
Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1324

FLEXIBLE SHARING IN DHT-BASED P2P NETWORKS
USING METADATA OF RESOURCE

1GUO-YING WANG, 2ZHENG HUA

1Information Engineering College, Zhejiang A&F University, Hangzhou, 311300, China
2 School of Information and Statistics, Guangxi University of Finance and Economics, 530003, China

E-mail: 1wgy@zafu.edu.cn , 2gxhuazheng@yahoo.com.cn

ABSTRACT

DHT-based P2P systems have the ability to map a resource’s identifier to its location, so a resource can be
located by the unique identifier of the resource. In such systems users must know the identifier of a
resource exactly to find the resource. However, a resource can not be described accurately and integrally
only by an identifier for the variety and complexity of resources, and needs multiple properties, i.e.
metadata, are needed. In this paper, we proposed a flexible sharing method for DHT-based P2P networks
using the metadata of resources. In this method, inverted indexes are constructed with multiple properties of
resources, hashed and placed into proper nodes based on DHT when publishing resources; multiple
properties are given by users and hashed to corresponding nodes using DHT, then matched inverted indexes
are collected together and joined when searching for resources. Some extra technologies such as synonyms
library, combined properties and virtual nodes are also used in our method to improve the sharing flexibility
and performance. We also implemented a prototype system of our sharing method, MP3Share, using which
we evaluated the performance improvement of combined properties. To improve the efficiency of the
whole system, we should using synonyms library and combined properties technologies during the
publishing procedure other than the searching procedure.

Keywords: Resource Sharing, Metadata, Distributed Hash Table (DHT), Peer-to-Peer (P2P)

1. INTRODUCTION

Peer-to-Peer (P2P) technique has received great
attention along with the development of network
technology and the increasing amount of Internet
users. In recent years, P2P technology has been
applied to plenty of applications ranging from file
sharing system to video streaming, distributed
computing, communication and cooperation. All
nodes in P2P networks share their storage space,
CPU time and bandwidth, which is different from
client/server systems. A P2P system has more
effective communication because nodes in it
interact with each other directly without the need of
a central server as the medium. The capacity of
server is a bottleneck of the whole performance of a
client/server system, while a P2P system has not
such bottleneck because it does not rely on any
central server, which increases the extensibility and
the reliability of the system.

Distributed hash table (DHT) is used for the
observation and localization of resources in some
structured P2P systems, such as Chord [1], CAN

[2], Tapestry [3], which is called Chimera [4] now,
and Pastry [5]. The identifiers of shared resources
are mapped into a hash space in such systems, and
the nodes are also hashed to the same space base on
IP address. As a result, a mapping relation between
resources and nodes is formed, according to which
each node is responsible for some resources. Each
node also stores some information about its
neighbor nodes in the hash space for the purpose of
message routing. Given the identifier of a resource,
the responsible node can be located rapidly and
precisely by hashing the resource identifier. The
amount of information stored in each node for
routing is only relative to the count of neighbor
nodes in the hash spaces. Message exchange only
occurred between neighbor nodes. Therefore, the
DHT-based P2P system solves the problems of
system scalability and the dynamic nature of nodes.

The identifier of the resource must be given to
find a resource in a pure DHT-based system.
However such strict limit may make it failed for
users to get the desired resource in certain condition
because of the increasing of the kind and amount of
resources in networks. For example, when the songs

http://www.jatit.org/
mailto:1wgy@zafu.edu.cn
mailto:2gxhuazheng@yahoo.com.cn

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1325

of a certain singer is wanted by a user, the user will
no have access to these songs if he don’t know all
the song titles exactly, not to mention many songs
in the network are not stored using titles. Even
though all the song titles of the singer are known, it
is a little ridiculous for the user to search for each of
them by its title. On the other hand, a simple
identifier is not sufficient and multiple properties
are often needed to describe a resource completely
and accurately because of the diversity and
complexity of resources.

