
Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1436

PARALLEL BILINEAR SPATIAL INTERPOLATION
ALGORITHM BASED ON GPGPU

1WU QINGSHUANG, 2WANG QIANG, 3CHENG XIANGFU

1 College of Territorial Resources and Tourism, Anhui Normal University, Wuhu Anhui, 241000, China

2City Construction Academy, Hunan City University, Yiyang Hunan, 413000, China
3Anhui Key Laboratory of Natural Disaster Process and Prevention, Wuhu Anhui, 241000, China

E-mail: qepwq_wu@sina.com

ABSTRACT

In view of the problem that massive spatial data interpolation is a complex and time-consuming computing
process, and the traditional CPU implementation methods can't meet the real-time processing demand, in
this paper, we propose a parallel bilinear spatial interpolation algorithm, which is accelerated by the graphic
processing unit(GPU) and implemented in compute unified device architecture(CUDA). Firstly, we
introduce the basic idea of general purpose computing on graphics processing units (GPGPU) and then
discuss the technology of the CUDA programming model. Secondly, we introduce the principle of the
bilinear interpolation algorithm and analyze the feasibility of mapping the bilinear interpolation algorithm
program onto the GPU, and then we provide detail of implementing our parallel bilinear spatial
interpolation algorithm on GPU that uses the CUDA programming model. Finally, we conduct several
groups of experiments to demonstrate the strength of our GPU implementation method by measuring the
performance over standard CPU implementation. The experimental results show that the GPGPU-based
parallel algorithm can take full advantage of the GPU's parallel computing capabilities, and can achieve
about 40 times speedup; it is able to meet the demand of real-time processing of massive spatial data
interpolation.

Keywords: General Purpose Computing on Graphics Processing Units; Compute Unified Device
Architecture; Bilinear Spatial Interpolation; Spatial Index; Speedup

1. INTRODUCTION

Spatial data interpolation is an important
operation in Geographic Information System(GIS),
which can calculate the values of unspecified
location point from the values of the known by a
certain interpolation algorithm[1]. With GIS widely
using in various areas, spatial data's distribution and
density have become increasingly demanding.
Spatial data interpolation is causing people more
and more attention[2].

At present, many scholars have launched a large
number of studies on spatial interpolation, and the
major research interests were focused on spatial
interpolation methods[3-5] and spatial interpolation
applications. Various types of spatial interpolation
methods such as geometric method, statistical
method, function method, physical model
simulation method, stochastic simulation method,
spatial statistical method and integrated method
were proposed and applied to the DEM terrain
spatial interpolation[6], air pollution measurements[7],
soil spatial interpolation[8], rainfall spatial

interpolation [9] and many other spatial analysis
applications. In these existing studies, the
researcher is more concerned about the accuracy of
the spatial interpolation results. In practical
applications, the spatial interpolation task is often a
compute-intensive processing and needs powerful
computing capabilities. With spatial interpolation
more and more applying to model-complex and
data-massive spatial analysis which usually requires
a lot of computing time, the time efficiency of the
spatial interpolation algorithms is causing people
more and more attention. In this case, to study how
to use the new parallel computing equipment to
speed up the spatial interpolation processing has a
very important significance.

In the past, mainly means of traditional parallel
processing in GIS included multi-core CPU
computing, computer cluster computing or grid
computing, which only use the CPU as the
computing components. With the slowdown of the
upgrade of the CPU's clock frequency, the cost of
parallel processing performance improvement
becomes more and more big. Recently, the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1437

performance and capabilities of the graphics
processing unit (GPU) have been a marked
increase. Today, the modern GPU is not only a
powerful graphics engine but also a highly parallel
programmable processor featuring peak arithmetic
and memory bandwidth that substantially outpace
its CPU counterpart[10]. The GPU's rapid increase in
both programmability and capability has spawned a
research community that has successfully mapped a
broad range of computationally demanding,
complex problems to the GPU. This class of
research that development of no graphical
applications on graphics accelerators is referred to
as general-purpose programming on GPUs
(GPGPU)[11]. In present, the main GPU
manufacturers NVIDIA and ATI have launched
their own GPGPU solution each other. These
solutions can run the users’ code which is designed
for the problem domain on the GPU directly. In
contrast, NVIDIA's CUDA (Compute Unified
Device Architecture) solution is more mature.

In this paper, in order to take use of the
overwhelming computing power of the CPU to
accelerate the spatial interpolation, we propose and
implement a CUDA-based parallel bilinear
interpolation algorithm. The experimental results
show that the CUDA-based parallel algorithm can
achieve about 40 times speedup compared with the
traditional CPU implementation method. The paper
is organized in 6 sections. In Section 2, we discuss
the basic idea of the general purpose computing on
graphics processing units and the technology of the
CUDA programming model. In Section 3, we
introduce the principle of the bilinear interpolation
algorithm and analyze the feasibility of mapping the
bilinear interpolation algorithm program onto the
GPU, and then we provide detail of implementing
our parallel bilinear spatial interpolation algorithm
based on GPGPU. In Section 4, we demonstrate the
strength of our GPU implementation method by
measuring the performance over standard CPU
implementation. Finally, we summarize the
implementation issues on the GPU and give thanks.

