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ABSTRACT 
 
Synonymous codon usage is an extensive phenomenon found across species, including human.  
Understanding of this phenomenon may aid in better understanding of gene expression mechanism, which 
has a practical utility in biomedicine research such as combating diseases.  This research employed a 
computational approach to study the synonymous codon usage and mutation distribution in Card15 gene.  
The obtained results characterize the main factor that drives the codon usage in Card15 gene and the 
extensiveness of mutation.  This computational insight into Card15 gene may shed light on the 
immunologic mechanisms of human against pathogen such as viruses.         
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1.  INTRODUCTION 
  

Because of the degeneracy of genetic code, most 
amino acids (except Met and Trp) are encoded by 
more than one codon, which is known as 
synonymous codon [1-2].  Synonymous codons are 
used preferentially in different organisms, with 
some codons used more often than others [3-4].  
This phenomenon is known as codon usage bias [5], 
which could be influenced by various factors such 
as mutational bias [6-8], translational selection [8-
10], tRNA abundance [11,13], G+C content [12], 
temperature [12], genome segmentation [14], and 
CpG islands [15].  Despite these factors that shape 
codon usage, it is widely agreed that the codon 
usage in unicellular organisms is the result of the 
balance between mutational biases (either GC- or 
AT-inclined) and translational section [15].  In 
general, unicellular organisms such as E. coli 
display a pattern of high codon usage bias when the 
genes are highly expressed.  The converse is true 
when the gene expression level is low.  Mutational 
bias plays a role as a major factor when the genomic 
composition is biased (e.g., high G+C or A+U 
content).  Different patterns of synonymous codon 
usage were observed in vertebrate.  However, it was 
reported that some species exhibit the identical 
factor of codon usage as the unicellular organisms 
[15].  It was also observed that, for cold-blooded 
organisms, the G+C content at third codon position 
appears to be the main factor that shapes codon 
usage [15].  However, the determining factors of the 

synonymous codon usage in most organisms 
remained elusive [16].    

 
Because of the wide disparity in codon usage 

pattern of multicellular organisms, it is important to 
study the synonymous codon usage in order to 
understand the evolution and gene expression of an 
organism.  This study delimits to study the 
synonymous codon usage in Card15 gene, which is 
a gene that codes for NOD2 protein in the human 
immune system.  NOD2 protein is a crucial 
pathogen sensor that detects the microbial molecular 
patterns and activates the downstream signaling 
cascade for immunologic defense [18-20].  Point 
mutation in the NOD2-encoding Card15 gene will 
result in the attenuation of NF-ĸB activation [21], 
which is an essential transcription factor that 
regulates the expression level of proinflammatory 
cytokines and other major cytokines of 
immunologic sentinels [22-26].  Therefore, 
understanding of the relation between mutation and 
synonymous codon usage pattern may shed light 
into the gene expression mechanism.  

 
Although most of the synonymous codon usage 

investigations involve the whole genome in the 
study, it was reported that the synonymous codon 
usage can vary to certain extents across genes 
within an organism [17].  Therefore, we focus on 
the identification and analysis of the synonymous 
codon usage in a single gene, which is Card15, in 
human.  In addition, the mutation distribution of 

http://www.jatit.org/
mailto:shtee@mmu.edu.my


Journal of Theoretical and Applied Information Technology 
 28th February 2013. Vol. 48 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
1344 

 

Card15 is also studied using a computational 
approach.   

 
 

2.  METHODS 
 
The nucleotide sequence of Card15 gene was 

retrieved from GenBank of National Center for 
Biotechnology Information (NCBI).  The open 
reading frame of Card15 was identified and the 
internal stop codons were removed.  To analyze the 
synonymous codon usage in Card15, we used the 
relative synonymous codon usage (RSCU), a metric 
formulated by Sharp et al. [27]: 

 

RSCU ij = 
∑ =

ni

j iji

ij

Xn

X

1
)/1(

  (1) 

 
where Xij is the number of the jth codon for the ith 

amino acid encoded by ni synonymous codons. 
RSCU captures the ratio of observed number of 
occurrence of a codon to the expected random (non-
bias) synonymous codon usage.  Amino acid Trp 
and Met always yield 1.0, because they do not have 
alternative synonymous codon.  RSCU value of a 
codon that is higher than 1.0 implies that there is a 
higher preferential usage than the expected random 
usage.  Three stop codons were excluded from 
analysis because they do not code for amino acids. 

 
The effective number of codon (ENC) [28] was 

computed to measure the general non-uniformity of 
synonymous codon usage in Card15.  The values of 
ENC are in the range between 20 (only one codon is 
used among the synonymous codon for each amino 
acid) to 61 (all synonymous codons are equally used 
for each amino acid).  The lower the ENC value, the 
more bias the codon is used in gene expression. 