Therefore, a flexible sharing method for DHT-
based P2P networks is proposed in this paper. In
our method resources are published and searched on
the basis of multiple properties of resources. A user
can get to all resources matched search criteria as
long as one or more properties of wanted resources
are given, regardless of whether the user is aware of
the identifiers of resources, regardless of the format
of resources. This makes the types of resources that
our method can publish and search broader and
more flexible [6]. For example, to get all songs of a
certain singer, a user needs not know the exact titles
of every songs of the singer or the file formats of
songs, and need only provide the singer’s name.

2. MAIN IDEA

2.1. Architecture
Along with the decreasing of storage price and

increasing of storage space, even a small group of
users could share large amounts of data, so accurate
and fast search capabilities is particularly important
for the designing of a P2P system. Using the
capability of DHT to map a key to a network node,
a metadata-based inverted index module was
designed on the basis of DHT, which implemented
the publishing and search functions, as is shown in
figure 1. Furthermore, some technologies such as
synonyms library, combined properties and virtual
nodes are used to improve the functionalities and
performance.

Traditional search engines often use pre-genera-
ted inverted indexes to shorten the search time. An
inverted index is a list of correspondences between
each keyword and the identifier of a document
containing the keyword, i.e., <keyword,
document>. We import this idea into our flexible
sharing method. For each resource described with
multiple properties, we define the inverted indexes
as the correspondences between each property and
the identifier of a resource, i.e., <property,
resource>.

As to the retrieval of inverted indexes, traditional
search engines often search for target documents in
a centralized way. While inverted indexes can be
stored and retrieved in a distributed way for P2P
systems, which can speed up the searching and
reduce the pressure of individual nodes.

Although the existing DHT-based P2P systems
have not search abilities but a mapping relation,
DHT technology provides a mechanism of mapping
a single key to a node in the network. Using the
mapping ability of DHT, we can map and store the
inverted indexes of each property of the resource in
the corresponding nodes when a resource is
published, and route the search requests of given
properties to responsible nodes when searching.
The corresponding relations between properties of
resources and nodes are shown in figure 2.

Nodes ……

DHT
Hash space

Properties Resources

...... ……

Inverted Index

Figure 2. Mapping Between Nodes And Properties
Inverted Indexes Of Resources Using DHT

Figure 1. Architecture Of The Proposed Sharing
Method For DHT-Based P2P Networks

Interface
M

apping
&

 Routing
Resources M

etadata
Storage

publishing

Combined
properties

DHT Platform

Inverted indexes

searching

Synonyms
library

Virtual nodes

File system

Metadata of resources

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1326

In our method, when publishing a resource, not
only the identifier of the resource but also the
properties of it are hashed. Inverted indexes are
constructed using these properties, and then these
inverted indexes are sent to and stored in
responsible nodes using the DHT layer. When
searching a document, the user provides one or
more property values and these property values are
hashed respectively. Then the corresponding nodes
stored each keyword inverted index are located
using the hash results on the basis of the DHT
layer. All resources met the user’s request can be
found in the inverted index of these properties.

2.2. Construction of Inverted Index
For a resource described with multiple

properties, the values of properties are main factors
of the resource. For example, some property values
of a song such as singer, album, lyricist, and
composer can be used to describe the song well. A
property value may stand for different relation to a
resource if its relative property is different, and
different properties may have the same value.
Therefore, if these property values are used
indiscriminately to construct inverted indexes,
some search results may deviate from the users’
requirement. For example, when a user wants to
search for songs singed by a star, the search result
may include songs not singed but composed by the
star.

Therefore when constructing inverted indexes in
our method, not only the values of properties are
used, but also the combination of names and values
of properties are used. Using this method we can
distinguish different properties with the same
values. Suppose resource R has n properties P1, P2,
..., Pn, and the corresponding property values are
V1, V2, ..., Vn, respectively. Then the inverted index
is constructed like the following correspondence
<Pi, Vi> : R (i = 1, 2, … , n) rather than the
correspondence between Vi (i = 1, 2, … , n) and R.

