
Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1704

LBGR: A LOAD BALANCING P2P FILE STORAGE SYSTEM
BASED ON GROUPING AND REPUTATION

1SONG GUANGHUA, 2WU ZHIXING AND 3YANG BOWEI

1School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, CHINA

Email: ghsong@zju.edu.cn , 21024038@zju.edu.cn , boweiy@zju.edu.cn

ABSTRACT

The expansion of the Internet leads to the rapid growth of information, which brings about urgent needs for
rapid, efficient and reliable mass storage systems. In this paper, we present LBGR, a load balancing P2P
file storage system based on grouping and reputation. LBGR evaluates a node by calculating its reputation
value, and adopts a mechanism based on grouping and virtual node to solve the load balance problem
which exists in distributed hash table structured systems. In LBGR, groups can balance their loads
according to their capacities by migrating virtual nodes. The experimental results show that the presented
load balance algorithm works well, and is comparable with the centralized algorithm, while it requires less
load information of the system.

Keywords: Glusterfs; Reputation; Virtual Node; Load Balance; Storage

1. INTRODUCTION

With the rapid development of the Internet, the
demand of storage space is growing. At the same
time, there are a lot of free storage and computing
resources on the Internet. How to make full use of
these idle storage space and computing power to
construct a file storage system based on the P2P
technologies has become a hot topic in the
distributed storage research area.

In this paper, we present LBGR, a novel stable
and reliable file storage system based on grouping
and reputation. It can be deployed on large-scale
and highly dynamic P2P networks.The remainder of
the paper is organized as follows: Section 2
discusses the related works. Section 3 introduces the
system structure. Our load balancing algorithm is
presented in Section 4. We evaluate LBGR in
simulations, and the simulation results are discussed
in Section 5. Finally, we conclude our study in
Section 6.

2. RELATED WORK

Based on the concept of virtual nodes [1], [2, 3]
promote load balance algorithms by migrating the
virtual nodes. In [4], the load balance algorithm
needs to acquire the load information of the whole
system, so a large amount of data needs to be
updated and exchanged. As the centralized
algorithms may introduce single point of failure, [5,
6] try to balance the loads of nodes by the

centralized algorithms which rely on some
dedicated nodes. With the performance information
of neighbor nodes in logic, [7] presents a locality-
aware randomized (LAR) algorithm to balance the
loads of nodes. Nodes in [8] try to deduce the global
load information and then compute the load which
nodes must undertake.

The incentive model based on the reputation
system and calculation of the weights of nodes are
also important for the design of a new system.
Based on Hadoop, paper [9] tries to select the most
excellent nodes to store files by calculate the
weights of the nodes according to their capabilities,
storage space, CPU utilization and online time.
Paper [10] presents an incentive model through the
resource reputation rating algorithm and the
reputation incentive rating algorithm, and proves
that it works well in P2P reputation system to
prevent malicious attacks and incent effective
voting.

3. SYSTEM OVERVIEW

3.1 System Structure

Figure 1 depicts the structure of LBGR. Unlike
[11] where nodes are grouped by network distance,
nodes in LBGR are grouped by their IDs which are
computed by the DHT(distributed hash table)
algorithm. Group1, Group2, and Group3 are three
groups in the system; every group should select a
super node by the performance of the nodes. Node1,
Node2 and Node3 are selected as super nodes for

http://www.jatit.org/
mailto:ghsong@zju.edu.cn
mailto:21024038@zju.edu.cn
mailto:boweiy@zju.edu.cn

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1705

these three groups respectively. Like GlusterFS, the
hash address space in LBGR is equally divided into
sections. We denote each section as a virtual node.
Each group holds several continuous virtual nodes
in the hash address space according to their
capacities.

As shown in Figure 1, Group1 holds n1
continuous virtual nodes, denoted as VG11,VG12,…,
and VG1n1. Group2 holds n2 continuous virtual
nodes, denoted as VG21,VG22,…,and VG2n2.
Group1 and Group2 are adjacent, so are their virtual
nodes. The reputation values of the nodes are
calculated according to their performance, and one
of the most excellent nodes in each group will be
selected as the super node. The function of the super
node is presented as follows:

1) to store and update profiles of the groups and
their virtual nodes；

2) to store and update the reputation values of the
nodes；

3) to store and update the locations of the files.

We denote the ID of the super node as the ID of
the group. When a node wants to join the system, it
needs to select which group to enter. We define the
selecting strategy as follows: the node compares its
ID with all groups, and joins the nearest group.

