
Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1573

A RAPID GENERATION SCHEME OF LARGE PRIMES

LINA ZHANG
Department of Computing Science and Technology, Xi’an University of Science and Technology, Xi’an

710054, Shaanxi, China

ABSTRACT

RSA is by far the most widely adopted standard in public key cryptography algorithm. Its security depends
on the Integer Factorization Problem, that it is very easy to calculate the product of two large prime
numbers, but the decomposition the product and get the prime factors are very difficult. Therefore, the
generations of large primes are important research field. This paper presented a rapid generation scheme of
it, and the techniques for the related software implementation were presented. To speed up the modular
multiplication and squaring, Montgomery's algorithms were used with sliding window method. Three
pretreatments were also described in details. In view of prime generation of RSA, a series of design
methods for software implementation was proposed and give the optimization programs.

Keywords: Prime Generation, Rabin Miller Test, RSA

1. INTRODUCTION

The public key cryptography algorithm (also
named the asymmetrical crypto-algorithm) uses a
pair of keys. The key uses for encryption called
public key, which could be gotten by anyone is
different from the key for decryption. The
decryption key is as the private key, which needed
to be kept secret and could not be calculated
through the public key (at least in a long time of the
reasonable hypothesis). Since 1976, the famous
scholars Diffie and Hellman invented public key
cryptography; the related technology has gained
considerable development and widespread
application [1-4]. This idea made the researchers
seek for various mathematical difficult problems to
construct one kind of function to be called the
trapdoor one way function [5]. The trapdoor one
way function is the foundation of the public-key
cryptography algorithm; the problem to constitute
trap-door one-way function is the cornerstone of the
security. Currently, there are three types of
mathematical problems known can be used to
construct the public key cryptography. One is the
Integer Factorization Problem (IFP). The second is
the Discrete Logarithm Problem in finite fields
(DLP), and the other is the Elliptic Curve Discrete
Logarithm Problem (ECDLP).

RSA [6] was proposed by Rivest, Shamir and
Adleman in 1977. It was the first successful public-
key crypto system in theory and enable to both
encrypting and signing. RSA's security depends on
the IFP problems that it is very easy to calculate the
product of two large primes, but the decomposition
the product and get the prime factors are very

difficult. In order to obtain the public key and
private key in RSA, it must first construct two large
primes. The security of RSA is closely related to
the use of it. Therefore, the study of the rapid
generation of large primes is the basis of RSA and
of great practical significance.

2. BRIEF INTRODUCTION TO RSA

The RSA algorithm is described as follows:
(1)Select two large random primes: p and q.
(2)Calculate * ,n p q= () (1)*(1)n p qϕ = − − .
(3)Select a number 1 ()e nϕ< < , such

that (, ()) 1GCD e nϕ = .
(4) Calculate d, such that * 1mod ()d e nϕ≡ .
This system can be abbreviated as RSA(n,e) ;

where <n,e> are public keys, and could be open for
anyone want to use, <n,d> are private keys, which
are needed to be kept secret.

When encrypt let the message M, 0 M n≤ <
computed the cipher modeC M n≡ .

When decrypt, let the cipher C,
0 C n≤ < Computed ' moddM C n≡ .

By above algorithm, it must first generate two
large primes before construct the system parameters
such as the public key, the private key and the
modulus n. The time of generating primes almost
took up most of the time that the key generation has
had. In addition, the length of the primes
determined the length of the modulus n, which
determined the security for the system.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1574

3. ELEMENTARY THEORY

3.1 The Basic Processes of Primes Generation
The general flow of generating prime is as shown

in Fig. 1. At first, it needed to generate a random
number in a given length, set its top and bottom
numbers both to “1”. The first “1” was used to
ensure that the length of the random number was as
desired, the second “1” could ensure that the
random number is odd.

Followed by a method of pre-screening, it
controlled the selecting steps of the initial random
number, and then put the testing random numbers
into the testing until you found a random number so
far. According to prime distribution theorem, it
could always find a prime within a certain range so
long as has assigned the random number seed.

Figure 1.The Basic Processes Of Generating Primes.

Figure 1 shows that the most critical step was to
determine whether the given number n was a prime.
The methods for primality testing could be divided
into two board categories: deterministic algorithms
and probabilistic algorithms. The number generated
by the latter are only pseudo-primes, despite the
possibility to composite was unlikely but still
exists. Their advantages were that there was no
regularity, and the speed is relatively fast.