3. FLEXIBLE SHARING ALGORITHMS

3.1. Description of Algorithms
When publishing a resource, every properties of

the resource are used to construct inverted index
entries, which mapping each property to the
resource identifier. Then each entry was placed to
the corresponding node using DHT layer according
to the hash result of the property in each entry,
which is shown as algorithm 1.

For example, when publishing the resource R, at
first each property pair <Pi, Vi> (i = 1, 2, … , n)

was hashed and the hash result Hi was obtained.
And then inverted index entries <Hi : R> (i = 1, 2,
… , n) was constructed and placed to Ni (i = 1, 2,
… , n). Suppose Ni is the corresponding node of Hi
based on DHT mapping shown in figure 2.

When searching for resources, users must
provide one or more property name-value pairs, and
then each pair is hashed and the result is used to
find the corresponding node storing the inverted
index entry of the property pair based on DHT
shown in figure 2. Finally the inverted index entries
of all provided properties are collected and some
JOIN operations such as union and/or intersection
were performed. The result is all resources matched
given criteria. The algorithm is show as algorithm
2.

If resources having value V1 for the property P1
and value V2 for the property P2 are wanted by a
user, first, <P1, V1> and <P2, V2> are hashed and
the result is H1 and H2 respectively. Then node N1
and N2, the corresponding node of the hash result
H1 and H2 according to figure 2 are located and
searched for matched inverted index entries, and
interjection of the search results S1 and S2 was send
to the user. For less exchange, the node doing JOIN
operation is one of N1 and N2 in which more
matched entries have been found than in the other.

Algorithm 1: Basic_Flexible_Publishing
Input:

RID – Resource identifier;
n – Number of properties in metadata of resource;
P[] – Array of property names;
V[] – Array of properties values

Begin
for i:=1 to n do

PV:=Combine(P[i],V[i]);
H:=Hash(PV);
Node:=LookUpNode(H);
Insert(Node,H,RID);

end for;
End.

Algorithm 2: Basic_Flexible_Searching
Input:

x –Number of property values use provided;
P[] – Array of property names;
V[] – Array of properties values

Begin
for i:=1 to x do

PV:=Combine(P[i],V[i]);
H:=Hash(PV);
Node[i]:=LookUpNode(H);
S[i]:=LookUpRIDs(Node[i],H);
Send(Node[i],Node[join],S[i]);

end for;
S[join]:=Join(N,S[]);
return(S[join]);

End.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1327

3.2. Analysis of Algorithms
The process of publishing a resource in pure

DHT-based P2P system is shown as algorithm 3.
This algorithm hashes the resource identifier, finds
the corresponding node, and finally stores the hash
result and resource identifier in the node.

Algorithm 1 repeats the process in algorithm 3
for n times so as to hash n properties and place n
hash results to n corresponding nodes. So the
bandwidth needed to publish a resource in our
method is n times of that in a pure DHT system.
The time complexity of publishing a resource needs
in Tapestry is O(logN) [3], so that of our method is
O(n logN) , and the n means the count of properties
of the published resource and N means the count of
nodes in the system. The CPU time and bandwidth
needed for publishing resources in our method are
more than that in DHT systems. We can use n
processes or threads in parallel to shorten the time,
and each process or thread publishes one property,
because of the independency of publishing all
properties. In this paralleled way, publishing a
resource needs the same time to Tapestry, O(logN).

Algorithm 4 is the resource searching algorithm
in DHT-based P2P system. First the identifier of
wanted resource given by a user is hashed and then
the corresponding node is looked up for matched
identifier.

Compared with algorithm 4, the algorithm 2 not
only repeated these operation x times, but also
collected x sets of matched inverted index entries to
a node and computed the JOIN result. Here x means
the count of properties given by user as criteria. In
Tapestry routing from a node to another needs time
O(logN), so sending matched entries from one
nodes (node[i]) to another one (node[join]) needs
the same time. As a result, the time complexity of
searching for a resource in our method is O(x(logN
+ logN)) = O(x logN), and x means the count of
properties provided by a user as the search criteria
and N means the count of nodes in the system.
Similarly, hashing each property of search criteria,
looking up each node and collecting matched
inverted index entries can also be executed in
parallel so as to shorten the search time.

