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ABSTRACT 
 

For a class of uncertain linear systems, this paper proposes the mixed fault model which is more general 
and more practical. This paper discusses the existing problems of the system reliable controller, considers 
the reliable pole assignment of parabolic region with actuator fault, and gives a new method to deal with 
the mixed fault matrix. For mixed fault model with actuator fault, it gives the sufficient condition of 
designing this type of controller which can make the pole of linear systems to be located in the parabolic 
region. It achieves the design of state feedback reliable controller by solving the LMI. The simulation 
proves the Design method in this paper is feasible. 

Keywords: Mixed Fault Model; Pole Assignment; Actuator Fault; Parabolic Region 
 
1. INTRODUCTION 
 

The minimum requirement of a control system is 
the stability. A good controller not only transfers 
information fast, but also has a good response of 
damping events. A traditional method which can 
ensure system have satisfactory response, is that the 
poles of closed-loop system could be seated in left 
complex plane[1,2], and this method is called 
regional pole assignment. The main purpose of 
regional pole assignment: In the system analysis 
and design, the stability of the system should be 
considered first of all, and the instantaneous 
response of the linear system should be closely 
related with the poles’ position. It guarantees 
system have certain dynamic and steady-state 
performance, as long as the poles of the closed-loop 
system assign in a proper region of the complex 
plane.  M.Chilali and P.Gahinet put forward 
"LMI region” firstly at 1996, afterwards, with the 
development of reliable control, regional pole 
assignment theories go deep into the reliable control 
gradually, and set up regional pole 
reliable assignment.  

In fact, accurate poles assignments are not 
needed, it is satisfied, as long as the pole of the 
closed-loop system assign in a specified position of 
complex plane. In recent years, the pole assignment 

theories of different areas are very active,  for 
example, the pole assignment of sector region[4], 
circular disc region [3,6] and hyperbolic region. In 
fact, we can promote pole assignment of vertical or 
horizontal zone region to parabolic region. There is 
not much research about parabolic region. 

Pole assignment of linear system is an important 
method of controller design. [3]discusses the 
pole assignment of circular disc with the actuator 
failure for linear system; [4]introduces the 
pole assignment of sector region for linear system. 
In view of the importance of regional 
pole assignment, it will obtain a very good 
development. 

Discrete failure model was created by 
R.J.Veillette[5].[6]discusses the pole assignment of 
circular disc with discrete failure model for linear 
system. Continuous failure model was created by 
Yang[7];[8]discusses the robust pole assignment of 
circular disc for continuous interval system. But in 
the practical problems, some systems are not singly 
appeared discrete fault or continuous fault, that is to 
say, systems often exist both discrete fault and 
continuous fault at the same time. Mixed failure 
model appears in[9] first. So what this paper studies 
is to design the controller with mixed failure model 
to make the conservative smaller when design the 
reliable controller. Finally, it uses the LMI to 
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complete the reliable controller design with mixed 
failure model.  

2. MATERIALS AND METHODS  
 

Consider an uncertain linear system of the form                

( ) ( ) ( ) ( ) ( )x t A A x t B B u t= + ∆ + + ∆      (1) 

where ( ) R nx t ∈  is the system state; ( ) Rmu t ∈  is 
the actuator failure control input ； R n nA ×∈ ，

R n mB ×∈ are known constant matrices of 
appropriate dimensions ； A B∆ ∆、 express the 
nondeterminacy of the system with the forms as 
follows : 

1 2[ ] [ ]A B DH E E∆ ∆ =  

where 1 2, ,D E E  are known constant matrices of 
appropriate dimensions ， H is an uncertain 
constant matrix of appropriate dimension, which 
satisfies with TH H I≤ , I is unit matrix. 

A feedback control with the feedback gain 
matrix K : 

( ) ( )u t Kx t=             (2) 

Similarly, the actuator failure model is adopted 
as follows: 

         ( ) ( )fu t Fu t=            (3) 

where ( ) Rf mu t ∈  is the actuator failure control 
input , F is actuator failure model with the form as 
follow: 

( )1 1diag , , , ,p p nF n n m m+=        (4) 

Let (4) be defined as follow: 

 iF N M= +           (5) 

where ( )1 2diag , , ,0, ,0i pN n n n=   is called 

discrete failure matrix, ( 1 2diag 0, ,0, , ,p PM m m+ +=   

), nm  is called continuous failure matrix. 

