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ABSTRACT 
 

Our world is currently threatened by digital viruses, such as email viruses and mobile viruses. These viruses 
are mainly activated by users’ operations. Therefore, it’s important for us to understand the pattern of user’s 
operational behaviors and estimate the effect of such behaviors on virus propagation. This paper first 
reveals the statistical characteristics of human behaviors, especially the email-checking intervals of the 
same user based on the Enron email dataset. After that, we analyze the effect of human operational 
behaviors and network topologies on virus propagation in a human-oriented virus propagation model. The 
empirical results from real dataset show that the waiting intervals of each user to check mailbox follow a 
long-tail distribution. Combining this finding, our experiments accurately describe the process of email-
virus propagation. The results show that viruses can fast spread in a network if the email-checking intervals 
follow a long-tail distribution with a higher power-law exponent. Meanwhile, our results find that the 
infected nodes with the highest-degree may speed up the virus propagation through analyzing the effects of 
network structure on virus propagation.   
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1. INTRODUCTION  
 

It is important for us to understand and reveal the 
dynamic characteristics of human behaviors that 
have significant scientific and commercial potential 
[1]. The research about the statistical analysis of the 
laws of human behaviors from mass data has 
brought extraordinary and glorious progress in 
sociology [2].  

Currently, the most of research about human 
behaviors are qualitative description, i.e., the human 
activities are assumed as a random model on the 
whole and depicted by the Poisson process. As a 
typical method to characterize human behaviors, the 
Poisson process is widely used in many real models 
to quantify the process of human activities, and 
depict the statistical regularity on the frequency of 
certain events in a period of time [3]-[5]. With the 
application of computer science, more and more 
statistical results from the log files and database 
show that the most of human behaviors deviate the 
Poisson process, i.e., user frequently has a short 
period of focused activity followed by a long period 
of inactivity. Through analyzing the logs that 
recording the information of human activities, some 
studies have found that when a user engages with 
certain activities, the waiting intervals of the same 

user follow a power-law distribution with a long-
tail characteristic [6]-[7]. Although some researches 
have studied the behavioral characteristics of 
sending email [8]-[10], they didn’t address the 
effect of human behaviors on virus propagation. 
Meanwhile, the correctness of theory needs more 
empirical research to verify, especially there are lots 
of variances among different types of users. This 
paper further mines the characteristics of human 
behaviors from the Enron email dataset [11], and 
analyzes the statistical properties of sending email 
by the same user. Inspired by these finding, this 
paper estimates and reveals the effect of human 
operational behaviors and network topologies on 
virus propagation. 

The research about the effect of non-Poisson 
characteristics of human actives on collective 
behaviors (e.g., the virus/rumor propagation in a 
computer/social network) is a popular topic. There 
are two typical propagation models: epidemic 
models based on the mean-field theory (SI, SIS, 
SIR, etc.) [12], and individual-based models based 
on the multi-agent simulation [3]. The traditional 
epidemic models provide a macroscopic 
understanding of the propagation by some 
differential equations. However, some assumptions 
such as full mixing and equiprobable contacts are 
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unreliable in the real world [13]. Therefore, some 
microscopic characteristics cannot be observed 
through these models. In order to overcome these 
shortfalls, Zou et al. have built an individual-based 
email model to analyze worm propagation [3]. 
Some human behaviors, i.e., checking email-boxes 
and clicking suspected emails, are added into their 
model in order to examine the effects of human 
behaviors on worm propagation. The interactive 
behaviors in Zou’s model are characterized by 
Poisson distribution that deviates from current 
research about human dynamics [6]-[10]. 
Therefore, some conclusions in Zou’s models are 
not based on the real situation. In this paper, we 
improve the accuracy of a human-oriented virus 
propagation model by combining the empirical 
studies on human operational behaviors.   