Algorithm 3: DHT_Publishing
Input:

RID – Resource identifier;
Begin

H:=Hash(RID);
Node:=LookUpNode(H);
Insert(Node,H,RID);

End.
Algorithm 4: DHT_Searching
Input:

RID – Resource identifier;
Begin

H:=Hash(RID);
Node:=LookUpNode(H);
S:=LookUpRIDs(Node,H);
return(S);

End.

4. ENHANCEMENT OF SHARING

To make the proposed method more feasible to
practice, some key strategies are needed to improve
the functionality and the performance: (1) metadata
of a resource should be created and formatted by
user when the resource is published; (2) considering
the similarity between some property values, a
library of synonyms should be constructed in
advance and used during the publishing and
searching procedure, which can improve the
semantic performance; (3) combined multiple
properties should be used when the multiple
properties are often used together during publishing
or searching procedures, which can relieve the load
of transferring inverted indexes and doing JOIN
operation between inverted indexes; and (4)
considering the imbalance of capability of nodes
and size of inverted indexes, some load balancing
technologies should be taken.

4.1. Acquisition of Metadata
Every resource in networks can be described by

some properties, but these properties do not exist in
written form with resource usually. Therefore, a
resource has to be described, i.e., the value of each
properties of the resource is provided, by its
publisher when it is published. According to
metadata provided by the publisher, the inverted
index of each property is published to the
corresponding node for other users to search. The
more detailed the metadata provided by the
publisher is, the more ways can be used to find the
resources by other users. The more accurate the
metadata is, the better the search results match the
requests of users.

Even so, these metadata are not saved. Once the
users withdraw a shared resource and want to re-
publish it, they have to describe the resource once
again. On the other hand, if the saved metadata
information has not been published along with the
resource, other users have to re-describe it when
they obtain the resource and want to share it too.
Besides, there may be large or small differences
between the original metadata and new description,
which will affect the access to the resource.
Although the metadata describing resources can be
saved and published with the resource together as a

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1328

supplement, the preservation and publishing of
metadata will undoubtedly increase the system
operation and maintenance costs.

If the metadata can be embedded in the resource
and the creator of the resource fill in property
values one-time when the resource is created, the
metadata of the resource can be published or
accessed together with the resource. Therefore, an
additional processing overhead is no longer needed.
There is no need for publisher to describe a
resource once again, and what the publisher needs
to do is to read metadata from the resource, which
is written by the creator. The method will also
make description of the same type of the resource
more standard and uniform. For example, the most
popular music file format in network, MP3, can be
embedded with song title, singer, album and other
information in the file as ID3 tags.

4.2. Semantics of Inverted Indexes
Method described above adopts exact match of

properties to achieve the mapping from properties
to the location of inverted indexes. However,
synonyms may lead to malfunction in practice. If a
resource is published with a specific word W as a
property value, the resource will not be found when
other users search resources with a word W' which
have the same meaning with W. For example, if a
song is published using the name of a singer in
English, while the user search it using Chinese, the
song will not be found even if it exists in the system
and matches the user’s criteria semantically.
Therefore a synonyms library should be maintained
to improve the semantics.

The synonyms library can be used in either
publishing procedure or searching procedure. In the
first case, when constructing an inverted index of a
description as a property value during a resource-
publishing procedure, the publisher program looks
up the synonyms library, constructs the inverted
indexes of other synonyms of the description and
publishes them. Then the resource can be found
during searching procedure afterward, no matter
which description in the synonyms library is
provided. In the other case, even if a user publishes
a resource without using the synonyms library,
other users can also find the resource with other
keywords during search procedure, if the searcher
program looks up the synonyms library and search
with all synonyms of the keyword user provided.