We find that the actuator failure matrix is 
composed of two parts, a discrete failure matrix 

iN and continuous failure matrix M . This model is 
called mixed failure model. 

For discrete failure matrix iN , if 0jn = , it means 
the complete failure of the j th actuator control 

signal; if 1jn = , it means normal operation of the 
j th actuator control signal, 1, 2, ,j p=  . 

For continuous failure matrix M , where 
0 di i uim m m≤ ≤ ≤  , 1, 2, ,i n=   with 1dim ≤ and 

1uim ≥ ,if 0im = ,it means the complete failure of 
the i th actuator control signal; if 1im = ,it means 
normal operation of the i th actuator control signal; 
if 0 di i uim m m≤ ≤ ≤ , 1uim ≥  and  1im ≠ ,it 
corresponds to the case which partial failure of the 
i th control signal. 

Introduce the following notations: 

( ), 1diag 0, ,0, , ,u u p unM m m+=  

( ), 1diag 0, ,0, , ,d d p dnM m m+=    

( )0
1
2 u dM M M= + , ( )1

1
2 u dM M M= −  

0 0iF N M= +  

Then we have  

0 1F F M= + Σ   ,  IΣ ≤       (6) 

where ( )1 2diag , , nσ σ σΣ =  , 1, 2,i n=  ,and 
the uncertain diagonal  matrix Σ stands for all the 
diagonal matrix which can satisfy with T IΣ Σ ≤ . 

3. RESULTS AND DISCUSSIONS  
 

Definition [10] For a region D in the complex 
plane, if there exist a symmetric matrix 

R n nL ×∈ and a matrix R n nM ×∈ ,which can make   

( ) { }T: 0D l z C L zM zM= ∈ + + <  

then D is called linear matrix inequality region 
(LMI region). 

Lemma 1[11] Let D be LMI region, 
and R n nA ×∈ , the necessary and sufficient condition 
of ( )A Dλ ⊂  is that there exists a positive definite 

symmetric matrix R n nX ×∈ , which makes the 
following inequality holds: 

( ) ( )TT 0L X M AX M AX⊗ + ⊗ + ⊗ <  

where ⊗ is the symbol of Kronecker product. 

Theorem 1 Set R n nA ×∈ , there exists ( )A Dλ ⊂ , 
if there exists a positive definite symmetric 
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matrix R n nX ×∈ , it makes the following inequality 
holds: 

T T

T

2
02

AX XA aX AX XA

AX XA X
b

 + + − +
  < − − 
 

 

Proof  Considering the parabola l of complex 
plane 

2x a by+ = −  

where , 0a b > are known constant. 

The algebraic expression 
of parabolic region ( )D l is: 

( ) { }2i : , , RD l z x y x a by x y= = + + < − ∈  

By iz x y= +  and iz x y= − , we can get  

2
z zx +

=  ,
2i

z zy −
=  

Therefore parabolic region ( )D l can be 
described as  

( ) ( ) ( )2C : 2 0
2
bD l z z z a z z = ∈ + + − − < 

 
 

As ( ) ( )22 0
2
bz z a z z+ + − − < is equivalent to  

( )

( )

2 i
0

i
2

z z a z z
bz z

 + + − − 
  < − − 
 

    (7) 

 Let 
i 0
0 1
 
 
 

and 
i 0

0 1
− 
 
 

left multiply and right 

multiply matrix inequality (7) respectively, then (7) 
is equivalent to 

2
0

2

z z a z z
bz z

+ + − + 
  < − − 
 

        (8) 

Let  

2a 0
20

L
b

 
 =  − 
 

,
1 1
1 0

M
− 

=  
 

      (9) 

Then matrix inequality (8) can be described as: 
T 0L zM zM+ + <  

Because of the definition of LMI region, we 
know parabolic region ( )D l is LMI region. 