Although Vazquez et al. have tried to integrate 
the sending email intervals that are characterized by 
probability into virus propagation model [14], the 

model assumes that a user will be instantly infected 
after he/she receives a virus email. Therefore, their 
model doesn’t address the effect of user’s security 
awareness on virus propagation. Therefore, there 
exists a gap between their model and the real-world 
scenario. In this paper, we construct a human-
oriented propagation model and extract activities 
rules of sending emails among different employees 
through analyzing communication logs in the Enron 
email dataset. Based on the above analyses, we 
simulate the process of virus spreading in both 
synthetic and benchmark networks in order to 
observe the effect of human behaviors and network 
topologies on virus propagation. The numerical 
results show that viruses fast propagate at the initial 
stage, and then slowly diffuse if the distribution of 
email-checking intervals follows a power-law 
distribution which is similar to the real-world 
scenario. At the same time, our experiments also 
explain why some old viruses can also propagate in 
a network for a long time. 

Table 1:  The Information of People in the Enron Dataset 

Id Name Job Position Messages Begin Time End Time 
44 John Arnold Vice president - 1587 2000-02-27 2002-01-18 
48 Tana Jones N/A N/A 4437 1999-05-03 2002-02-08 
52 Kay Mann Employee - 5100 2000-06-02 2002-05-28 
53 Joho Lavorato CEO Enron America 1122 2001-01-26 2001-06-08 

73 Jeff Dasovich Employee Enron government 
relations executive 6272 1999-12-03 2002-09-22 

107 Louise Kitchen President Enron Online 1504 1999-05-24 2002-02-06 
109 Vince Kaminski Manager Risk Management Head 1219 2001-05-15 2002-01-30 
122 Sally Beck Employee Chief Operating Officer 1596 1999-12-13 2002-02-06 
125 Eric Eric Bass Trader 1641 1999-12-13 2002-02-07 
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Figure 1:  The Inter-event Distribution of Users. The X-scales are Hours (Logarithmic Charts)  
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Figure 2:  The Inter-event Distribution of Users. The X-scales are Minutes (Logarithmic Charts)  

 
2. THE COLLECTIVE BEHAVIORS IN THE 

EMAIL COMMUNICATION 
 

The Enron email dataset is released at 2003 by 
the Federal Energy Regulatory Commission during 
the investigation. There are lots of versions about 
the Enron dataset. The version used in our study is 
built and cleaned by Jitesh Shettyand and Jafar 
Adibi at USC/ISI1. There are 151 employees and 
252759 emails stored in the MySql database [11]. 
Table 1 only presents some typical employees’ 
information because of paper limitation. The 
interval distributions of sending emails by the same 
user are respectively measured by Hour and 
Minute. Figs. 1-2 show that the waiting intervals of 
one person follow a long-tail distribution. 
Comparing with Fig. 1, Fig. 2 emerges the power-
law distribution with the increment of nodes. At the 
same time, there is a peak at △t=16 which is the 
interval between when people leave work and when 
they return to their offices. Based on the fitting 
curves in Figs.1-2, the exponent of waiting interval 
is near 1.3, i.e., α ≈ 1.3 ± 0.5.  

Based on the above analyses, we find that the 
waiting intervals follow a power-law distribution. 
But we cannot assert that all users’ waiting time 
follows a power-law distribution. However, we can 
assert that the distribution of waiting intervals has a 
long-tail characteristic. Meanwhile, we cannot 
measure the email-checking intervals because the 
login time is not recorded in the Enron dataset. 
Combing the research about the human behaviors in 

                                                 
1 http://sgi.nu/enron/corpora.php 

the Web browsing [15] and the effect of non-
Poisson activities on the propagation in the CCNR 
group [14], we find that there are similar between 
the distribution of email-checking intervals and 
sending emails intervals. In the next section, we use 
a power-law distribution to characterize the email-
checking behaviors in order to analzye the effect of 
human behaviors on virus propagation. 
 