Using synonyms library may lead a longer
process time. However once a resource is
published, there may be a great number of users
who will search and access the resource at some

time later. That is, a publishing procedure
corresponds to many searching procedures. From
this point of view, we should use the synonyms
library in the publishing procedure other than the
searching procedure. The cost of using synonyms
library during publishing procedure is
counterbalanced by the good retrievability
performance of the large amount of searching
procedure afterwards.

4.3. Sharing with Combined Properties
In a searching procedure with multiple

properties, the inverted indexes corresponding to
each property are collected to a node and execute
some JOIN operations. Obviously, the system
should send the fewer inverted index entries to the
node where the more inverted index entries locate
in.

To improve the efficiency of searching
procedure, the transmission and computation
overhead of inverted indexes sets should be
reduced. There are several ways to reach the
objective: first, the necessity to transfer inverted
indexes should be reduced, which can be achieved
by pre-computing or caching relevant information;
second, the inverted indexes sets should be
compressed to reduce the network communication
required; third, in the premise of meeting users’
requirement, only part of the inverted indexes are
transferred. In our method, we emphasized on the
first method, i.e., combined keywords.

If we combine several keywords together and
hash them to place the corresponding inverted
indexes to a node in network during the publishing
procedure, the inverted indexes of each keyword
need not transfer any more when a user searches a
file which contains these keywords. Instead, the
combination of pre-built inverted indexes can be
returned to the user directly.

Publishing a resource with combined properties
may lead to an increase of burden of publishing, for
not only the inverted index of each single property
but also the inverted indexes of combined
properties need be published. However, once a
resource is published, there may be a great number
of users who will search and access the resource at
some time later. Using combined properties can
reduce the amount of inverted indexes transferred
and the computation of JOIN operation during the
searching procedure, which can save the expense of
communication and computation.

To take advantage of the convenience of
combined properties in the large amount of search

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1329

procedures and avoid too much overload in the
publishing procedure, there should be a trade-off.
Combined properties should be published or not
according to the potential probability that the
properties to combine are used together: combined
properties that may be used frequently in search
procedures should be published, while seldom used
combined properties should not be published.

4.4. Load Balancing
A key property of P2P systems is heterogeneous,

and the capacities of nodes are different. Therefore,
the designer of P2P networks needs to consider
load balancing. In our method, inverted indexes of
some properties may be larger than that of the
others. For example, the inverted index of a popular
star is much larger than the inverted index of a
single album. On one hand, a large inverted index
properties may be hashed to a node with relatively
poor performance (storage space, speed of CPU
computation, network bandwidth etc.). On the other
hand, due to the character of hash function, the
distribution of hash values of properties may be
unevenly. Hence, some nodes may be assigned too
more hash value of the property than the average.
As a result, these nodes may be heavily loaded and
become bottlenecks of whole system.

Virtual nodes technique can be used to alleviate
imbalance to some extent. Based on the capacities
of nodes and the real time load, a number of logical
virtual nodes are set up in a physical node
dynamically. It makes work loads of nodes relative
to the capacities, and reduces the blindness of the
distribution of inverted indexes.

4.5. Enhanced Sharing Algorithms
Integrated these enhancing approaches into the

basic flexible sharing algorithms, we reach the
enhanced sharing algorithms. Algorithm 5 shows
the enhanced publishing algorithms, in which
metadata are filled if it is necessary, and synonyms
library and combine properties are used when the
options are turned on.

Load balancing using virtual nodes is usually
accomplished in the deploying stage other than by
the algorithm, so this technology is not included in
algorithm 5.

