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ABSTRACT 
 

Proton exchange membrane fuel cells are promising energy sources that produce electrical currents with 
almost null pollutant emissions, and they have been received growing attention in recent years. Maintaining 
a fuel cell system in correct operating conditions requires good system control. Based on the mathematical 
model of proton exchange membrane fuel cells, model linearization is carried out and a model predictive 
controller is designed for the proton exchange membrane fuel cell to keep constant voltage output. 
Simulation results show that the use of this model predictive controller can achieve a good control effect. 
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1. INTRODUCTION  
 

The world is facing an energy crisis as well as 
significant environmental problems. It is known 
that fossil fuels such as petroleum, natural gas and 
coal are the main resources for generating 
electricity. However, they also have made a great 
contribution to environmental problems. Major 
efforts to reduce greenhouse gas emission have 
increased the demand for pollution-free energy 
sources. Non-polluting energy generation and other 
environmental issues have been driving during the 
last few years an increasing demand for new energy 
conversion technologies. Renewable bio-energy is 
viewed as one of the ways to alleviate the current 
global warming crisis. Major efforts are devoted to 
develope alternative electricity production methods 
(Das and Mangwani, 2010; Logan, 2010). 

Fuel cells are promising energy sources that 
produce electrical currents with almost null 
pollutant emissions. Proton exchange membrane 
(PEM) fuel cells are the most popular type of fuel 
cell (Rezazadeh et al., 2011). PEMFC can be used 
as emergency power supply and small mobile 
power supply for outdoors power supply and high 
reliable and high stable power supply. Besides, in 
contrast to centralized power supply, PEMFC can 
be considered as distribution power supply and be 
gridded into power supply system for peak 
modulation. 

The performance of PEMFC is influenced by 
many parameters such as operating temperatures 
both fuel cell and humidifiers, pressure, flow rates 
and relative humidity of fuel and oxidant gases 
(Kaytakoglu and Akyalm, 2007). Significant 
improvements in proton exchange membrane fuel 
cell technology have been achieved over the past 
decades. However, the performance, stability, 
reliability, and cost for the present fuel cell 
technology are not good enough to replace internal 
combustion engines. A number of problems must be 
overcome to improve their performance and reduce 
their cost (Riascos and Pereira, 2010). 

Maintaining a fuel cell system in correct 
operating conditions requires good system control. 
Model predictive control (MPC) is an optimization 
strategy for the control of constrained dynamic 
systems (Domınguez and Pistikopoulos, 2011). 
MPC can handle the uncertainty, non-linearity and 
parallel nature effectively, and can make it easy to 
deal with the various kinds constraints that exised  
in the problem of processing controlled variables 
and manipulated variables. MPC uses multi-step 
prediction, rolling optimization and feedback to 
correct control strategies (Holkar and Waghmare, 
2011), so it can not only give a good control effect 
and strong robustness, but also have an advantage 
of less demand on the accuracy of the model. It is 
an effective method to solve complex industrial 
process control (Lee, 2011).  
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A single proton exchange membrane fuel cell 
model was built in this paper and a model 
predictive controller for PEMFC was designed.  

2. MATHEMATICAL MODEL OF PEMFC 
  

As an electrochemical energy conversion device, 
the fuel cell produces electricity from external 
supplies of fuel (on the anode side) and oxidant (on 
the cathode side). The outline of a typical PEMFC 
is illustrated in Fig.1.  

In the original hydrogen-oxygen proton exchange 
membrane fuel cell design, a proton-conducting 
polymer membrane, which only can be transfered 
through the proton, and the separation of the anode 
and cathode sides. On the anode side, hydrogen 
diffuses to the anode catalyst and then it will be 
dissociated into protons and electrons. The protons 
are transfered  through the membrane to the 
cathode, meanwhile, the electrons are forced to 
travel in an external circuit since the membrane is 
electrically insulated. On the Cathode catalyst, 
oxygen molecules react with the electrons (which 
have traveled through the external circuit) and 
protons to form water. 

 
Fig.1 Basic PEMFC Operation 

The electric current is produced which is not 
thermochemical, but electrochemical. Based on the 
fact that no combustion reactions are involved in 
there process, there are two obvious advantages 
over the combustion engines: on the one hand, 
because of the PEMFC system do not operate with 
a thermal cycle, their operation is not constrained 
by the maximum Carnot cycle efficiency as 
combustion engines are. On the other hand, the 
PEMFC system run in a clean environment, they do 
not produce any undesirable products that normally 
associated with the oxidation of fossil fuels such as 
CO2, SO2, oxides of nitrogen, or particulate matter, 
water is the only product. 

Mathematical models and simulation are needed 
as tools for designing the optimization of fuel cells, 
stacks, and fuel cell power systems. In system 
studies, it is important to have an adequate model to 
estimate overall performance of a PEM fuel cell in 
terms of operating conditions without extensive 
calculations (Carnes and Djilal, 2005).  

