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ABSTRACT 
 

RSA is by far the most widely adopted standard in public key cryptography algorithm. Its security depends 
on the Integer Factorization Problem, that it is very easy to calculate the product of two large prime 
numbers, but the decomposition the product and get the prime factors are very difficult. Therefore, the 
generations of large primes are important research field. This paper presented a rapid generation scheme of 
it, and the techniques for the related software implementation were presented. To speed up the modular 
multiplication and squaring, Montgomery's algorithms were used with sliding window method. Three 
pretreatments were also described in details. In view of prime generation of RSA, a series of design 
methods for software implementation was proposed and give the optimization programs. 
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1. INTRODUCTION  
 

The public key cryptography algorithm (also 
named the asymmetrical crypto-algorithm) uses a 
pair of keys. The key uses for encryption called 
public key, which could be gotten by anyone is 
different from the key for decryption. The 
decryption key is as the private key, which needed 
to be kept secret and could not be calculated 
through the public key (at least in a long time of the 
reasonable hypothesis). Since 1976, the famous 
scholars Diffie and Hellman invented public key 
cryptography; the related technology has gained 
considerable development and widespread 
application [1-4]. This idea made the researchers 
seek for various mathematical difficult problems to 
construct one kind of function to be called the 
trapdoor one way function [5]. The trapdoor one 
way function is the foundation of the public-key 
cryptography algorithm; the problem to constitute 
trap-door one-way function is the cornerstone of the 
security. Currently, there are three types of 
mathematical problems known can be used to 
construct the public key cryptography. One is the 
Integer Factorization Problem (IFP). The second is 
the Discrete Logarithm Problem in finite fields 
(DLP), and the other is the Elliptic Curve Discrete 
Logarithm Problem (ECDLP). 

RSA [6] was proposed by Rivest, Shamir and 
Adleman in 1977. It was the first successful public-
key crypto system in theory and enable to both 
encrypting and signing. RSA's security depends on 
the IFP problems that it is very easy to calculate the 
product of two large primes, but the decomposition 
the product and get the prime factors are very 

difficult. In order to obtain the public key and 
private key in RSA, it must first construct two large 
primes. The security of RSA is closely related to 
the use of it. Therefore, the study of the rapid 
generation of large primes is the basis of RSA and 
of great practical significance. 

2. BRIEF INTRODUCTION TO RSA 
 
The RSA algorithm is described as follows: 
(1)Select two large random primes: p and q. 
(2)Calculate * ,n p q=  ( ) ( 1)*( 1)n p qϕ = − − .  
(3)Select a number 1 ( )e nϕ< < , such 

that ( , ( )) 1GCD e nϕ = . 
(4) Calculate d, such that * 1mod ( )d e nϕ≡ . 
This system can be abbreviated as RSA(n,e) ; 

where <n,e> are public keys, and could be open for 
anyone want to use, <n,d>  are private keys, which 
are needed to be kept secret. 

When encrypt let the message M, 0 M n≤ <  
computed the cipher modeC M n≡ . 

When decrypt, let the cipher C, 
0 C n≤ < Computed ' moddM C n≡ . 

By above algorithm, it must first generate two 
large primes before construct the system parameters 
such as the public key, the private key and the 
modulus n. The time of generating primes almost 
took up most of the time that the key generation has 
had. In addition, the length of the primes 
determined the length of the modulus n, which 
determined the security for the system. 
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3. ELEMENTARY THEORY 

3.1 The Basic Processes of Primes Generation 
The general flow of generating prime is as shown 

in Fig. 1. At first, it needed to generate a random 
number in a given length, set its top and bottom 
numbers both to “1”. The first “1” was used to 
ensure that the length of the random number was as 
desired, the second “1” could ensure that the 
random number is odd. 

Followed by a method of pre-screening, it 
controlled the selecting steps of the initial random 
number, and then put the testing random numbers 
into the testing until you found a random number so 
far.  According to prime distribution theorem, it 
could always find a prime within a certain range so 
long as has assigned the random number seed. 

 
Figure 1.The Basic Processes Of Generating Primes. 

Figure 1 shows that the most critical step was to 
determine whether the given number n was a prime. 
The methods for primality testing could be divided 
into two board categories: deterministic algorithms 
and probabilistic algorithms. The number generated 
by the latter are only pseudo-primes, despite the 
possibility to composite was unlikely but still 
exists. Their advantages were that there was no 
regularity, and the speed is relatively fast. 

The deterministic primality testing algorithms 
include original trial division, the Lucas theorem-
based approach, AKS, etc. [7]. AKS was to be 
released in 2002 by three Indian scientists Agrawal, 
Kayal and Saxena, which were so far the first strict 
primality proved algorithm in polynomial time. The 
probabilistic algorithm includes Farmat test, 

Solovay-Strassen Test, Lehmann Test, Miller Rabin 
Test and elliptic curve primality testing, etc. [8]. 
The combination of pre-screening method with 
Miller Rabin is a more effective means in practical 
application. This paper’s research and software 
implementation is also based on it. 