When a node wants to leave the system, the super
node just deletes the information about the node.
Unlike GlusterFS, through the grouping mechanism,
there will not have any significant impact on the file
storage system when nodes join or leave the system,
and it will be more efficient when groups need to
merge or divide.

When peers need to access a file, LBGR
calculates the ID of the file using the DHT
algorithm, and then figures out which virtual node it
belongs to. With the help of the super node, the
system will find out which group it belongs to. Then
the location information will be returned to the peer
who wants to access this file. If peers want to store
files, the groups will select a suitable node as the
storage node based on reputations of nodes.

3.2 Reputation System
Nodes in P2P networks are heterogeneous;

therefore, the reputations of nodes differ greatly.
LBGR introduces the reputation system to help the
file storage system to be more reliable and
stable.We consider that online time, network
bandwidth, storage space and node performance are
very important factors to measure the reputation
value of a node. Each group will update the

reputation values of the nodes regularly. The
reputation value will be updated as follows:

1REP (1)nn k REP k t b s p+ = × + − × × × × (1)

 Where REPn+1 denotes the reputation value of a
node during period n+1, t is the online time of the
node, b is the network bandwidth, s is the available
storage space, and p is the CPU performance of the
node. We define as a parameter that measures the
weights of previous reputation of a node, similar
with that in [12].

With the help of the reputation system, a set of
nodes with high reputations can be selected as
candidates of the super node, as in [13]. The
important information on the super node is copied to
the candidates. A new super node will be selected
from the candidates immediately when the super
node leaves the system.

4. LOAD BALANCE ALGORITHM

Due to the drawbacks of the DHT algorithm,
traditional DHT structured systems cannot balance
the loads of the nodes effectively. In LBGR, we
balance the loads according to the capacities of the
groups by migrating virtual nodes.

Assume that there are three groups in the system,
namely GroupA, GroupB and GroupC, where IDA <
IDB < IDC. The starting number and the ending
number of these three groups about the virtual nodes
are listed in table 1.

Table1. Groups And Their Virtual Node Numbers

Group Starting Number Ending Number
GroupA Sa Sb-1
GroupB Sb Sc-1
GroupC Sc Sd-1

The load limit of a node is determined by the

capability of the node. So the load limit G of a
group is calculated as follows:

1
G=

n

i
i

V
=
∑ (2)

Where n denotes the number of nodes in the
group, and iV represents the load limit of node i in
the group.Each group holds a certain number of

virtual nodes, so we denote
1

R=
m

i
i

L
=
∑ as the real load

of a group where m denotes the number of the
virtual nodes in the group, and iL represents the real
load of virtual node i in the group.We denote the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1706

average load utilization rate of GroupA, GroupB
and GroupC as µ , which is calculated as follows:

a cb

a cb

R R R
G G Gµ

+ +
=

+ +
 (3)

Where ,a cbR R and R represent the real load
of GroupA, GroupB and GroupC respectively,
and ,a cb andG G G represent the load limit of
GroupA, GroupB and GroupC, respectively.We also

denote
a

a

a

R
Gµ = , b

b

b

R
Gµ = , and

c
c

c

R
Gµ = as the

load utilization rate of GroupA, GroupB and
GroupC, respectively.

4.1 Algorithm Sketch
As depicted previously, we denote µ as the

average load utilization rate of the node and its two
neighbor groups.We define α µ= +∆ as the load

balance threshold, where ∆ is a predefined system
parameter. A group will try to balance its load if its
load utilization is larger than α .We
define / 2β µ= +∆ . A group will terminate the
load balance algorithm if its load utilization is
smaller than β .We define γ as a lower threshold
for the load balance algorithm. If the load utilization
of a group is smaller than γ , the load balance
algorithm will never start. We consider the whole
address space as annularity, which means that the
virtual node with the maximum address number and
the virtual node with the minimum address number
are neighbors.