 
Codon bias index (CBI) [29] was computed to 

measure the directional codon bias, which is the 
extent to which a ribosome uses a subset of optimal 
codons in translation.  CBI value for extreme codon 
usage bias is always 1.0, while a gene which 
exhibits a random codon usage pattern will yield 0 
for its CBI value.  There are cases where the CBI 
value being negative, implying that the number of 
optimal codon usage is less than the expectation. 

 
COSMIC database [30] was used to mine the 

mutated nucleotides in Card15 gene.  The 
extensiveness of the somatic mutation in the form of 
insertion/deletion (Indel) and substitution was 
studied. 

3.  RESULTS AND DISCUSSION 
 

RSCU values were calculated for all codons in 
Card15.  RSCU values greater than 1.0 implies that 
the investigated codon is used more frequently than 
expected; the reverse is true when RSCU value is 
less than 1.0.  A list of RSCU values and the 
number of occurrence of each sense codon in 
Card15 gene are enumerated in Table 1.  The 
preferentially used codons for each amino acid are 
displayed in bold font style. 

 
Table 1. RSCU Values For Codons Of Card15 Gene 

Amino 
acid 

Codon No. of  
occurrence 

RSCU  
value 

Phe 
 

UUU 
UUC 

22 
19 

1.07 
0.93 

Leu UUA 
UUG 
CUU 
CUC 
CUA 
CUG 

9 
25 
25 
24 
4 
41 

0.42 
1.17 
1.17 
1.13 
0.19 
1.92 

Ile AUU 
AUC 
AUA 

11 
6 
12 

1.14 
0.62 
1.24 

Met AUG 34 1.00 
Val GUU 

GUC 
GUA 
GUG 

15 
14 
7 
35 

0.85 
0.79 
0.39 
1.97 

Ser UCU 
UCC 
UCA 
UCG 

36 
54 
39 
10 

1.13 
1.69 
1.22 
0.31 

Pro CCU 
CCC 
CCA 
CCG 

30 
50 
37 
16 

0.90 
1.50 
1.11 
0.48 

Thr ACU 
ACC 
ACA 
ACG 

27 
31 
34 
12 

1.04 
1.19 
1.31 
0.46 

Ala GCU 
GCC 
GCA 
GCG 

25 
37 
33 
5 

1.00 
1.48 
1.32 
0.20 

Tyr UAU 
UAC 

11 
6 

1.29 
0.71 

His CAU 
CAC 

17 
19 

0.94 
1.06 

Gln CAA 
CAG 

18 
42 

0.60 
1.40 

Asn AAU 
AAC 

18 
8 

1.38 
0.62 

Lys AAA 
AAG 

22 
24 

0.96 
1.04 

Asp GAU 
GAC 

7 
15 

0.64 
1.36 

Glu GAA 
GAG 

10 
14 

0.83 
1.17 

Cys UGU 
UGC 

33 
57 

0.73 
1.27 

Trp UGG 66 1.00 
Arg CGU 4 0.20 
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CGC 
CGA 
CGG 

8 
4 
16 

0.41 
0.20 
0.81 

Ser AGU 
AGC 

19 
34 

0.59 
1.06 

Arg AGA 
AGG 

32 
54 

1.63 
2.75 

Gly GGU 
GGC 
GGA 
GGG 

12 
27 
28 
29 

0.50 
1.13 
1.17 
1.21 

 
We observe that the preferentially used codons 

tend to be G+C at the third synonymous position 
(GC3s), which yields a value of 54.90%.  Besides, 
the GC content is 55.8%, which is relatively higher 
than AU content.  Taken GC3s and GC content 
together, it appears that mutational bias is the factor 
that drives the synonymous codon usage bias in 
Card15 gene.  From Table 1, we observe that codon 
AGG of Arg is the most preferentially used 
synonymous codon (RSCU=2.75), while codon 
CUA of Leu is the least preferentially used 
synonymous codon (RSCU=0.19).    

  
It is interesting to compare GC3s of Card15 gene 

with other genes.  A study carried out by Sau et al. 
[31] showed that the mean GC3s value of 16 
Staphylococcus aureus phages is as low as 23%, 
which does not play a role in shaping the 
synonymous codon usage of these phages.  Gu et al. 
[32] reported a low GC3s value for transmissible 
gastroenteritis virus (27.02%) and avian infectious 
bronchitis virus (26.09%), while a GC3s value for 
porcine reproductive and respiratory syndrome virus 
(53.76%) is almost at the same level as our 
observation of Card15 gene.  The low GC content 
(37.52%) observed in severe acute respiratory 
Coronavirus (SARSCoV) genes led Gu et al. [32] to 
conclude that A+U codons are preferentially used.  
Romero et al. [33] reported a correlation between 
GC3s and the synonymous codon usage in three 
species of fishes from the family Cyprinidae, with 
high GC3s value for B. rerio (57%), C. carpio 
(58%), and C. auratus (57%).       