By Lemma 1, there exists a positive definite 
symmetric matrix R n nX ×∈ , which makes the 
following inequality holds: 

( ) ( )TT 0L X M AX M AX⊗ + ⊗ + ⊗ <  

Then  

( ) ( )
( )

T T

T

2 0
02 00 0

aX AX AXAX AX
AXX AXb

   −    + + <    −  −    

 

So we can get 
T T

T

2
02

AX XA aX AX XA

AX XA X
b

 + + − +
  < − − 
 

 

This paper is in order to control a state feedback  

( ) ( )u t Kx t=  

for all the pole of the closed-loop system with the 
form as follow: 

( ) ( ) ( ) ( )x t A A B B K x t= + ∆ + + ∆        (10) 

( ) ( ) ( ) ( )x t A A B B FK x t= + ∆ + + ∆       (11) 

are seated in  parabolic LMI region. 

( ) { }T: 0D l z C L zM zM= ∈ + + <  

Lemma 2[12] ,X Y are known constant matrices 
with appropriate dimensions, for any 
constant 0ε > , the following inequality holds: 

T T T T 1 TXFY Y F X XX Y Yε ε −+ ≤ +  

where TF F I≤ . 

Lemma 3[13] Let F ,  E  and Σ   be real matrices 
of appropriate   dimensions, and 

( )1 2diag , , rσ σ σΣ =  with T
i i Iσ σ ≤ , 1, 2, ,i r=  . Then, 

for any real matrix ( )1 2diag , , , 0rI I Iλ λ λΛ = > , the 
following inequality holds: 

T T T T T 1F E E F F F E E−Σ + Σ ≤ Λ + Λ  

Considering system (1), when the actuator works 
normally, we have the following theorem: 

Theorem 2 All the pole of the closed-loop 
system (10) will be seated in parabolic region ( )D l , 
if there exists a positive definite symmetric matrix 

http://www.jatit.org/
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R n nX ×∈ and a matrix Rm nY ×∈ , which can make 
the  following  inequality holds:  

( )T T T T T
1 2 1

T T T T
1 1

1

2

+ +2 0
2 0 0

0 0
0 0

aX DD DD

DD DD X
b

I
I

δ δ δ

δ δ

δ
δ

 Ψ Ψ + + Ψ −Ψ + Ξ
 
 Ψ −Ψ + − Ξ
  <
 Ξ − 
 Ξ − 

 

where AX BYΨ = + , 1 2E X E YΞ = + and the 
state feedback gain matrix is 1K YX −= . 

Proof From Theorem 1, all the pole of the 
closed-loop system (10) will be seated 
in parabolic region ( )D l , if there exists a positive 

definite symmetric matrix R n nX ×∈ , which makes 
the following inequality holds: 

T T

T

2
2

aX

X
b

 Ψ +Ψ + Ψ −Ψ
  + Ψ −Ψ − 
 

 

( ) ( )
T

T T
1 2 1 2,0 + ,0 +

D D
H E X E Y E X E Y H

D D
   

+ +   
   

 

( ) ( )
T

T T
1 2 1 20, 0, 0

0 0
D D

H E X E Y E X E Y H
− −   

+ + + <   
   

  

(12) 

where Y KX= , AX BYΨ = + . 

From lemma 2, there exists 1 2, 0δ δ > , inequality 
(12) can be included in the following inequality 

T T

T

2
+2

aX

X
b

 Ψ +Ψ + Ψ −Ψ
 
 Ψ −Ψ − 
 

 

( ) ( )T1
1 1 1 2 1 2,0 ,0

TD D
E X E Y E X E Y

D D
δ δ −  

+ + + +  
  

( ) ( )T1
2 2 1 2 1 20, 0, 0

0 0

TD D
E X E Y E X E Yδ δ −− −  

+ + + <  
  

                                     

(13) 

Using the Schur complement, matrix inequality 
(13) is equivalent to the conclusion of Theorem2. 
And it is obvious that the state feedback gain matrix   
is 1K YX −= by the process of proof above. 