PEM fuel cell electrochemical process starts on 
the anode side where H2 molecules are brought by 
flow plate channels. Anode catalyst divides 
hydrogen on protons H+ that travel to cathode 
through membrane and electrons e- that travel to 
cathode over external electrical circuit. At the 
cathode hydrogen protons H+ and electrons e- 
combine with oxygen O2 by use of catalyst, to form 
water H2O and heat. Described reactions can be 
expressed by the following equations (Moreira and 
Silva, 2009;  Rezazadeh et al., 2010; Youssef et al., 
2010): 

Anode:        2 2 2H H e+ −→ +                         (1) 

Cathode:    2 2
1 2
2

O H e H O+ −+ + →               (2) 

The output voltage Vfc of a single cell can be 
defined as the result of the following expression 

conohmicactnernstfc VVVEV −−−=      (3) 

in which Enernst is the thermodynamic potential of 
the cell representing its reversible voltage, 

2 2

3
nernst fc

-5
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−= − × −

 + × +  
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where 
2HP  and 

2OP  are the hydrogen and oxygen 
pressures, respectively, and Tfc  is the operating 
temperature. Vact is the voltage drop due to the 
activation of the anode and the cathode: 

2

3
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5 4
fc O fc

0.9514-3.12 10 -7.4  

     10 ln( )+1.87 10 ln( )

V T
T C T i

−

− −

= × ×
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where i is the electrical current, and 
2OC  is the 

oxygen concentration. Vohmic is the ohmic voltage 
drop associated with the conduction of protons 
through the solid electrolyte, and electrons through 
the internal electronic resistance: 

  )(ohmic CM RRiV +=           (6) 
where RC is the contact resistance to electron flow, 
and RM is the resistance to proton transfer through 
the membrane, which can be described as follows 
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(7) 
where Mρ is the membrane specific resistivity,  l is 
the membrane thickness, A is the membrane active 
area, and ψ is a specific coefficient for every type of 
membrane; Vcon represents the voltage drop 
resulting from the mass transportation effects, 
which affects the concentration of the reacting 
gases and can be described by the following 
expression: 

)1(ln
max

con i
iBV −−=            (8) 

where B is a constant depending on the type of fuel 
cell, imax is the maximum electrical current.  

Based on the above described mathematical 
model, a Matlab/simulink simulation model of the 
PEMFC can be set up (Fan, 2012). Parameters of 
the Ballard Mark V fuel cell are used in the 
simulation model (Correa et al., 2004). 

3. MODEL LINEARIZATION 
 

The model built above is strongly nonlinear. The 
high nonlinearity and parameter uncertainty exist in 
system models make it rather difficult to design a 
control scheme by using the non-linear model 
directly. In order to make the controller designed 
easy, model linearization is an alternative method 
(Nikolaou and Misra, 2003; Tyner and Lewis, 
2010).  

The temperature significantly affects the 
performance of a fuel cell by influencing the water 
removal and reactants activity, etc (Shan and Choe, 
2005; Kirubakaran et al., 2009). It can be seen from 
Fig.2 that the output voltage decreases as the 
temperature decreased.  

Considering the real work status of PEMFC, the 
temperature which has powerful effect on the 
dynamic process, which has been choosen as 
control variable and other inputs are supposed as 
constants when linear treatment is done. Then the 
PEMFC system is linearized to a linear model.  
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Fig.2. Voltage Changes With Temperature 

The PEMFC system has a strong coupling 
characteristics, so it is difficult to get the linearize 
model. MATLAB system identification toolbox is 
used to linearize the model of the PEMFC, and the 
following linearization model can be derived as: 

3.0949( )
0.001

G s
s

=
+

                     (9) 

Simulation responding results of both the 
linearization model and the nonlinear model to 
ramp signal Tfc=298+4.5t is shown in Fig.3, in 
which the broken line denotes the linearized model 
and the solid line stands for the nonlinear model. 

It can be seen from Fig.3 that the curve of the 
linearized model is similar to the curve of the 
original nonlinear model. In other words, the 
linearization model can give a valid description of 
the real system. Thus, the linearization method is 
regarded as effective and the linearization model 
can be used instead of the real nonlinear model in 
designing a MPC controller. 
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Fig. 3. Simulation Results Of Linearization Model And 

The Nonlinear Model 

4. DESIGN A MPC CONTROLLER 
 

MPC is a form of control in which the current 
control action is obtained by solving on-line, at 
each sampling instant, a finite horizon open-loop 
optimal control problem, using the current state of 
the plant as the initial state; the optimization yields 
an optimal control sequence and the first control in 
this sequence is applied to the plant. 

As the unique advanced algorithm model 
predictive control has been successfully used in 
industrial areas. The following make contribution to 
its success: 

a) It handles multivariable control problems 
naturally. 

b) It can take account of actuator limitations. 

c) It allows operation closer to constraints, 
hence increased profit. 

d) It has plenty of time for on-line 
computations. 

e) It can handle non-minimal phase and 
unstable processes. 

f) It is a regulating convenient way. 