It is easy to understand that metadata of
resources should be filled during the publishing
procedure other than searching procedure. As to the

Algorithm 5: Enhanced_Flexible_Publishing
Input:

RID – Resource identifier;
n – Number of properties in metadata of resource;

P[] – Array of property names;
V[] – Array of properties values

Begin
num := n;
for i:=1 to n do
 // Fill metadata if it is necessary.
 if V[i] = NULL then
 Prompt user to fill V[i];
 end if;
 // Using synonyms library
 if synonyms_library = true then
 S[] = LookUpSynLib(V[i]);
 for k:=1 to length(S[]) do
 P[++num] = P[i];
 V[num] = S[k];
 end for
 end if
end for;
// Using combined properties
if combine_properties = true then
 CPlist[] = LookUpComProps();
 CVlist[] = GetValues(CPlist[]);
 for k:=1 to length(CPList[]) do
 P[++num] = Combine(CPlist[k]);
 V[num] = Combine(CVlist[k]);
 end for
end if

Basic_Flexible_Publishing(RID, num, P[], V[]);

End.

synonyms library and combined properties, we
preferred to use them during the publishing
procedure other than the searching procedure, for
that there may be many searching procedure by
different users after a publishing procedure for a
resource. This means that using these two
technologies in publishing procedure can obtain
more efficiency. For these reasons, we do not
describe the enhanced flexible searching algorithm
any more, in which the way of using the two
technologies is similar to that in algorithm 5.

5. PROTOTYPE AND EVALUATION

5.1. Prototype System
We implemented a prototype system, MP3Share,

on the basis of Tapestry [3] which is a development
platform for DHT-based p2p systems. MP3Share
provided the functionalities of synonyms library,
combined properties and virtual nodes, as well as
the interface for users to fill the metadata of mp3
files.

We adopted six common properties of songs as
the metadata for publishing and searching song
files, such as title, album, singer, year, composer
and lyricist. We formatted the metadata using ID3
tags of mp3 files of randomly chosen 250 songs.

In MP3Share, we construct a synonyms library
of singer name including some keyword sets: each

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1330

keyword set means a singer and each element of a
set means a different expression of the singer’s
name. For example, a keyword set is {"Madonna",
"Madonna Louise Ciccone"}, another keyword set
is {"bsb", "Backstreet Boys"} and so on. A more
useful case is that each keyword set includes the
names of the singer in different language such as
English, Chinese and so on.

Considering that songs in an album of a singer
are usually wanted together, we use combined
properties of <singer, album> in MP3Share.

When a user publish a song mp3 file with
MP3Share, the program reads the ID3 tags of the
mp3 file, constructs the inverted indexes with the
six key-value tuples mentioned above, constructs
the inverted indexes with the synonymous words of
the singer’s name in the synonyms library,
constructs the inverted index with the combined
properties of singer and album of the song, and
finally hash each of these inverted indexes to get a
hash value according to which a proper node is
determined to save one copy of the inverted index.

The virtual nodes functionality is supported by
the platform, Tapestry. The number of virtual nodes
that one real node provided can be set in the
configure file of Tapestry.

5.2. Experimental Evaluation
In our experiment, we deployed MP3Share into

three PCs in a LAN. To simulate the complexity of
reality, 5, 5, 8 virtual nodes are configured to run in
the three PCs respectively.

The basic publishing and searching capability are
main aspects for a resource-sharing system to test.
We also tested the additional functionalities such as
synonyms library, virtual nodes and combined
properties. Synonyms library and virtual nodes
mainly enhance the usability of the system, while
combined properties is used to improve the
performance of the system. So we examine the time
costs of publishing and searching resources with
MP3Share, mainly for the using of combined
properties functionality.

We published the mp3 files of 250 songs using
MP3Share with combined properties and without
them for 10 times respectively. When not using
combined properties, we need publish 6 inverted
indexes of the 6 properties for each song. While we
need publish 7 inverted indexes of the 6 properties
and the <singer, album> combined property of each
song when using combined properties. We
examined the time cost both using the <singer,
album> combined property and not using it, which

is shown in figure 3. The average time cost of
publishing without combined properties is 4639.2
milliseconds, and that of publishing with combined
property is 5536.8 milliseconds. The ratio of these
two time costs is 0.8379 which is close to 6/7, that
is, the time cost of publishing is in proportion to the
count of inverted indexes published approximately.