The deterministic primality testing algorithms
include original trial division, the Lucas theorem-
based approach, AKS, etc. [7]. AKS was to be
released in 2002 by three Indian scientists Agrawal,
Kayal and Saxena, which were so far the first strict
primality proved algorithm in polynomial time. The
probabilistic algorithm includes Farmat test,

Solovay-Strassen Test, Lehmann Test, Miller Rabin
Test and elliptic curve primality testing, etc. [8].
The combination of pre-screening method with
Miller Rabin is a more effective means in practical
application. This paper’s research and software
implementation is also based on it.

3.2 Primes Distribution Theorem
Theorem 1(Primes Distribution Theorem):

let ()xπ the number of primes that not larger than

x. ()lim 1
/ lnx

x
x x
π

→∞
= . When x →∞ , () / lnx x xπ ≈ .

The Primes Distribution Theorem was discovered
by Gauss. It gave the approximate distribution of
primes. Since then there had been many
mathematicians have made a better estimate [9].
This paper does not make too many descriptions
about it, and only estimated that how many steps to
find an assigned length’s prime with a given initial
value through the Distribution Theorem. The
number of the binary numbers of length m
is 12 -2m m− . The number of primes

is
1 1

1

2 2 2
ln 2ln 2 ln 2

m m m

m m m

− −

−− ≈ . The distribution density

of the primes is about 12 1/ (2 2)
ln 2 ln 2

m
m m

m m
−− = .

Therefore, the prime’s length is 256 bits in the
RSA-512. The density of the primes
is 256ln 2 177≈ , and there is a prime in 177
numbers. If only considering odd numbers, there is
a prime in 89 numbers. Corresponding to RSA-
1024, there is a prime in 178 numbers. Thus, for
any given initial random number, a large prime
which’s asset value following it could be found
through the effective steps.

3.3 Rabin Miller Test
Rabin Miller test provided an efficient

probability method for the detection of a given
number n was a prime. For an odd number n, it
could be written in the form of 2 1tn s= + , where s
was also an odd number. Let 2 2a n≤ ≤ − . If

1sa ≡ or 2 1(mod)
j sa n≡ − . Where 0 1j r≤ ≤ − ,

then n got through the testing. The advantage of this
detection method was very fast. The complexity
was (1 (1) log)n+Ο . The drawback was a composite
number adopted for a selected “a” of a probability
of 1/4, and it belonged to the probabilistic
algorithm. If n had passed the testing for N times,
the probability of an odd number is smaller
than1/ 4N .

The pseudo-code description of the algorithm is
as Figure 2.

Generated a random number in
a given length, set its top and
bottom both to 1.

Pre-screening n with small
primers and confirming the
steps for choosing random

Output n

Y
N

Got the next random numbers
according to the steps.

N was a primer？

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1575

Figure 2. The Pseudo-Code Description Of Rabin

Miller Algorithm.

4. THE ALGORITHM OF PRIMES
GENERATION

4.1 Simple Pretreatment
In this design, it used a combination of getting

the system current time and DES encryption to
generate enhancement random numbers. Part of its
pseudo-code is as Figure 3.

Pretreatment 2: Set 1 to the first and last
positions of the generated random number n, part of
its pseudo-code is as Figure 4.

Pretreatment 3: For the random number “a”, it
would be the numeral arbitrary in the Rabin Miller
test. In the actual selection, we could control the
length of “a” to speed up the operation of Modular
exponentiation. Part of its pseudo-code is as Figure 5.

4.2 Pre-screening Primes
Primality testing is generally more time-

consuming. The random number sequence needed
to be pre-filtered first. It could filter out most of the
composite number in the sequences. It usually uses
the trial division to filter. That is, with some small
primes ()S k . 1 2, , ..., ,() {= }n nS k p p p p k< . Such as 3,
5,7,11, etc. It needed to test if the testing number n
is divisible by these primes. If it is, then n is a
composite number, and need to label it that could
not to test it in the primality testing. The idea of
pre-screening method is from the famous
Eratosthenes sieve method. This algorithm is very
simple, and invented by Eratosthenes, who was the
Greek astronomer, mathematician and geographer

in the third century BC. The algorithm is based on
the following Theorem 2.

Figure 3. The Pseudo-Code Description Of Pretreatment 1.

 Figure 4. The Pseudo-Code Description Of Pretreatment 2.