The main idea of MPC algorithms is to solve an 
optimization problem in order to find the control 
vector trajectory that optimizes the cost function 
over a future prediction horizon (Jadlovska et al., 
2008; Gondhalekar and Jones, 2011; Wang, 2001; 
Ghasemi, 2011).  

Different from the traditional optimal control 
strategy, the model predictive control uses the non-
parametric model based on impulse response as its 
internal model.  

For a given discrete-time systems: 

( 1) ( ) ( )
( ) ( )
m m m m

m m

x k A x k B u k
y k C x k

+ = +
=

       (10) 

The MPC state space model can be expressed as 
follows: 
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                     (12) 

which subject to： 

( ) R , ( ) Rn m
mx k X u k U∈ ⊂ ∈ ⊂  

where ( )mx k 、 ( )u k 、 ( )y k  are state, input and 
output vectors, respectively. 

Then the predicted expression of x and y can be 
obtained (suppose in the sampling k i (k i >0) : 
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According to the historical information and the 
future input, the future control action can be 
decided and the future output can be predicted by 
finding the optimal solution of the performance 
indicator described in the following equation: 

2

1

T

=

=1

ˆ, = ( + ) ( + )

          + ( + -1) ( + -1)
C

N

j N

N
T

j

J u k x k j k Qx k j k

u k j Ru k j

∑

∑

（ ）

       (15) 

in which ˆ( + )x k j k  is the prediction of 

x( + )k j , ( )u k is the process control signal, NP is the 
minimum cost-horizon, N2 is the prediction 
horizon, Q is the state weighting matrix, Nc is the 
control horizon, and R is the control weighting 
matrix.  
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Based on the knowledge up to time k, the 
increment input signal is 

( )= ( )- ( -1)u k u k u k∆          (16) 

Constraints: If there is more than one input, then 
the constraints are specified for each input 
independently. In the multi-input case, suppose that 
the constraints are given for the upper limits as 

    max max max
1 2[ , ..., ]mu u u∆ ∆ ∆          (17) 

and lower limits as   
min min min
1 2[ , ..., ]mu u u∆ ∆ ∆          (18) 

Figure 4 explains the idea of receding horizon. 
At time k, the future control 
sequence{ }C( ),...,u( + -1)u k k N  is optimized so that 
the performance-index J(u, k) is minimized subject 
to constraints. 

At time k the first element of the optimal 
sequence (u(k)) is applied to the real process. 

At the next time instant, the horizon is shifted 
and a new optimization at time k+1 is solved. 

 
Fig.4. Moving Horizon In Predictive Control 

The specific optimization process of predictive 
control is: each time when samples, it corrects 
predictive output based on model via output voltage 
actually measured and then conducts new 
optimization. It forms a closed loop optimization 
which not only used model information but also 
feedback information.  

5. SIMULATION AND RESULTS 
ANALYSIS 

 
The Simulink simulation model of the MPC 

control based on the linear model of the PEMFC is 
shown in Fig.5. The blcok “PEMFC” consists of a 
series functions according Equ. 3 to Equ. 8. Firstly, 
the PEMFC system is established to run and 

analyze. Secondly, the model predictive controller 
is designed and debugged. At last, the model 
predictive applied to the PEMFC for debugging and 
runing. 

Control parameters of MPC are confirmed by 
trial and error. The control time interval is 
Tint=0.01s, the predictive region length is NP=20, 
the control region length is Nc=4, the robustness 
and rapidity are 0.8, the input weight is 0.0001, the 
weight change rate is 0.01, the output weight is 1, 
the measurable disturbance v=0, and the input 
constrain is  [293, 380], the output constraints value 
is [0, 2]. Output noise interference is not considered 
for the time being. In order to get the final accurate 
answer, every parameter should be analyzed and 
compared according to the output voltage curve. 

 
Fig. 5. Simulation Model Of MPC Control 

Simulation results are shown in Fig.6 to Fig.8, in 
which hygrogen pressure, oxygen pressure and load 
has a sudden change at 5s respectively. The given 
output voltage is 1.05V.  It can be seen from these 
figures that MPC can make the output voltage of 
PEMFC follow the given output voltage signal 
well, no matter how the hydrogen pressure, oxygen 
pressure or the load changes. 
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Fig.6. Output Curves Corresponding To Hygrogen 
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Fig. 7. Output Curves Corresponding To Oxygen 

Pressure Changing 
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Fig.8. Output Curves Corresponding To Load Changing 

6. CONCLUSIONS 
 

The model predictive controller for PEMFC can 
be designed conveniently by the method of model 
linearization. By using MPC controller to the 
PEMFC, the system can not only have fast response 
characteristic, but also have good steady-state 
behavior and strong robustness. The designed 
model predictive control scheme can get 
satisfactory results as long as choosing reasonable 
parameters for the controller. The next work is to 
use model predictive controllers to a real fuel cell 
system, and further study will be needed to improve 
the output power of the PEMFC. 
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