After publishing with combined properties, we
look for songs of the Madonna’s album "Ray Of
Light" using MP3Share with the <singer, album>
combined property and without it for 10 times
respectively. The searching time costs are shown in
figure 4. The average cost of searching without
combined properties is 13.12 milliseconds, and that
of searching with combined properties is 9.03
milliseconds. This means that using combined
properties saves 31.1% processing time, including
saving of communication time of inverted indexes
and computation time of the JOIN operations.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10
Experiment identifier

Pu
bl

is
hi

ng
 ti

m
e

(m
s)

Without combined properties
With combined properties

Figure 3. Publishing Time Of 250 MP3 Song Files With

And Without Combined Properties

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10
Experiment identifier

Se
ar

ch
in

g
tim

e(
m

s)

Without combined properties
With combined properties

Figure 4. Searching Time For Madonna’s Album "Ray Of

Light" With And Without Combined Properties

From figure 3 we can see that each combined
property can lead to additional publishing time cost,
while on the other hand it can also lead to a saving
of searching time cost according to figure 4.
Because the relation between publishing procedure
and search procedures of a resource is 1 : n, the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1331

benefit of combined properties is in a dominant
position, if we using this technology in each
publishing procedure.

6. RELATED WORKS

6.1 Semantics in P2P Networks
Huang extended GES and presented a class-

based semantic searching scheme (CSS) in
Gnutella-like unstructured P2P systems, and
designed a totally class-based protocol and a
partially class-based search protocol, both of which
are more efficient than GES in all cases [7].
Rudomilov studied P2P unstructured information
retrieval (IR) with heterogeneous documents on
independent nodes, and proposed a combination of
CSS and GES models as semantic Gnutella-like
Information Retrieval system using class-based
approach [8].

Cerqueus focused on semantic heterogeneity and
interoperability in unstructured P2P information
retrieval systems, and proposed two protocols: the
GoOD-TA protocol that reduces the semantic
heterogeneity related to the topology by putting
closer peers that can understand each others and the
DiQuESH protocol, a distributed top-k algorithm
that ensures some interoperability [9]. Cao Presen-
ted a dynamic semantic data replication scheme
called DSDR for classic k-random search in
unstructured peer-to-peer networks. During its k-
random search each peer periodically updates its
local view on the semantic overlay of the network
based on observed queries (demand) and received
information about provided items (supply), in
particular their semantics [10].

6.2 Multiple Keywords Searching
When searching resources using multiple key-

words, it needs to collect the set meeting each
keyword and compute the JOIN of these keywords
sets. There are three ways to improve the
efficiency, i.e., pre-computed JOIN result of
keyword sets, transfer top-k the each keyword set,
and compressing the keyword sets that have to be
transferred.

Gnawali research the searching methods in peer-
to-peer networks using pre-computed keyword set
[11], which is similar to the method of combined
properties in our method.

Users usually do not need to get all the results
which match the search criteria at a time. So we can
transfer parts of the inverted indexes in batches,
produce a part of the results, and return them to
users, then stop or continue to transfer the inverted

indexes to generate new results according to the
need of users. The method will not only reduce the
transmission cost, but also shorten the response
time of searches.

Researchers have studied that different compre-
ssion methods, such as bloom filter [12], gap
compression [13], PLSA compression [13], and so
on, are used to reduce the communication overhead
required for the keyword sets.

6.3 Load Balancing
Virtual nodes technique is a common way to

alleviate the load unbalancing to some extend. In
addition, Surana [14] discussed in more detail about
load balancing issue in the P2P system, found that
heterogeneity of the system can improve scalability
by reducing the necessary number of virtual servers
per node as compared to a system in which all
nodes have the same capacity.