Each group must be mutually exclusive with its
neighbor groups when computing their loads by the
load balance algorithm. We assume that the
utilization of GroupB is larger than α ; and it needs
to balance its load. The process that GroupB gets
the right to balance its load is presented as follows:

When GroupB gets the right to balance its load,
load balance algorithm will be applied. The load

balance algorithm consists of part1 and part 2,
which are presented below.

typedef enum { normal, overload, loadbalancing } group_state; // three states of groups
void test(int i){// LEFT(i) is the left neighbor group of i
if (state[i] == overload &&state[LEFT(i)] != loadbalancing &&state[RIGHT(i)] !=
loadbalancing){// RIGHT(i) is the right neighbor group of i
 state[i] = loadbalancing;
 V(s[i]);// Each group has a semaphore, the initial value of s[i] is 0

}
}
void get_rights(int i){

P(mutex);// the initial value of mutex is 0
state[i] = overload;
test(i); // try to get the right
V(mutex);
P(s[i]); // blocked if cannot get the right

}
void put_ rights(int i){

P(mutex);
state[i]= normal;
test(LEFTI(i)); //inquire left neighbor if it needs to balance its load
test(RIGHT(i)); //inquire right neighbor if it needs to balance its load
V(mutex);

}
void trytobalance(B){

get_ rights (B);
loadbalance(B);
put_ rights (B);

}

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1707

n1 n2 n3

Node1 Node3Node2

Groups

…………

MIN MAX

…… ……NodeX

……

Distributed
Hash Table

Super
Nodes

………

Group1

LOW HIGH

……GroupXVN12

VN11

VN1n1

………

Group2

VN22

VN21

VN2n2

………

Group3

VN32

VN31

VN3n3

Figure 1 Structure Of LBGR

Sa …………Sa+1 Sb-1 Sb …………Sb+1 Sc-1 Sc …………Sc+1 Sd-1

…………

GroupB

…………

GroupA

…………

GroupC

LOW HIGH

…………

GroupB

…………

GroupA

…………

GroupC

Load balance

LOW HIGH
Sa …………Sa+1 Sb+i-1 Sb+i ………… Sc-j-1 Sc-j ………… Sd-1

Figure 2 Load Balancing Of LBGR

Figure 3 α And µ Before Load Balance

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1708

As shown in part1 and part2, the value of i means
the number of virtual nodes which need to be
migrated from GroupB to GroupA, and the value of
j is the number of virtual nodes which need to be
migrated from GroupB to GroupC. The files that are
stored on these virtual nodes also need to be
migrated to the target groups. The movement of the
virtual nodes is depicted in Figure 2.

As the movement of the virtual nodes may lead to
the change of α of some groups which are close to
the virtual nodes, LBGR adopts a delayed
movement strategy: LBGR will not move those files
which need to be migrated immediately, link files
will be built in the corresponding groups which link
to the actual locations of those files; those files will
be migrated after an appointed time when neighbor
groups are stable.

5. SIMULATIONS

In this section, we simulate 500 groups on LBGR
， and 50000 files are deployed by the
davies_meyer[14] algorithm. We set 2∆ = and

70γ = . The value of α (load balance threshold)
and µ (group utilization) which will be calculated
by each group are presented in Figure 3. We can
figure out that many groups need to balance their
loads because of their high loads.

After adopting our load balance algorithm,
groups with high loads can balance their loads
effectively. Most of the group utilization
percentages are under 70, which can be shown in
Figure 4.

By taking several factors into account, GlusterFS
can balance the loads of subvolumes within a
volume, and can eliminate the need for regular
tuning of the file system to keep volume load nicely
balanced [15]. However, it cannot balance the load
between different volumes.

The loads of the subvolumes in GlusterFS can be
balanced with the load information of the whole
volume. Because the load balance capability of
GlusterFS is similar with the centralized algorithm,
we compare our load balance algorithm with the
centralized algorithm.

We simulate 100 groups and 50000 files on
LBGR and set 2∆ = , and set 70γ = . In the
centralized algorithm, we compute the average
utilization ϕ of the system, and then get the
estimated load +ω ϕ= ∆ ; if 70ω < , we
set 70ω < . The experimental results are shown in
Figure 5. The result that is balanced by our
algorithm is comparable with the result that is
balanced by the centralized algorithm while the load
information we need is much less than that the
centralized algorithm needs.