2. GPGPU WITH CUDA

Traditional GPGPU programming is done
directly through graphics APIs(OpenGL or
DirectX). Although many researchers are
successful in getting applications to work through
these graphics APIs, there is a fundamental
mismatch between the general programming
method and the graphics APIs programming
method. In this graphics APIs programming method,
the programmers are not only required to be

familiar with the parallel algorithms, but also need
to understand the graphics hardware programming
interface which has greatly restricted the
development of GPU computing.

With the continuous improvement of GPGPU, in
order to make the GPGPU programming better, the
main GPU manufacturers and technology alliances
have launched their own GPGPU solutions. In 2006,
NVIDIA launched the CUDA programming model
which greatly improves the programmability and
versatility of GPGPU programming. The CUDA is
a co-evolved hardware-software architecture that
can provide a C-like programming environment and
programming language for the programmer. The
basic idea of CUDA programming model is
mapping the general-purpose computation onto the
GPU uses the graphics hardware in much the same
way as any standard graphics application, and as
much as possible to develop thread-level
parallelism[12].

 As it is showed in figure 1, a CUDA program
can be divided into two parts: the host-side code
and the device-side code. Typically, the host-side
code executes on the CPU serially, and device-side
code runs parallel on the GPU. Here, CPU and
GPU constitute a heterogeneous computing system:
the CPU can be deemed as a control termination
which can perform the data organizing, task
scheduling and the serial code of the program. Then,
the GPU can be deemed as a super-large-scale data
parallel co-processor which is responsible for the
part of the CUDA program that can be parallel
executed.

Host

Kernel 1

Kernel 2

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

Block
(0,2)

Block
(1,2)

Grid 1

Block(1,1)
Thread(0,0) Thread(1,0) Thread(2,0)

Thread(0,2) Thread(1,2) Thread(2,2)

Thread(0,3) Thread(1,3) Thread(2,3)

Serial

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(2,0)

Block
(1,1)

Block
(2,1)

Grid 2

Thread(0,1) Thread(1,1) Thread(2,1)

Device

Figure 1: CUDA Programming Model

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1438

3. GPU-ACCELERATED PARELLEL
BILINEAR SPATIAL INTERPOLATION
ALGORITHM

3.1 Bilinear Spatial Interpolation Algorithm

In bilinear interpolation algorithm, the value of
the interpolation point can be calculated by a
bilinear polynomial function which is determined
by 4 sample points nearby the interpolation point.
The bilinear polynomial function can be expressed
as:

(1)

It can be solved for the four coefficients ，
through substituting the values of the four sample
points data which are closest to the interpolation
point into formula 1, and substituting the plane
coordinates of the interpolation point, then we can
calculate out the interpolation point’s elevation
value.

Bilinear interpolation can be approximated
regarded as the extension of the linear interpolation
function with two variables, which carry out a
linear interpolation in two directions of x, y. As it is
shown in figure 2, assuming the function values of

、 、 and
 are known, then to calculate the value

of at the point .

Figure 2: The Schematic Diagram of Bilinear

Interpolation Algorithm

First, performing a linear interpolation in the X
direction, we can get the following formulas:

 (2)
 (3)

Then, performing a linear interpolation in the
Y direction, we can get the following formula:
.

(4)

Substituting the formula 2,3 into the formula 4,

then the result of can be obtained.

 (5)

The final results of bilinear interpolation have
nothing to do with the interpolating order, changing
the order of x, y interpolating, the results will not
change. The bilinear interpolation algorithm can get
a high quality and good continuity interpolating
result. It is particularly suitable for grid-based
digital terrain model interpolation and it is widely
used in GIS.

3.2 Parallelism Analysis of Bilinear Spatial

Interpolation Algorithm
According to the description of the bilinear

interpolation algorithm, we can know that the value
of each interpolation point is only related to its
nearest neighbor four sampling points, and the
whole processing has a good data independence and
task parallelism. In practical application, there are
often a large number of interpolation points need to
be calculated. For such computing-intensive and
task-parallel interpolation processing, we can make
use of the GPU overwhelming computing power to
accelerate the processing.

3.3 Design and Implementation of Bilinear

Spatial Interpolation Algorithm Based on
GPGPU

 3.3.1 Sampling data organization and spatial
index

In the processing of bilinear interpolation, it is
necessary to search for the four sampling points
which are most nearest to the interpolation point. If
the sampling data set is discrete and having no

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1439

distribution-law, it must be searched in the entire
sampling point sets. When the amount of the
sampling points is quite large, such searching
progress is very inefficient. To improve the
efficiency of lookup, it needs a good sampling data
organization and spatial index.

