
Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1633

STUDY ON SOFTWARE TESTING SUFFICIENCY BASED ON
PROGRAM MUTATION TECHNOLOGY

1NING JINGFENG , 2FAN XIAOLI

1College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012,

China
2China United Netwofk Communications Corporation Limited of Baicheng branch

Email:1 ningjingfeng@mail.ccut.edu.cn，218643601115@wo.com.cn

 ABSTRACT

—Software testing sufficiency means that the software’s performance on limited testing data can represent
its performance on all input data. Ideally, in software testing, the testing should be carried on till all errors
in the program are detected and removed. As a testing strategy to measure the completeness of the test
cases set, mutation testing is a defects-oriented unit testing technology, and a feasible software testing
method to generate a complete set of test cases. The article systematically simulates the different defects in
software by using mutation operators to create mutants, and then construct testing data set to be able to kill
these mutants. It analyzes the procedures of mutation testing and the generation of mutation operators with
specific examples. Experiment indicates that the program mutation technology has enhanced the test cases,
which greatly improved the software testing sufficiency.

Keywords ：Program Mutation, Software Testing, Mutation Operators, Testing Sufficiency

1. INTRODUCTION

On one hand, the aim of software testing is to

detect the errors and defects in the software as
many as possible, and give definite opinions on
whether the final software products meet the
specified requirements or not; on the other hand, is
to find maximum underlying problems on the tested
software products and their executing process with
minimum cost and time [1]. The sufficiency criteria
of software testing have qualitative description
theoretically, for example: there are limited
sufficient test sets for any software; the more the
testing is, the less the sufficiency growth for further
testing is, etc. However, it is still a research topic
that needs continuous practice on quantitative
evaluation [2]. To measure the sufficiency of the
software testing process [3], the first is to solve the
measurement index problem [4]. This article
analyzes the evaluation testing sufficiency and
enhances test sets through program mutation
technology, which is an effective technology to
evaluate the testing performance. This technology
provides a set of strict criteria for testing evaluation
and testing enhancement. Even the test set meets
certain testing sufficiency criteria, such as MC/DC
covering criteria, most criteria are not sufficient for
program mutation.

2. SOFTWARE TESTING SUFFIENCY

The aim of software testing is not to verify its

correctness, but to detect errors. To evaluate the
degree of the testing process can be measured by
testing sufficiency. The followings are the relevant
definitions of software testing sufficiency.

Definition1. Software testing sufficiency:
Suppose software P is to meet functional
requirements set R, recorded as （P，R） . R

includes n requirements， recorded as R 1，R 2 ，

…，R n ；suppose test set T includes K testing
cases to verify whether P meets all requirements in
R, and suppose each testing case in T has executed
P, and P runs correctly.

 C: If for each requirement r in R, at least one
case in test set T proves that P meets r, it is
considered that T is sufficient against (P, R).

Definition 2. Measurement of testing
sufficiency: Given test set T and covering domain

C e , which has n elements, n≥0. What we call T

covers C e means each element e in C e is tested by
at least one testing case in T. If T covers all

http://www.jatit.org/
mailto:ningjingfeng@mail.ccut.edu.cn

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1634

elements in C e , it is considered as T is sufficient
against criterion C; if T only covers K elements in

C e , k＜n, it is considered as T is insufficient
against C. Fraction k/n represents T’s sufficiency
against C, also called T’s coverage rate against C, P
and R.

3. MUTATION TESTING

Program mutation testing method can be traced

back to the late 1970s, which was originally
proposed by DeMillo, Lipton and Sayward. It is
based on Competent Programmer Hypothesis
(CPH) and Coupling Effect Hypothesis, which is
defects-oriented software testing method [5-6]. The
key to mutation testing is how to generate the
needed test data. At present, there are mainly two
automatically generated methods to kill the test
data of the mutants: Constraint-Based Test data
generation (hereinafter referred to as CBT method)

[7], and Dynamic Domain Reduction test data
generation (hereinafter referred to as DDR
method) [8].