6. CONCLUSIONS

In this paper, we present LBGR, a novel load
balancing distributed file storage system on the P2P
network. With the information provided by super
nodes, nodes in LBGR can access files accurately
and quickly. In this way, LBGR eliminates the
impact of metadata which can restrict the scalability
of the traditional distributed file systems, and nodes
in LBGR are grouped to improve the stability of the
system. With the load balance algorithm, groups can
balance their loads by migrating virtual nodes

Part 2:
if and

for (j = 1; j Sc-Sb-I; j++)
 = + LSc-j ;

 = LSc-j;

if and
continue

else if or
break

 else if

 break
 end if
 end for
end if

Part 1:
if

for (i = 1; i Sc-Sb; i++)
 = + LSb+i-1 ;

 = LSb+i-1 ;
if and

continue
else if or

 break
 else if

 break
 end if
 end for
end if

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1709

effectively. By applying the reputation system,
nodes can be reasonably selected as super nodes,
candidates of super nodes and storage nodes, to
undertake corresponding jobs. The experimental

results show that our load balance algorithm works
well, and is comparable with the centralized
algorithm.

Figure 4 α And µ After Load Balance

Figure 5 Comparison Of The Group Utilization Percentage Between The Presented Algorithm And The Centralized

Algorithm

ACKNOWLEDGEMENTS

This work is supported by the Science and
Technology Department of Zhejiang Province,
China, under grant No. 2009C14031. We would like
to thank the center for engineering and scientific
computation, Zhejiang University, for its
computational and storage resources.

REFERENCES

[1] Frank Debek, Frans Kaashoek, David Karser,

Robert Morris and Ion Stoica, Wide-area
Cooperative Storage with CFS, in Proc.ACM
SOSP, 35(5):202-215,2001.

[2] A. Rao, K. Lakshminarayanan, S. Surana, R.
Karp, and I. Stoica, Load Balancing in

Structured P2P Systems, Proc. Second Int’l
Workshop Peer-to-Peer Systems (IPTPS ’02),
pp. 68-79, 2003.

[3] B. Godfrey, K. Lakshminarayanan, S. Surana,
R.Karp and I. Stoica, Load Balancing in
Dynamic Structured P2P Systems, INFOCOM ,
pp.2253-2262,2004

[4] Y. Zhu and Y. Hu, Efficient, Proximity-Aware
Load Balancing for DHT-Based P2P Systems,
IEEE Trans. Parallel and Distributed Systems,
16(4): 349-361, 2005.

[5] S. Surana, B. Godfrey, K. Lakshminarayanan,
R. Karp, and I.Stoica, Load Balancing in
Dynamic Structured peer-to-peer Systems,
Performance Evaluation, 63(6):217-240, 2006.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1710

[6] C. Chen and K.C. Tsai, The Server
Reassignment Problem for Load Balancing in
Structured P2P Systems, IEEE Trans. Parallel
and Distributed Systems, 12(2): 234-246, 2008.

[7] H. Shen and C.-Z. Xu, Locality-Aware and
Churn-Resilient Load Balancing Algorithms in
Structured P2P Networks, IEEE Trans. Parallel
and Distributed Systems, 18(6): 849-862, 2007.

[8] H. Hsiao, H. Liao, S. Chen and K. Huang, Load
Balance with Imperfect Information in
Structured Peer-to-Peer Systems, IEEE Trans.
Parallel and Distributed Systems, 22(4): 634 -
649 , 2011.

[9] Song Guang-hua, Chuai jun-na, Yang Bo-wei
and Zheng Yao, QDFS: A Quality-Aware
Distributed File Storage Service Based on
HDFS, Computer Science and Automation
Engineering (CSAE), pp.203-207, 2011.

[10] Bowei Yang, Guanghua Song and Yao Zheng,
An incentive model for voting based on
information-hiding in P2P networks, Journal of
Zhejiang University: Science A, 11(12):967-
975, 2010.

[11] Yang Lei, Huang Hao, Li Ren-fa, Li Ken-li,
Composite P2P Storage System Based on Group
Management, computer science, 37(1):64-67,
2010.

[12] Xiaoning Jiang and Lingxiao Ye, Attack-
resistant Techniques in P2P Reputation Systems,
Networking and Digital Society (ICNDS),
pp.390-393, 2010.

[13] Liu Yumei, Yang Shoubao, Chen Wangming,
Guo Leitao, Wei Dong, The research of the
Reputation-Aware SuperNode Selection
Algorithm in P2P system, Journal of the
Graduate School of Chinese Academy of
Sciences, 25(2):197-203, 2008

[14] J. Black, P. Rogaway and T. Shrimpton, Black-
Box Analysis of the Block-Cipher-Based Hash-
Function Construction from PGV, In Advances
in Cryptology – CRYPTO '02, volume 2442 of
Lecture Notes in Computer Science, pp.320-
335, 2002.

[15] Information on http://www.gluster.org

http://www.jatit.org/