3. SIMULATION RESULTS 
 

In this section, we perform several experiments 
to uncover the effect of some factors on virus 
propagation. Sec. 3.1 presents the main parameters 
setting in our experiments. Sec. 3.2 introduces 
some networks as used in this paper. Sec. 3.3 
evaluates the effects of users’ operational patterns 
and network topologies on virus propagation.  
 
3.1 Propagation Model 

Based on traditional epidemic models, if there is 
an edge between two nodes in a network, the virus 
can propagate from an infected node to healthy 
neighbors at the next time. However, the process of 
virus propagation, depicted by traditional epidemic 
models, is different from real digital viruses in the 
real world. In order to accurately depict the 
propagation of email worm, Zou et al. have built an 
individual-based email model [3], in which the 
viruses are triggered by human behaviors, rather 
than the contact probability. That is to say, the user 
will be infected only if he has checked his email-
box and clicked the email with virus attachment. 
Therefore, virus propagation is mainly based on 
two user factors: the email-checking intervals and 
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the clicking email probabilities. The email-
checking time and clicking email probability of 
user i is denoted as Ti and Pi (i=1,2,…,N, N 
denotes the total number of users in a network), 
respectively. Ti is determined by user own habits. 
And the  Pi is determined by user’s security 
awareness for the risk of viruses. If a user clicks an 
infected email, the node is infected and will 
automatically send viruses to all friends in its hit-
list. Meanwhile, we assume that the user will delete 
suspected emails if a user does not click the virus 
email. 

The checking email interval of user i in Zou’s 
model [3] is depicted by Poisson distribution, i.e., 

λτλτ −eTi ~)( . However, we observe that the email-
checking intervals of one user follows a power-low 
distribution based on the analyses in Sec.2, i.e., 

αττ −~)(iT . In order to observe and quantitatively 
analyze the effect of email-checking intervals on 
virus propagation, the distribution of clicking email 
probabilities (pi) in our model is consistent with 
Zou’s model, i.e., the security awareness among 
different users in a network follows a normal 
distribution, pi ~N(0.5, 0.32). If users have higher 
security awareness, they would not be infected even 
if they receive an infected message. 

 

               
(a) Synthetic Network with α =1.7                                (b) Enron Email Network 
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Figure 3:  (a) (b) Network Structures and (c-e) Degree Distribution of Synthetic and Benchmark Networks 
 

3.2 The Structures of Networks 
Many studies on social networks have shown that 

email networks present a phenomenon of scale-free 
[16], where nodes’ degrees follow a power-law 
distribution [17]. Therefore, this paper utilizes 
synthetic and benchmark networks, both of which 
have a long-tail statistical distribution, to simulate 
virus propagation. Based on GLP [18], three 
synthetic networks are generated where the power-
law exponent can be tuned.  The three synthetic 
networks all have 1000 nodes with the power-
exponent α =1.7, 2.7 and 3.7, respectively. Besides 
the synthetic networks, we also extract two publicly 
available benchmark networks, i.e., Enron email 
network and autonomous system network (AS 
network). The Enron email network is built based 

on communization logs in the Enron dataset. There 
are 1238 nodes and 2106 edges in such network 
that includes both interior employees and exterior 
users. The AS network is created by Vaishnavi 
Krishnamurthy2. There are 12741 nodes and 26888 
edges. The topological snapshots and degree 
distribution of these networks are shown in Fig.3. 

Initially, two nodes are selected randomly from a 
network as infected nodes in order to simulate a 
multiple-seed attack that often occurs in the real 
world. We mainly measure the final infected nodes 
in a network after the whole system runs 600 steps. 
Since the process of email worm propagation is 
stochastic, all experimental results are average 
                                                 
2 http://www.cs.ucr.edu/%7Evkrish/ 
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values over 100 simulation runs. The more details about simulation process are shown in Ref. [3] 
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Figure 4:  (a) Processes of Virus Propagation in the Enron Email Network. (b) The Power-law Exponent among Users. 
 