3.1 Basic Definitions Of Mutation Testing
Definition 3. Mutation is a behavior of

modifying program even in small ways. P refers to
the tested original program, M refers to the
program after slight modification of P, then M is
called as P’s mutant, P is called as M’s parent.
Suppose the grammar of P is correct, and is able to
pass compiling, then M is sure to be grammatically
correct. The behavior represented by M is the same
as that of P.

Definition 4. The killed mutant has a test case t
(test cases set T), when one mutant represents a
different behavior characteristic from P, the mutant
is killed.

∃t ∈T| f (m，t) ≠f (P，t)

Definition 5. Live mutant for any test case t ∈ T,
mutant m and p always represent the same
behavior, and then the mutant is live.

f (m，t) = f (P，t) ∀t∈T

Definition 6. Mutation score is used to measure
the capability of test case set to detect errors, use
the following formula to calculate:

MS (P，T) =
EM

K
−

Where: K is the number of the killed mutants; M
is the total number of mutants; E is the number of
mutants equivalent to the original program.

There are two possibilities for mutants to be
“live”: one is the mutants are equivalent to the
original program; second is the modified code is
not executed, i.e. The present set of test cases is
not sufficient to detect the errors. Hence, through
this mutation score (MS), quantitative analysis on
the sufficiency of the set of test cases can be made
to help us to create new test cases for more
sufficient testing on the program.

For program p, M is a mutant generated from the
mutation operation of its statement S, if the
specified test case t can kill M, then the test case t
is effective, if not, t is ineffective. If the following
3 broad conditions, t is sure to kill M:

C 1 Reachability：
Mutant M is generated from mutation of

executable statement S in program P, other
statements in the mutant are the same as the
original program, if test case t fails to execute the
mutation statement S in M, the operating result of t
on P and M must be consistent, so it cannot kill M.

C 2 Necessity:
If test case t intends to kill M, t must create a

different state at the same point from the original
program after executing mutation statement S.
Mutant M after statement S has the same code with
the original program P, if after executing the
mutation statement, it has the consistent state with
the original program after executing the statement
at the same point, the operating state of the two
programs are inevitably consistent, thus failing to
kill M. Necessary condition doesn’t contain
reachable condition, which is described by the
predicate expression of mutation statement.

C 3 Sufficiency：
The inconsistency of final operating state of test

case t for Mutant M and original program P is the
sufficient condition for t to kill M.

3.2 Mutation Operators
The key to mutation testing is how to generate

mutants, while the mutation operator is the basis of
generating mutants. Mutation operator is a
production device or a program transformational
rule. It transforms one grammatical structure into
another grammatical structure, and ensures the
correct grammar of the program after conversion,
but not to keep the conformity of the semanteme.
Mutation operators can be done aiming at different

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1635

grammatical items, for example, relational
operators, predicate, arithmetic expression and
other sections to design mutation operators. The
mutation operators mentioned in the article use the
mature mutation operators as reference from the 22
kinds of mutation operators in the traditional
program mutation, the details are as follows:

TABLE I. Mutation Operators

Name of mutation
operators

English description

VRP Value Replacement
COR Comparator Operator

Replacement
LCR Logical Connector

Replacement
AOR Arithmetic Operator

Replacement

3.3 Basic Principle Of Mutation Testing

The basic principle of mutation testing is to
define a set of mutation operators, simulate the
errors in the program through the large amount of
mutants generated from mutation operators’
applying to the source program, apply mutation
operators to the source program to create a set of
mutants, mutation operator is a small grammatical
change on the source program. Operate the source
program and mutants on the designed test cases, if
the results are different, the mutants are said to be
killed. Generally the effectiveness of the test cases
is evaluated by the ratio of the killed non
equivalent mutants. Mutation on one section of a
program at a time is called single mutation, while
mutation on k sections of a program is called K
mutations. Multiple mutations on the same-location
are called same-location multiple mutations.

4. EVALUATION PROCEDURES OF
TESTING SUFFICIENCY BASED ON
MUTATION TECHNOLOGY

P is the program to be tested, T is P’s test set,

and R is the requirement that P must meet. Given
program P and test set T, quantitative evaluation on
the excellent degree of T by calculating P’s
mutation value can be obtained. Mutation value is a
numerical value between 0 and 1. If the mutation
value is 1, it indicates test set T is sufficient against
mutation criteria, while the mutation value is less
than 1, it indicates T is insufficient. An insufficient
test set can be enhanced through adding test cases
to make its mutation value increase.