Searching for the nearest k points in the vicinity
of a specific point is called k-nearest neighbor
problem. In this paper, we use the space partition
strategy to search for the nearest k points, that is to
say, divide the sampling data set into the data block
and then create a grid index for the each data block,
so as to reduce the scope of the data search to speed
up the search speed.

The main process of creating spatial data block
index is as follows: (1) Calculate the number of
sampling points and the area of the sampling region,
then get the density of the sampling points.(2)
According to the data density and the average
number of sampling points in each sub-block,
determining the number of rows and columns of the
grid sub-blocks. (3) Traversing all the sampling
points of the interpolation region, and partitioning
them into the respective data sub-block.

As shown in figure 3, after the creating of spatial
grid index, the process of searching for the k-

nearest neighbor point of a specific interpolation
point is as follow: First, determine the sub-block of
the interpolation point, and then search for the k-
nearest neighbor point in the sub-block and its
adjacent sub-blocks.

Figure 3: Space Partitioning and Searching

Process

3.3.2 Design and implementation of bilinear
 spatial interpolation algorithm based on

GPGPU

Figure 4: The Flow Chart of Bilinear Spatial Interpolation Algorithm Based on GPGPU

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1440

As shown in figure 3, the main process of the
GPU-accelerated bilinear spatial interpolation
algorithm can be described as follows:

 (1) Read the data of the sampling points,
interpolation points' plane coordinates and grid
index into the host memory, and apply for the
memory space with the size of the data in the
GPU's global memory, then transmit the data from
host to the GPU.

 (2) Set the kernel functions configuration
parameters that are to determine the dimension of
the grid and block. Due to the limitation of the size
of the GPU's shared memory which is only 32KB,
the parameters should be reasonably considered
according to the template size, search image size
and number of the search.

(3) Call the kernel function on GPU to calculate
the elevation of each interpolation point:
Transfer the data from host memory to the device
global memory by cudaMemecpy() function, then
assigning the relevant data to the shared memory of
each block. Parallel searching for the four nearest
sampling points of each interpolation point.
Parallel using the bilinear interpolation algorithm
to calculate the values of each interpolation point’s
elevation.

(4) Write the results obtained by the GPU's
processing to the global memory and then return to
the host memory.

4. EXPERIMENT AND DISCUSSION

4.1 Experimental Environment

The experimental computing platform
configuration and test environment are as follows:

(1)Hardware environment: The CPU is Intel core
i3 550; and the GPU is NVidia GeForce 410M.

(2) Software environment: The operating system
is Microsoft Windows 7; and the program
development tools are Visual Studio 2010 and
CUDA SDK 4.0.

4.2 Experimental Results and Analyzing

Using a somewhere 3D point cloud sets as the
experimental data, as it is shown in figure 5, the
point cloud sets is composed by a series of
homogeneous distribution three-dimensional

points.

Figure 5: The Three-Dimensional Sampling Point Sets Of

Somewhere Terrain Data

Perform spatial interpolation to generate the grid
DEM respectively by using the CPU serial
algorithm and the GPU parallel algorithm. Taking
into account the different data amount experiment
need, we performed 7 comparative experiments, the
size of the generated grid DEM were 4040、
100100、200200、300300、500500、
800800、12001200. In order to compare their
performance, we recorded the time-consuming of
the two algorithms which is the mean of 10 times
respectively. Table 1 shows the time-consuming of
serial and parallel algorithms of different grid size.

Table 1: The Time-Consuming Of Serial And Parallel
Bilinear Spatial Interpolation Of Different Grid Size

No. grid size CPU serial
algorithm

(s)

GPU parallel
algorithm

(s)
1 4040 1.70 0.11
2 100100 10.34 0.37
3 200200 41.43 1.21
4 300300 93.13 2.36
5 500500 240.02 5.70
6 800800 630.92 14.40
7 12001200 1432.33 32.41

As showed in figure 6, it can be seen that the

speed of the GPU-accelerated parallel algorithm is
far more than 10 times faster than the conventional
CPU algorithm. When the generated grid DEM size
is small, the speedup is relatively low because the
GPU's parallelism computing power can't be took
full advantage of, as there is communication cost
between device memory and host memory. With
the generated grid DEM size increasing, the
speedup is continuously improving; and it can reach

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1441

about 40 times eventually. It indicates that GPGPU
technology is especially suitable for these high
parallelism and computation-intensive
applications.

Figure 6: The Speedup Of Different Resolution Image

Figure 7 shows the results of 100100
generated grid DEM respectively by using the CPU
serial algorithm and the GPU parallel algorithm.
From contrast of the grid DEM 3D visualizations, it
is can be seen that there is almost no difference
which human eye can observe between the CPU
interpolation results and the GPU interpolation
result. The generated grid DEM is continuous,
strong fidelity.