3.2 Primes Distribution Theorem 
Theorem 1(Primes Distribution Theorem): 

let ( )xπ  the number of primes that not larger than 

x. ( )lim 1
/ lnx

x
x x
π

→∞
= . When x →∞ , ( ) / lnx x xπ ≈ . 

The Primes Distribution Theorem was discovered 
by Gauss. It gave the approximate distribution of 
primes. Since then there had been many 
mathematicians have made a better estimate [9]. 
This paper does not make too many descriptions 
about it, and only estimated that how many steps to 
find an assigned length’s prime with a given initial 
value through the Distribution Theorem. The 
number of the binary numbers of length m 
is 12 -2m m− . The number of primes 

is
1 1

1

2 2 2
ln 2ln 2 ln 2

m m m

m m m

− −

−− ≈ . The distribution density 

of the primes is about 12 1/ (2 2 )
ln 2 ln 2

m
m m

m m
−− = . 

Therefore, the prime’s length is 256 bits in the 
RSA-512. The density of the primes 
is 256ln 2 177≈ , and there is a prime in 177 
numbers. If only considering odd numbers, there is 
a prime in 89 numbers. Corresponding to RSA-
1024, there is a prime in 178 numbers. Thus, for 
any given initial random number, a large prime 
which’s asset value following it could be found 
through the effective steps. 

3.3 Rabin Miller Test 
Rabin Miller test provided an efficient 

probability method for the detection of a given 
number n was a prime. For an odd number n, it 
could be written in the form of 2 1tn s= + , where s 
was also an odd number. Let 2 2a n≤ ≤ − . If 

1sa ≡ or 2 1(mod )
j sa n≡ − . Where 0 1j r≤ ≤ − , 

then n got through the testing. The advantage of this 
detection method was very fast. The complexity 
was (1 (1) log )n+Ο . The drawback was a composite 
number adopted for a selected “a” of a probability 
of 1/4, and it belonged to the probabilistic 
algorithm. If n had passed the testing for N times, 
the probability of an odd number is smaller 
than1/ 4N . 

The pseudo-code description of the algorithm is 
as Figure 2. 

Generated a random number in 
a given length, set its top and 
bottom both to 1. 

Pre-screening n with small 
primers and confirming the 
steps for choosing random 

 

 

Output n 

Y 
N 

Got the next random numbers 
according to the steps.  

N was a primer？ 
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Figure 2. The Pseudo-Code Description Of Rabin 

Miller Algorithm. 

4. THE ALGORITHM OF PRIMES 
GENERATION 

4.1 Simple Pretreatment 
In this design, it used a combination of getting 

the system current time and DES encryption to 
generate enhancement random numbers. Part of its 
pseudo-code is as Figure 3. 

Pretreatment 2: Set 1 to the first and last 
positions of the generated random number n, part of 
its pseudo-code is as Figure 4. 

Pretreatment 3: For the random number “a”, it 
would be the numeral arbitrary in the Rabin Miller 
test. In the actual selection, we could control the 
length of “a” to speed up the operation of Modular 
exponentiation. Part of its pseudo-code is as Figure 5. 

 

4.2 Pre-screening Primes 
Primality testing is generally more time-

consuming. The random number sequence needed 
to be pre-filtered first. It could filter out most of the 
composite number in the sequences. It usually uses 
the trial division to filter. That is, with some small 
primes ( )S k . 1 2, , ..., ,( ) {= }n nS k p p p p k< . Such as 3, 
5,7,11, etc. It needed to test if the testing number n 
is divisible by these primes. If it is, then n is a 
composite number, and need to label it that could 
not to test it in the primality testing. The idea of 
pre-screening method is from the famous 
Eratosthenes sieve method. This algorithm is very 
simple, and invented by Eratosthenes, who was the 
Greek astronomer, mathematician and geographer 

in the third century BC. The algorithm is based on 
the following Theorem 2. 

 
Figure 3. The Pseudo-Code Description Of Pretreatment 1. 

 Figure 4. The Pseudo-Code Description Of Pretreatment 2. 

 
Figure 5. The Pseudo-Code Description Of Pretreatment 3. 

Theorem 2: Let n be a positive integer. If for all 
the prime number p n≤ , there is p n⊥   , and 
then n must be a primer. 

In this paper, the random numbers need to be 
primality testing would be pretreatment by the bit 
array algorithm. The composite number that did not 
comply with the requirements could be pre-marked. 
Therefore the steps of the primality testing could be 
accurately determined. The specific algorithm could 
be found in [10]. As belonging to the software 
implementation in the PC， it basically does not 
have the problem of resource constraint. So if it 
needed to generate a large prime, it could 
appropriately expand the small prime numbers 
selected, to get a larger step during the pre-
screening. The number of primes we pre-selected is 
about 1000 in the bit array algorithm. It would 
successfully find a 512-bit prime number in almost 
one round. As shown in Table 1, there are certain 
statistical regularities between the number of small 
primes, which used as divisors and the composite 
numbers could be screened out. 