Evaluation procedures of test set sufficiency
using mutation technology are as shown in Fig. 4-
1. Among them, solid lines direct to the next
dealing procedure, and dotted lines represent the
flow between database and dealing procedure. L
represents live mutants, D represents distinguished
mutants, and E represents equivalent mutants. P (t)
represents the behavior when program executes test
case t, and M (t) represents the behavior when
mutants execute test case t.

Fig. 4-1 Evaluation Procedures Of Test Set Sufficiency

Based On Mutation Technology

1. Execution program. The first step to evaluate
test set T against the sufficiency of (P, R) is to
execute P against each test case in T. P (t)
represents the behavior being observed when P
executes t. Generally, the behavior of program P is
indicated as the set of output variable in P. Of
course, the behavior observed might also be related
to the performance of program P. If program P has
executed each test case in test set T, and P (t) has
recorded in database, step 1 is not necessary.
Anyhow, the final results of step 1 are a P (t)
database for all t ∈T. Now, suppose fo
(t) meets their requirement R. If P (t) is found to be
incorrect, program P must be modified, then re-
execute step 1. It must be pointed out, after finding
program P against test set T is completely correct,
the evaluation procedures of testing sufficiency
using mutation technology are really begin.

2. Generate mutants. The second step to evaluate
the test set T against the sufficiency of (P, R) is to
generate mutants.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1636

3. Select next mutant. In step 3 and step 4, select
the next mutant to be considered, which must be
the mutant not been considered before. Note from
now on, mutants in L will be cyclically selected, till
each mutant is selected. Obviously, when only one
mutant has not been selected in L, only this one can
be selected, which has finished in step 3. If several
live mutants have not been selected in L, just
selecting any one of them, and removing the
selected mutant from L.

4. Select next test case. After selecting mutants
M, now we need try our best to find a test case
from test set T to distinguish M from their parent
program. Therefore, we need to execute mutants M
against test case in T, thus entering into another
cycle, i.e. execute mutants M against each selected
test case. When the cycle finishes, either all test
cases are executed, or mutants M are found
different from parent program by a certain test
case, no matter what cases they are, the cycle
finishes.

5. Execution and classification of mutants. Up to
now, mutants M have been selected to execute test
case t1. In step 7, use test case t to execute mutants
M; in step 8, check if the results are the same from
executing M and executing P against test case t.

6. Live mutants. When no test cases in test set T
can distinguish mutants M from their parent
program P, M are put back into live mutants set L.
Any mutant that has been put back into live
mutants set L will not be selected again, for it has
been selected for one time.

7. Equivalent mutants. After executing all
mutants, check shall be made whether there are live
mutants or not, i.e. check whether L set is non-
empty or not. If there are still live mutants, their
equivalency with their parent program shall be
checked. If for each test input against program P
input domain, mutants M’s behavior are in
conformity with P, it is called mutants M are
equivalent to their parent program P.

8. Calculation of mutation value. This is the last
step to evaluate the test set T against (P, R)
sufficiency. Given set L, D and E, using MS (T)
represents the mutation value of test set T, the
calculation is as follows:

MS (T) =
||| DL

D
+

It shall be noted that set L only includes live
mutants, and these mutants are non equivalent to
their parent program. Just as the above formula

shown, the mutation value is always between 0 and
1.

Suppose ︱M︱represents the total number of
mutants generated in step 2, the following formula
can also be used to calculate the mutation value:

MS (T) =
||| EM

D
−

If test set T is able to distinguish all mutants
besides equivalent mutants, ︱L︱=0 and mutation
value MS (T) is 1. If T is unable to distinguish any
mutant, ︱D︱=0 and mutation value MS (T) is 0.

5. EXPERIMENTAL ANALYSIS

Consider the following program P.
1 Begin
2 Int x，y,
3 Input (x， y),
4 If (x < y)
5 Then
6 Output(x+y),
7 Else
8 Output(x*y),
9 End
P is used to compute function (x，y).



