust controller. 
All of its poles are in the specified circular disc. 

Fig 2 shows the pole distribution of delta 
operator system (5) with actuator continuous fault. 
The D-stable robust controller is out of work in this 
condition. The poles of system (5) are partly out of 
the specified circular disc. 

Fig 3 shows the pole distribution of delta 
operator system (6) with D-stable robust reliable 
controller. 

 
Fig 1. The Pole Distribution Of System (5) 

 

 
Fig 2. The Pole Distribution Of Delta Operator System 

(5) With Actuator Continuous Fault 
 

 
Fig 3. The Pole Distribution Of System (6) 

 
5. CONCLUSION 

 

Generally, in a practical system design, designers 
want the system as reliable as possible. And this 
paper gives a method to design the D-stable robust 
reliable controller of the linear system with actuator 
continuous fault. As the model of discretization of 
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delta operator tends to continuous system model, 
the controller designed by this paper is suitable for 
both discrete systems and continuous systems. 
Finally, an example shows the effectiveness and the 
feasibility of this method. 
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