Figure 5. The Pseudo-Code Description Of Pretreatment 3.

Theorem 2: Let n be a positive integer. If for all
the prime number p n≤ , there is p n⊥ , and
then n must be a primer.

In this paper, the random numbers need to be
primality testing would be pretreatment by the bit
array algorithm. The composite number that did not
comply with the requirements could be pre-marked.
Therefore the steps of the primality testing could be
accurately determined. The specific algorithm could
be found in [10]. As belonging to the software
implementation in the PC， it basically does not
have the problem of resource constraint. So if it
needed to generate a large prime, it could
appropriately expand the small prime numbers
selected, to get a larger step during the pre-
screening. The number of primes we pre-selected is
about 1000 in the bit array algorithm. It would
successfully find a 512-bit prime number in almost
one round. As shown in Table 1, there are certain
statistical regularities between the number of small
primes, which used as divisors and the composite
numbers could be screened out.

Random bn (&a,n/WordLEN-5);

void PRIME_GENinit(BigNumber * bn, int n)
{

RandomBigNumber(bn,n/WordLEN);
bn ->Data[0]= bn ->Data[0]| 0x00000001;
bn ->Data[n/WordLEN-1]=

bn ->Data[n/WordLEN-1]| 0x80000000;
}

void RandomBigNumber (BigNumber
*bn,int e)
{

time(&now);
srand((unsigned)time(NULL));
for(i=0;i<e;i++)

buf[i] = (BYTE) rand();
for(i=0;i<e;i=i+2)
Random_des_crypt(bn, buf, buf);

}

Find t，q, st. 2 1tn q= +
for i＝1 to t
Select random a，st 2 2a n≤ ≤ −

modqx a n=
if (1)x ≠
i=1

while (1)x n≠ − do
if ()i t= return n is a composite number

2 modx x n=
if (1)x = return n is a composite number
i++

endwhile
endif
endfor
Return n is a pseudo-prime.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1576

Table 1: The Percentage Of 512-Bit Random Numbers
That Was Not Be Divisible By Small Primes.

The count of random
numbers Percentage

29 30.9%
256 20.0%
512 17.8%

2560 14.3%
5120 13.1%

We could know from Table 1, the more small
primes, the slower the rear retention ratio to the
number reduced. Therefore the appropriate small
prime number was chosen by the time that the 512-
bit’s large number modular a small number on
personal computers.

4.3 The Design of Primality Discriminant
Seen from 3.3, the main operator of pre-

screening is large numbers modular small primes.
The computing in Rabin Miller test included
modular exponentiation and modulus square. The
key operator was modular multiplication.

4.3.1 Modular
In order to quick complete the modular operator

with small primes, the size of them could be
controlled in 32 bits in programming and stored
with the long-type data. To order to borrow in the
computing process, the dividend could be divided
into two parts to be calculated in the design. Part of
its pseudo-code is as Figure 6.

4.3.2 Modular multiplication
Modular multiplication is one of the basic

arithmetic in public key cryptographic operations.
Intuitively, for , px y F∀ ∈ , the calculation process of

modxy p could be seen as the calculation of r
which satisfy pxy q p r r F= × + ∈ , Where

xyq
p

=

 is the quotient that xy divided by q, r is

the remainder. Proceeding from this, the modular
multiplication algorithm could generally be divided
into three types [11-13].

 Figure 6. The Pseudo-Code Description Of Modular
Small Primes.

The first algorithm is estimated quotient to
calculate the remainder. The specific process is first
calculated xy , calculated the estimated

quotient q q≈ , and then computed r xy qp= − .
Finally, after several subtractions, r would
approximately reduce to [0, 1]p − . The classic
algorithm and Barrett algorithms are typical
representatives of this algorithm.

The second algorithm is interleaved modular
multiplication. The process that calculated xy was
intertwined with the reduction. Every step of the
intermediate and final results was reduced
to[0, 1]p − .

The third algorithm is Montgomery modular
multiplication, which was proposed by
Montgomery in 1985. This algorithm could be seen
as an interleaved modular multiplication that from
low to high (LSB First), and made the appropriate
conversion of input parameters x and y, so that
more suitable for software and circuit
implementation.