 <+

=
elseyx

yxyx
yx

*
if

),(f

Suppose the following test set is used to test P:

pT =





















>−=−=
>==<
>==<
>==<

2,1:
0,1:
1,0:
0,0:

4

3

2

1

yxt
yxt
yxt
yxt

For all t∈T p , their P(t) database list is shown as

Table Ⅱ:
Table Ⅱ P (T) Database List

Test
case(t)

Expected
output f(x，

y)

Observed output
P(t)

t1 0 0
t2 1 1
t3 0 0
t4 2 2

Suppose the following mutants are changed from

program P through the following procedures: (a)
change arithmetic operators, replace all addition
operators （ + ） with subtraction operators (-),
replace all multiplication operators （ * ） with

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1637

division operators（ /） ; （ b）Change integer
variable, replace integer variable v with v+1. Using
the method, totally 8 mutants of program P are
obtained, which are marked as M1 to M8 as shown
in the following table.

Totally 8 mutants are obtained in the above
table, which are called live mutants. Then we get a
set

L ={M1, M2, M3, M4, M5, M6, M7, M8}
Select M1 mutant，remove M1 from L, we get
 L = {M2, M3, M4, M5, M6, M7, M8}
Input test case in Tp, till it is distinguished from

parent program. Select t1 :< x=0，y=0>.

Table Ⅲ Mutants Of Program P
Source
program
line No.

Original
statement

Mutants
identifier

Mutants
statement

1
2
3
4

5
6

7
8

9

Begin
Int x，y
Input (x，
y)
If (x < y)

then
Output(x+y)

Else
Output(x*y)

 End

M1
M2

M3
M4
M5

M6
M7
M8

None
None
None
If (x+1 < y)
If (x < y+1)
None
Output(x-y)
Output(x+1+y)
Output(x+y+1)
None
Output(x/y)
Output((x+1)*y)
Output(x*(y+1))
None

Table Ⅳ Statistical Table Of Execution Results For Test
Cases

 t1 t2 t3
t4

D

Parent
program

P(t) 0 1 0
2

{ }

Mutation
program

M1(t)
M2(t)
M3(t)
M4(t)
M5(t)
M6(t)
M7(t)
M8(t)

0 0*
NE NE
0 1 0
2
0 2*
NE NE
0 2*
NE NE
0 -1*
NE NE
0 1 0
0*
0 1
1* NE
U* NE
NE NE

{M1}
{M1}
{M1，M3 }
{M1，M3 ，
M4 }
{M1，M3 ，
M4 ，M5 }
{M1，M3 ，
M4 ，M5 ，
M6 }
{M1，M3 ，
M4 ，M5 ，
M6 ，M7 }
{M1 ， M3 ，
M4 ， M5 ，
M6 ,M7,M8}

Execute M1 against t1, for given input x=0，
y=0， the output result is 0 for condition x+1<y is
false, hence P (t1) =M1 (t1) =0, which means test
case t1 is unable to distinguish M from P. When t=
t1, condition P (t) =M (t) is true. Continue to select
the next test case t2, execute M1 against t2, and
find P(t2)=1 ， M1(t2)=0 ， P(t2)≠M1(t2) ， add
mutant M1 to the distinguished or killed mutants
set D. then select mutant M2， execute M2 against
test case in test set Tp, till M2 is distinguished or
all test cases are executed in Tp. The summary of
execution results is shown in table 4. The column
D in the table represents the distinguished mutants
set. Except for M2 in the table, test set Tp
distinguished all mutants. While initially all
mutants are live. NE represents the mutant in the
line hasn’t executed the corresponding test case in
the column. M8 is distinguished by test case t1; its
output is no definition for it is divided by 0, which
is marked by “U”. This means that P (t1) ≠M8
(t1), meanwhile the first test case that distinguished
mutants is marked with asterisk (*).

In this application, only M2 hasn’t been
distinguished by the test case in the test set, and
becomes live mutant. In this case, only one live
mutant, seven distinguished mutants, and no
equivalent mutants, then |D|=7， |L|=1， |E|=0，
calculate MS (TP) =7/ (7+1) =0.875.