Considering the system (1) with actuator failure, 
we have the following theorem: 

Theorem 3 All the pole of the closed-loop 
system (11) will be seated in parabolic region 
( )D l , if there exists a positive definite symmetric 

matrix R n nX ×∈  , a  matrix Rm nY ×∈ and positive 
definite symmetric matrices , Rm mU V ×∈ , which 
make the  following  inequality holds:  

11 12 13 14
T
12 22 23 24
T T
13 23 33
T T
14 24 44

0
0

0

Φ Φ Φ Φ 
 Φ Φ Φ Φ  <
 Φ Φ Φ
 
Φ Φ Φ 

 

where 
T T T T

1 2 1

11 T T T
1 1

( ) 2
2+

DD aX DD

DD DD X
b

ε ε ε

ε ε

 Π +Π + + + Π −Π + +
 Φ =  Π −Π − 
 

 
T T T T T

1 0 2
12 T T T T T

1 0 2

0
0

X E Y F E
X E Y F E

 +
Φ =  

+ 
， 

T
1

13
1

=
0

BM U Y
BM U

 
Φ  

 
 1

14 T

0
=

0
BM V

Y
 

Φ  − 
，

1
22

2

0
0

I
I

ε
ε

− 
Φ =  − 

 ， 2 1
23

0
=

0 0
E M U 

Φ  
 

 

24
2 1

0 0
=

0E M V
 

Φ  − 
, 33

0
0
U

U
− 

Φ =  − 
，

44

0
0
V

V
− 

Φ =  − 
  

0AX BF YΠ = +  

and the state feedback gain matrix is 1K YX −= . 

Proof   From Theorem 1, all the pole of the 
closed-loop system (11) will be seated in parabolic 
region ( )D l , if there exists a positive definite 

symmetric matrix R n nX ×∈ .And let Y KX= , we 
can get 

T T T T T T T T

T T T T

2
2

AX BFY XA Y F B aX XA Y F B AX BFY

AX BFY XA Y F B X
b

 + + + + + − −
  + + − − − 
 

( ) ( )
T

T T
1 2 1 2,0 + ,0 +

D D
H E X E FY E X E FY H

D D
   

+ +   
   

 

( ) ( )
T

T T
1 2 1 20, 0, 0

0 0
D D

H E X E FY E X E FY H
− −   

+ + + <   
   

 (14) 

From lemma 2, there exist 1 2, 0ε ε > , inequality 
(14) can be included in the following inequality: 
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T T T T T T T T

T T T T

2
+2

AX BFY XA Y F B aX XA Y F B AX BFY

AX BFY XA Y F B X
b

 + + + + + − −
 
 + − − − 
 

( ) ( )T1
1 1 1 2 1 2,0 ,0

TD D
E X E FY E X E FY

D D
ε ε −  

+ + + +  
  

( ) ( )T1
2 2 1 2 1 20, 0, 0

0 0

TD D
E X E FY E X E FYε ε −− −  

+ + + <  
  

   

     (15) 

Using the Schur complement and (6), matrix 
inequality (15) is equivalent to can be describe as 

( )T T T T T T T T T
1 2 1 1 0 2

T T T T T T T T
1 1 1 0 2

1 2 0 1

1 2 0 2

2 0
2+ 0

0 0
0 0

DD aX DD X E Y F E

DD X DD X E Y F E
b

E X E F Y I
E X E F Y I

ε ε ε

ε ε

ε
ε

 Π +Π + + + Π −Π + +
 
 Π −Π − + +
  +
 + − 
 + − 

( ) ( )

T
1 1

T1 1T

2 1 2 1

,0,0,0 + ,0,0,0

0 0

BM BM
BM BM

Y Y
E M E M

   
   
   Σ Σ +
   
   
   

 

( ) ( )

T
1 1

T T

2 1 2 1

0 0
0, ,0,0 0, ,0,0 0

0 0

BM BM

Y Y

E M E M

   
   
   Σ − + − Σ <
   
   
− −   

 (16) 

where 0AX BF YΠ = + . 

From lemma 3, there exist positive definite 
symmetric matrices , Rm mU V ×∈ which make 
inequality (16) be included in the following 
inequality: 

( )T T T T T T T T T
1 2 1 1 0 2

T T T T T T T T
1 1 1 0 2

1 2 0 1

1 2 0 2

2 0
2+ 0

0 0
0 0

DD aX DD X E Y F E

DD X DD X E Y F E
b

E X E F Y I
E X E F Y I

ε ε ε

ε ε

ε
ε

 Π +Π + + + Π −Π + +
 
 Π −Π − + +
 
 + − 
 + − 

( ) ( )