(A) The Result Of CPU Interpolation

(B) The Result Of CPU Interpolation

Figure 7: The Results Of 100100 Generated Grid
DEM By Bilinear Spatial Interpolation Algorithm

Figure 8 shows the relative error of each
generated grid point’s elevation between the CPU
interpolation results and the GPU interpolation
result. It is can be seen that the relative error is very
small. The result shows that the precision using
GPU computing can meet the demand of spatial
interpolation, the parallel algorithm is correct and
achieve the desired effect.

10
-6

1

2

3

4

5

6

Z

X

Y

Figure 8: The Relative Error Of Each Generated Grid
Point’s Elevation Between The CPU Interpolation And

The GPU Interpolation.

5. CONCLUSIONS

The modern GPU is not only a powerful graphics
engine but also a highly parallel programmable
processor, which can provide hundreds of
computing cores to run thousands of threads. With
the development of GPGPU, how to use the GPU's
powerful parallel computing performance to speed
up the computing-intensive and time-consuming
task has become a research hot in GIS. NVIDIA's
CUDA programming model provides a powerful
programming environment and instruction set,
which greatly reduce the difficulty of GPU
programming and accelerates the popularity of
GPGPU. In this paper, in order to take use of the
powerful computing power of the CPU to
accelerate the spatial interpolation, we propose a
CUDA-based parallel bilinear spatial interpolation
algorithm and provide the algorithm implementing
detail. The experimental results show that the
GPGPU-based parallel algorithm can take full
advantage of the GPU's parallel computing
capabilities, and can achieve about 40 times
speedup; it is able to meet the demand of real-time
processing of massive spatial data interpolation.

6. ACKNOWLEDGMENT

This work was supported by Hunan Science and
Technology Program(No. 2011SK3130), Yiyang

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 28th February 2013. Vol. 48 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1442

Municipal Science and Technology
Program(No.YK0956), Anhui provincial physical
geography and human geography key disciplines
foundation (No. Asdg1103), National Natural
Science Foundation of China(No. 41271516).

REFRENCES:

[1] Miller H.J, “Tobler's first law and spatial
analysis”, Annals of the Association of
American Geographers, Vol. 94, No. 2, 2004,
pp. 284-289.

[2] Lam, Nina Siu-Ngan, “Spatial Interpolation
Methods: A Review”, Cartography and
Geographic Information Science, Vol.10, No 2,
1983, pp.129-150.

[3] George Y. Lu1, David W. Wong, “An adaptive
inverse-distance weighting spatial interpolation
technique”, Computers & Geosciences, Vol. 34,
No.9, 2008, pp.1044–1055.

[4] Jonathan A. Greenberg, Carlos Rueda, Erin L.
Hestir, etc, “Least cost distance analysis for
spatial interpolation”, Computers &
Geosciences, Vol. 37, No. 2, 2011, pp. 272–276.

[5] Hannes Kazianka, Jürgen Pilz, “Bayesian spatial
modeling and interpolation using copulas”,
Computers & Geosciences, Vol. 37, No. 3, 2011,
pp.310-319.

[6] Christopher W. Bater, Nicholas C. Coops,
“Evaluating error associated with lidar-derived
DEM interpolation”, Computers & Geosciences
Vol. 35, No. 2, 2009, pp.289–300.

[7] Stijn Janssena, Gerwin Dumontb, Frans Fierensb,
etc, “Spatial interpolation of air pollution
measurements using CORINE land cover data”,
Atmospheric Environment, Vol. 42, No. 20,
2008, pp. 4884–4903.

[8] Harley T. Davisa, C. Marjorie Aeliona, d,
Suzanne McDermottb, etc, “Identifying natural
and anthropogenic sources of metals in urban
and rural soils using GIS-based data, PCA, and
spatial interpolation”, Environmental Pollution,
Vol. 157, No. 8–9, 2009, pp. 2378–2385.

[9] Deliang Chen, Tinghai Ou, Lebing Gong, etc,
“Spatial interpolation of daily precipitation in
China: 1951–2005”, Advances in Atmospheric
Sciences, Vol. 27, No. 6, 2010, pp.1221-1232.

[10] Owens, J.D.Houston, M.Luebke,ect, "GPU
computing," Proceedings of the IEEE, Vol. 96,
No.5, 2008, pp.879-899.

[11] D. Blythe, "Rise of the graphics processor,"
proceedings of the IEEE, Vol. 96, No.5, 2008,
pp. 761-778.

[12] Nickolls J., Buck I., Garland M., etc, “ Scalable
parallel programming with cuda”, Queue,
Vol.6, No. 2, 2008, pp. 40-53.

http://www.jatit.org/