7. CONCLUSIONS

In the paper, we proposed a flexible resource
sharing method for DHT-based P2P networks.
Based on the capability of DHT mapping a single
key to a node, our method has good scalability and
dynamicity that DHT-based P2P systems
possessed. In addition, unlike pure DHT-based P2P
systems, which have only mapping function other
than search ability, our method has rich capabilities
of searching for resources providing the property
conditions. It can meet various search requests of
users. The function of our method only depends on
the various properties describing resources and has
nothing to do with the identifier, format of
resources. Therefore, the resource type that our
method can publish and search are widely scaled
and flexible. Besides, synonyms library technology
is used in the system to enhance the search
semantics. Furthermore, combined properties
technology is adopted to improve the efficiency of
searching with multiple properties. At last, virtual
nodes technology is used to improve system's load
balancing.

ACKNOWLEDGMENT

The work of this paper is supported by Zhejiang
Provincial Natural Science Foundation of China
(LY12F02016) and the
2011 Maintain School Safety and Stability Fund
Project of Guangxi province (class A).

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1332

REFERENCES:

[1] Ion Stoica, Robert Morris, David Liben-Nowell,

etc. "Chord: A Scalable Peer-to-peer Lookup
Protocol for Internet Applications". IEEE/ACM
Transactions on Networking, Vol. 11, No. 1,
Feb. 2003, pp. 17-32.

[2] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Shenker. "A scalable
content-addressable network". Proc. ACM
SIGCOMM’01, 2001, pp. 161-172.

[3] Ben Y. Zhao, Ling Huang, Jeremy Stribling, etc.
“Tapestry: A Resilient Global-scale Overlay for
Service Deployment”. IEEE Journal on Selected
Areas in Communications, January 2004, Vol.
22, No. 1, Pgs. 41-53.

[4] http://current.cs.ucsb.edu/projects/chimera/,
visited in Oct. 2012.

[5] Antony Rowstron, Peter Druschel. "Pastry:
Scalable, decentralized object location and
routing for large-scale peer-to-peer
systems". IFIP/ACM International Conference
on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, Nov.
2001, pp. 329-350.

[6] G. Wang, J. Cheng, "Design of a Semantic
Resources Sharing Framework for Structured
P2P Networks", in Proceeding of ISCID’10,
2010, Vol. 2, pp. 201-204.

[7] J. Huang, X. Li, J. Wu, "A semantic searching
scheme in heterogeneous unstructured P2P
networks", Journal of Computer Science and
Technology, 2011, vol. 26, No. 6, pp. 925–941.

[8] I. Rudomilov, I. Jelínek, "Class-based Approach
in Semantic P2P Information Retrieval", in
Proceeding of Federated Conference on
Computer Science and Information Systems,
2012, pp. 279–283

[9] X.Cao and M. Klusch, "Dynamic Semantic Data
Replication for K-Random Search in Peer-to-
Peer Networks", in Proceeding of IEEE 11th
International Symposium on Network
Computing and Applications, 2012, pp. 20-27.

[10] T. Cerqueus, S. Cazalens, P. Lamarre, "An
Approach to Manage Semantic Heterogeneity in
Unstructured P2P Information Retrieval
Systems", in Proceeding of IEEE International
Conference on Peer-to-Peer Computing, 2012.

[11] O. D. Gnawali. “A Keyword Set Search System
for Peer-to-Peer Networks”. Master’s Thesis,
Massachusetts Institute of Technology, Jun.
2002.

[12] P. Reynolds and A. Vahdat. “Efficient peer-to-
peer keyword searching”. Proc.Middleware
2003, Jun. 2003, pp. 21-40.

[13] J. Li, B. T. Loo, J. M. Hellerstein, and etc. “On
the Feasibility of Peer-to-Peer Web Indexing
and Search”. Proc. 2nd International Workshop
on Peer-to-Peer Systems, Feb. 2003, pp.207-
215.

[14] S. Surana, B. Godfrey, K. Lakshminarayanan,
R. Karp, I. Stoica. "Load balancing in dynamic
structured peer-to-peer systems". Performance
Evaluation In P2P Computing Systems, Vol. 63,
March 2006, pp. 217-240.

http://www.jatit.org/

	1GUO-YING WANG, 2ZHENG HUA