T
1 1

T 1

2 1 2 1

0 0
+ 0, ,0,0 0, ,0,0

0 0

BM BM

V Y V Y

E M E M

−

   
   
    + − −
   
   
− −   

( ) ( )

T
1 1

T1 1 1

2 1 2 1

,0,0,0 ,0,0,0 0

0 0

BM BM
BM BM

U Y U Y
E M E M

−

   
   
   + + <
   
   
   

   (17) 

Using the Schur complement, we conclude 
matrix inequality (17) is equivalent to the 
conclusion of Theorem 3. And it is obvious that the 

state feedback gain matrix is 1K YX −= by the 
process of proof above.�  
4. NUMERICAL EXAMPLE 
 

In this section, we present a numerical example 
for actuator failure to illustrate the proposed design 
method. 

Consider the linear system (1) with the following 
parameters 

0.9 1.7 2.2
0.5 3.7 1.6
2.5 1.6 4.2

A
− 
 = − − 
 − − 

,
0.2 1 0.3
3.5 0.8 1.6
5 1.8 1.5

B
− − 
 = − − 
 − − − 

 

0.1 0 0.2
0 0.15 0.1
0 0 0.4

D
 
 =  
 
 

, 1

0.5 0 0
0 0.5 0
0 0 0.5

E
 
 =  
 
 

 

2

0.4 0.1 0.2
0.2 0.5 0.2
0.6 0.6 1

E
 
 =  
 
 

, 3 2.4uf = , 3 0.8df =  

0.2a = , 0.5b =                   (18) 

The poles of the system which is determined by 
(19) set for{ } -6.6510,0.2322,-2.3812 , so nominal 
system is unstable. 

(I) When the actuator of system (18) works 
normally, according to theorem 2, the reliable 
control gain matrix is: 

0.4560 0.0246 0.4777
0.4910 0.5061 0.5133
0.6881 0.6435 1.3519

K
 
 =  
 − − − 

 

By the reliable controller which designed in 
theorem 2, the pole of closed-loop system (10) will 
be seated in the region, as in Figure 1: 

 
Fig 1 

(II) When The Actuator Of System (18) Has Failure, 
Let Discrete Fault Matrix 

( )1 diag 1,0,0N = , ( )2 diag 0,1,0N = , ( )3 diag 1,1,0N =  

http://www.jatit.org/
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  By the controller which designed in theorem 2, 
the pole of closed-loop system (11) will not be 
seated in the region, as in Figure 2, 3, 4: 

 
Fig 2. For Closed-Loop System (11), Distribution 

Of The Pole With 1N N=  

 
Fig 3. For Closed-Loop System (11), Distribution Of The 

Pole With 2N N=  

 
Fig 4. For Closed-Loop System (11), Distribution Of The 

Pole With 3N N=  
 

(III) When the actuator of system (18) has 
failure, according to theorem 3, the reliable control 
gain matrix is: 

0.5293 0.3573 0.5982
1.3324 0.2401 0.7605
0.1673 0.0393 0.1003

K
 
 =  
 − − 

 

The pole of closed-loop system (11) will be 
seated in the region, as in Figure 5, 6, 7: 

Simulation results show that, when uncertain 
linear system (1) does not have failure, it is stable 
by the controller designed in theorem 2. However 
when system (1) has actuator failure, it is unstable 

as  the controller designed in theorem 2. But the 
reliable controller with mixed failure model which  
designed by theorem 3 will have a good and stable 
performance, not only when all control components 

are operational, but also in case of some admissible 
control component outages. It ensures the system’s 
asymptotic stability in the event of actuator failure. 

 
Fig 5. For Closed-Loop System (11), Distribution Of The 

Pole With 1N N=  

 
Fig 6. For Closed-Loop System (11), Distribution Of The 

Pole With 2N N=  

 
Fig 7. For Closed-Loop System (11), Distribution Of The 

Pole With 3N N=  
 

5. CONCLUSION 
 

In this paper, we have considered the reliable 
design problem for linear system with actuator 
failure. A more general and practical mixed failure 
model of actuator failures is adopted, and gives the 
sufficient condition for existence of a reliable 
controller. By solving the LMI, it proposes a 
reliable controller design method. A numerical 
example is also given to illustrate the design 
procedures and their effectiveness. 
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