Through programming we knew the classic
algorithm was a more efficient algorithm for an
arbitrary length of the x, y of the modular
multiplication. When it needed to calculate

modxy p for only one time and the module p is
less than 768 bits, the Barrett algorithm would be
faster. Montgomery’s algorithm would be a better
choice if the modular was long, and it needed to do
a continuous modular multiplication, for example,
modular exponentiation.

void BigNumber_ModPTo(BigNumber * bn,
BYTE w, int e, BYTE *Result)
{

Word _result;
int i;
DWord tmp;

tmp =((DWord) bn ->Data[wordlen-
1])<<WordLEN | bn ->Data[wordlen-2];

_result =(Word) tmp % w;
for(i=wordlen-3; i>=0; i--)

{
tmp =((DWord)_result)<<WordLEN |

bn ->Data[i];
_result = (Word)tmp % w;

}
 *Result = (Word)_result;
}

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1577

In this paper, the design would choose the
Montgomery’s algorithm to implement. The sliding
window method would also be used in modular
exponentiation. The zero sequence would as long as
possible by efficient encoding, thereby reducing the
calculation of modular multiplication and to
improve the efficiency of the whole operation.

5. CONCLUSION

This paper discusses the processes and critical

steps to be quickly generate large primes in RSA.
The main content includes the basic flow,
pretreatment, modular and modular multiplication,
etc. The design and related software
implementation are completed. The specific details
of the pseudo-code are proposed. The speed tests of
the primes’ generation are completed, and the test
programs are written in vc6.0.

REFERENCES:

[1] W. Diffie, M.E, “Hellman, New directions in
cryptography”, IEEE Transactions on
Information Theory, Vol. 22, No. 6, 1976, pp.
644-654.

[2] R.L. Rivest, A. Shamir, L.M. Adleman, “A
method for obtaining digital signatures and
public-key cryptosystems”, Communications of
the ACM, Vol. 21, No. 2, 1978, pp. 120-126.

[3] H.S. Rhee, J.H. Park, D.H. Lee, “Generic
construction of designated tester public-key
encryption with keyword search”, Information
Sciences, Vol. 205, 2012, pp. 93-109.

[4] S.H Su, S.W Lü, “A public key cryptosystem
based on three new provable problems”,
Theoretical Computer Science, Vol. 426-427, 6
April 2012, pp. 91-117.

[5] A.C. Yao, “Theory and applications of trapdoor
functions”, Proceedings of the 23rd Annual
Symposium on the Foundations of Computer
Science, IEEE, 1982, pp. 80-91.

[6] Ç. K Koç , “High-Speed RSA Implementation”,
Technical Report TR-201, version 2.0, RSA
Laboratories, November 1994.

[7] M. Agrawal, N. Kayal, N. Saxena, “Prime is in
P”, Annals of Mathematics, 2004, pp. 781-793.

[8] M.O. Rabin, “Probabilistic algorithm for testing
primalit”, Journal of Number Theory, Vol. 12,
1980, pp. 128-138.

[9] A. Granville, G. Martin, “Prime Number
Races”, American Mathematical Monthly, Vol.
113, No. 1, 2006, pp. 1-33.

[10] L.N. ZHANG, J.H. CHEN, J.H. ZHANG,
“Compare and study of RSA Key Generation on
Smart Cards”, Journal of Computer
Applications, Vol. 26, 2006, pp. 149-150.

[11] P. BARRETT, “Implementing the Rivest,
Shamir and Adleman public-key encryption
algorithm on a standard digital signal
processor”, Proceedings of Advances in
Cryptology: CRYPT0 '86, Berlin, Germany
1987.

[12] J. Chao, N. Matsuda and S. Tsujii, “Efficient
construction of secure hyperelliptic discrete
logarithm problems”, Proceedings of ICICS'97
INCS 1334, Springer-Verlag 1997, pp. 292-301

[13] P. Montgomery, “Modular Multiplication
Without Trial Division”, Mathematics of
Computation, vol. 44, 1985, pp. 519-521.

http://www.jatit.org/
http://en.wikipedia.org/wiki/Andrew_Granville
http://zh.wikipedia.org/w/index.php?title=Peter_Montgomery&action=edit&redlink=1
http://www.jstor.org/stable/2007970
http://www.jstor.org/stable/2007970

	LINA ZHANG
	3.1 The Basic Processes of Primes Generation
	3.2 Primes Distribution Theorem
	3.3 Rabin Miller Test
	4.1 Simple Pretreatment
	4.2 Pre-screening Primes
	4.3 The Design of Primality Discriminant
	4.3.1 Modular
	4.3.2 Modular multiplication