 
To measure the extent of mutational bias, we 

computed ENC value.  High ENC value, which is 
52.28, was observed in Card15 gene.  This implies 
that though GC3s drives the preferential usage of 
synonymous codon in Card15 gene, the usage bias 
is quite low.  This could be due to a lesser 

mutational pressure on the gene.  Romero et al. [33] 
have reported an ENC value of 33, 29, 31 for three 
species of fishes B. rerio, C. carpio, and C. auratus, 
respectively, demonstrating a very biased pattern of 
synonymous codon usage in these fishes.  Zhao et al. 
[34], on the other hand, reported a moderately 
biased pattern of synonymous codon usage in 11 
human bocavirus (HBoV) isolates, with WLL-3-
VP2 gene (ENC=41.27), WLL-2-NP1 gene 
(ENC=47.96), and BJ3722-VP1 gene (ENC=41.97), 
among others.  Das et al. [35] have observed a less 
biased synonymous codon usage pattern in several 
adenoviruses, including canine adenovirus 
(ENC=54.67), fowl adenovirus A (ENC=52.36), 
human adenovirus A (ENC=54.15), and human 
adenovirus B (ENC=51.88).  Interestingly, despite 
belong to the same Adenoviridae family, different 
adenoviral species display different extent of codon 
usage bias.  Das et al. [35] also reported moderately 
biased codon usage in bovine adenovirus D 
(ENC=44.46), human adenovirus C (ENC=47.21), 
and ovine adenovirus D (ENC=42.56); besides, 
highly biased codon usage was found in porcine 
adenovirus A (ENC=38.97).  The variation of ENC 
value in different species of the same family 
suggests that the synonymous codon usage bias 
varies across organisms. 

 
Codon bias index (CBI) [29] was computed to 

measure the directional codon bias in Card15 gene, 
which is the extent to which a ribosome uses a 
subset of optimal codons in translation.  We have 
obtained -0.012 as CBI value, implies that the 
optimal codon usage in Card15 gene is less than the 
norm.  This fact has further corroborated the 
conclusion of a less biased synonymous codon 
usage in Card15 gene, as indicated by high ENC 
value. 

 
We used COSMIC database [30] to mine the 

mutated nucleotides in Card15 gene.  Mutations in 
gene could lead to the change of phenotype and the 
pathogenesis of various intractable diseases such as 
cancers [36-39], neurological disorders [40], and 
cardiovascular diseases [41-42].  We retrieved the 
mutation data for substitution at the coding strand.  
There was no insertion/deletion form of mutation 
found in Card15 gene.  Figure 1 illustrates the 
substitution that occurs at the coding strand. 
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Figure 1. Distribution Of Substitution At The Coding Strand 

 
Figure 1 demonstrates various mutation types in 

the form of substitution that occur at the coding 
strand.  These mutations have significant impacts 
because the coding strand is used by the ribosomes 
for protein translation, mutation of which will result 
in the change of amino acid.  From Figure 1, it is 
found that four out of five mutated nucleotides are 
either guanine or cytosine.  There are five cytosines 
were found mutated to thymine, following with four 
guanine mutated to adenine.  Among a total of 11 
mutations, 5 were found at the functional domains.  
It was found that there is 1 mutation at the N-
terminal Card domain (position 233; G>C), 3 
mutations at the central Nacht domain (position 976 
C>A; position 1121 T>C; position 1195 G>A), and 
1 mutation at leucine-rich repeat domain (position 
2776 C>T).  Mutations at these functional domains 
may have impacts on the signaling pathway of 
Card15-coded NOD2 protein. 

   
4. CONCLUSION 

 
This study has investigated the synonymous 

codon usage patterns and the mutation distribution 
of Card15 gene using a computational approach.  It 
was found that mutational bias is the factor that 
drives the synonymous codon usage bias in Card15 
gene.  However, high ENC value implies that 
though GC3s drives the preferential usage of 
synonymous codon in Card15 gene, the usage bias 
is quite low.  The obtained negative CBI value 
further corroborates the fact that synonymous codon 
usage is less biased in Card15 gene.  Our use of 
COSMIC database demonstrates that mutations 
occur at the functional domains of Card15 gene.  
Future work is required to examine the impact of  

 
these mutations on the NOD2 signaling pathways 
and the pathogen immuno-surveillance.  
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