Judge whether M2 and P are equivalent or not.
Analyze M2 and P, suppose fp (x，y) represents
the function calculated by P, gm2 (x，y) represents
the function computed by M2, as shown in the
followings:

Fp (x，y) =


 <+

elseyx
yxifyx

*

gm2 (x，y) =


 +<+

elseyx
yxyx

*
1if

To find if M2 and P are equivalent then change
to find the condition x=x1 and y=y1 for fp (x1，
y1) ≠gm2 (x1，y1). To make fp (x1，y1) ≠gm2
(x1，y1), the following two conditions (identified
as C1 and C2) must establish.

C1: (x1＜y1) ≠ (x1＜y1+1)

C2: x1*y1 ≠x1+y1

Design a test case t :< x=1， y=1> meet C1 and
C2 simultaneously, it can be prove P (t) =1，M2 (t)
=2 through calculation, which shows that M2 can
be distinguished by at least one test case.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1638

Therefore, M2 is not equivalent to its parent
program P. Add t into Tp, the improved Tp is
obtained, Tp includes 5 test cases, MS(TP′)=1. So
the test set Tp is enhanced through adding test case
t.

6. CONCLUSION

The key problem of testing sufficiency is the

capacity to check faults. To introduce mutation
testing technology that can be used in unit and
integration testing stages into software testing
enables the effectiveness of evaluation of the
existing testing sufficiency. The article analyzes the
procedures of software testing sufficiency based on
program mutation technology through test cases,
which greatly improves the accuracy and reliability
of judgment and decision-making for the software
testing sufficiency. At present, the article only
makes experiments on several traditional mutation
operators, so the experimental data obtained have
certain limitation, and the article only makes
mutation testing against source code, to some
extent, it is not comprehensive, in the future work,
we will make further research on these problems, in
hope of improving the efficiency of mutation
testing.

ACKNOWLEDGMENT

The authors wish to thank Ningjingfeng and

Huming.

REFERENCES

[1] BEIZER B. Software testing and quality
assurance [M]. New York: International
Thomson Computer Press, 1996.J. Clerk
Maxwell, a Treatise on Electricity and
Magnetism, 3rd ed., vol. 2. Oxford: Clarendon,
1892, pp.68–73.

[2] BURNSTEIN I, SUWANASSART T,
CARSON R. Developing a testing maturity
model for software test process evaluation and
improvement [C] ∥International test
conference, 1996.K. Elissa, “Title of paper if
known,” unpublished.

[3] BLACK R. Software Testing Process
Management [M]. Beijing ： China Machine
Press， 2003 - 10.

[4] FENTON N, PFL EEGER S L. Software
metrics-a rigorous and practical approach [M].
2nd ed.1997.

[5] Zheng Ren-Jie. Computer Software Testing
Technologies. Beijing: Tsinghua University
Press， 1992(in Chinese).

[6] Zhu Hong， Jin Ling-Zi. Quality Assurance
and Testing of Software. Beijing: Science Press
， 1997(in Chinese).

[7] DeMillo R A， Offutt A J. Constraint-based
automatic test data generation. IEEE
Transactions on Software Engineering， 1991
， 17(9): 900-910.

[8] Offutt A J， Jin Z， Pan J. The dynamic
domain reduction procedure for test data
generation. Software: Practice and Experience
， 1999， 29(2): 167-193.

[9] Shan Jinhui， Gao Youfeng， Liu Minghao，
et al. A new approach to automated test data
generation in mutation testing [J]. Chinese
Journal of Computers， 2008， 31(6):1025-
1034 (in Chinese).

[10] Offutt a J， Pan J. automatically detecting
equivalent mutants and infeasible paths [J].
Software Testing，Verification and Reliability
， 1997， 7(3): 165-192.

http://www.jatit.org/

	1. INTRODUCTION
	2. SOFTWARE TESTING SUFFIENCY
	3. MUTATION TESTING
	3.1 Basic Definitions Of Mutation Testing
	3.2 Mutation Operators
	3.3 Basic Principle Of Mutation Testing
	4. EVALUATION PROCEDURES OF TESTING SUFFICIENCY BASED ON MUTATION TECHNOLOGY
	5. EXPERIMENTAL ANALYSIS
	6. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