 
 

Random bn (&a,n/WordLEN-5); 

void PRIME_GENinit(BigNumber * bn, int n) 
{ 

RandomBigNumber(bn,n/WordLEN); 
bn ->Data[0]= bn ->Data[0]| 0x00000001; 
bn ->Data[n/WordLEN-1]=  

bn ->Data[n/WordLEN-1]| 0x80000000; 
} 

void RandomBigNumber (BigNumber 
*bn,int e) 
{ 

time(&now); 
srand( (unsigned)time( NULL ) ); 
for(i=0;i<e;i++) 

buf[i] = (BYTE) rand(); 
for(i=0;i<e;i=i+2) 
Random_des_crypt(bn, buf, buf ); 

} 

Find t，q,  st. 2 1tn q= +  
for i＝1 to t 
Select random a，st 2 2a n≤ ≤ −  

modqx a n=  
if ( 1)x ≠  
i=1 

while ( 1)x n≠ −  do 
if ( )i t=  return n is a composite number 

2 modx x n=  
if ( 1)x =  return n is a composite number 
i++ 

endwhile 
endif 
endfor 
Return n is a pseudo-prime. 
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Table 1: The Percentage Of 512-Bit Random Numbers 
That Was Not Be Divisible By Small Primes. 

The count of random 
numbers Percentage 

29 30.9% 
256 20.0% 
512 17.8% 

2560 14.3% 
5120 13.1%                       

We could know from Table 1, the more small 
primes, the slower the rear retention ratio to the 
number reduced. Therefore the appropriate small 
prime number was chosen by the time that the 512-
bit’s large number modular a small number on 
personal computers. 

4.3 The Design of Primality Discriminant 
Seen from 3.3, the main operator of pre-

screening is large numbers modular small primes. 
The computing in Rabin Miller test included 
modular exponentiation and modulus square. The 
key operator was modular multiplication. 

4.3.1 Modular 
In order to quick complete the modular operator 

with small primes, the size of them could be 
controlled in 32 bits in programming and stored 
with the long-type data. To order to borrow in the 
computing process, the dividend could be divided 
into two parts to be calculated in the design. Part of 
its pseudo-code is as Figure 6. 

4.3.2 Modular multiplication 
Modular multiplication is one of the basic 

arithmetic in public key cryptographic operations. 
Intuitively, for , px y F∀ ∈ , the calculation process of 

modxy p could be seen as the calculation of r 
which satisfy pxy q p r r F= × + ∈ , Where 

xyq
p

 
=  
 

 is the quotient that xy  divided by q, r is 

the remainder. Proceeding from this, the modular 
multiplication algorithm could generally be divided 
into three types [11-13]. 

 Figure 6. The Pseudo-Code Description Of Modular 
Small Primes. 

The first algorithm is estimated quotient to 
calculate the remainder. The specific process is first 
calculated xy , calculated the estimated 

quotient q q≈ , and then computed r xy qp= − . 
Finally, after several subtractions, r would 
approximately reduce to [0, 1]p − . The classic 
algorithm and Barrett algorithms are typical 
representatives of this algorithm. 

The second algorithm is interleaved modular 
multiplication. The process that calculated xy was 
intertwined with the reduction. Every step of the 
intermediate and final results was reduced 
to[0, 1]p − . 

The third algorithm is Montgomery modular 
multiplication, which was proposed by 
Montgomery in 1985. This algorithm could be seen 
as an interleaved modular multiplication that from 
low to high (LSB First), and made the appropriate 
conversion of input parameters x and y, so that 
more suitable for software and circuit 
implementation. 

Through programming we knew the classic 
algorithm was a more efficient algorithm for an 
arbitrary length of the x, y of the modular 
multiplication. When it needed to calculate 

modxy p for only one time and the module p is 
less than 768 bits, the Barrett algorithm would be 
faster. Montgomery’s algorithm would be a better 
choice if the modular was long, and it needed to do 
a continuous modular multiplication, for example, 
modular exponentiation. 

void BigNumber_ModPTo(BigNumber * bn, 
BYTE w, int e, BYTE *Result) 
{ 

Word _result; 
int i; 
DWord tmp; 

tmp =((DWord) bn ->Data[wordlen-
1])<<WordLEN | bn ->Data[wordlen-2]; 

_result =(Word) tmp % w; 
for(i=wordlen-3; i>=0; i--) 

{ 
tmp =((DWord)_result)<<WordLEN | 

bn ->Data[i]; 
_result = (Word)tmp % w; 

} 
 *Result = (Word)_result;  
} 
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In this paper, the design would choose the 
Montgomery’s algorithm to implement. The sliding 
window method would also be used in modular 
exponentiation. The zero sequence would as long as 
possible by efficient encoding, thereby reducing the 
calculation of modular multiplication and to 
improve the efficiency of the whole operation. 

 
5. CONCLUSION 

 
This paper discusses the processes and critical 

steps to be quickly generate large primes in RSA. 
The main content includes the basic flow, 
pretreatment, modular and modular multiplication, 
etc. The design and related software 
implementation are completed. The specific details 
of the pseudo-code are proposed. The speed tests of 
the primes’ generation are completed, and the test 
programs are written in vc6.0. 
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