3.3 The Effect of Human Behaviors on Virus 
Propagation 

3.3.1 The effect of checking intervals 
In order to accurately depict the process of virus 

propagation, the email-checking intervals of a user 
are simulated by a power-law distribution, rather 
than a normal distribution, based on our previous 
statistical results. Fig. 4 shows that the viruses 
propagate quickly in a network if the email-
checking intervals follow a power-law distribution. 
The results are more accordance with the observed 
trends in the real computer network [19], i.e., the 
viruses at the initial stage are explosive growth and 
then latent for a long time in order to be activated 
by user again. On the other hand, from the 
perspective of human dynamics, the reason that 
causes the above results is that users frequently 
have a short period of focused activity followed by 
a long period of inactivity [20]. In other words, 
there are very long periods of inactivity which are 
separated by bursts and intensive activity. 
Therefore, although some old viruses are killed by 
the anti-software, they could also intermittently 
outbreak in the network so far. That is because 
some viruses are hidden in some inactive users and 
not be found by anti-software [20]. When those 
inactive users are re-activated, the virus will 
propagate again. 

Furthermore, we estimate the effect of different 
distributions of user’s email-checking intervals on 
virus propagation in both synthetic and benchmark 
networks. Since the ability of users follows a 
normal distribution based on the empirical studies 
in [5], Fig. 5 plots three normal distributions of 
power-law exponents (α) among users, which 
determine users’ checking email intervals. The 
email-checking intervals of each user will be 
generated based on their own power-law exponent.   
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Exponent among Different Users. 

Figure 6 illustrates the simulation results in 
different networks. These results shows that the 
more frequent users check their email-boxes (i.e., 
the power-law exponent is higher), the more 
infected the nodes are. Meanwhile, the nodes with 
the highest-degree will enlarge the scale of virus 
propagation through comparing the final number of 
infected nodes in three synthetic networks (i.e., 
Fig.6(c)(d)(e)). That is because the higher power-
law exponent a network has, the more highest-
degree nodes the network will have.  

3.3.2 The effect of security awareness  
In a human-oriented model, virus propagation is 

activated by human operations, such as clicking on 
a suspicious email. Therefore, user’s own security 
awareness plays an important role on virus 
propagation. If a user has enough knowledge 
background about viruses (i.e., the higher security 
awareness), the user will have a lower probability 
(i.e., pi) to click on a suspicious message.  

Figure 7 shows the effect of users’ security 
awareness on virus propagation where the power-
law exponents of users’ email-checking intervals 
follows N (1.3, 0.152) as shown in Fig.5. The results 
show that if users’ security awareness is higher (i.e., 
the mean value of pi is smaller), the propagation 
scope will become smaller (i.e., the total number of 

α~N(1.3,0.52) 
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infected nodes are smaller). Therefore, it’s 
important to improve users’ risk awareness about 
viruses through public security education (i.e., the 

public campaigns on the risks of viruses to users) or 
warning messages, which has been already used for 
restraining mobile virus propagation [21]. 
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Figure 6:  The Processes of Virus Propagation with Different Email-Checking Intervals 
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4. CONCLUSION 
 

This paper starts with the human dynamics and 
analyzes the effect of human operations on virus 
propagation in a human-oriented email model. 
Based on the email dataset from Enron 
Corporation, we have found that the sending email 
intervals among different users follow a power-law 
distribution and the exponents of different users are 
around 1.3. Inspired by this finding, we have 
simulated virus propagation in a human-oriented 
virus propagation model. The results have shown 
that viruses can fast spread in a network if email-
checking intervals follow a power-law distribution. 
In such situation, the viruses are explosive growth 
at the initial stage and then slow growth. That is 
because viruses will stay at latent state and await 
activation by users. Meanwhile, we can effectively 

restrain virus propagation through improving the 
public campaigns on the risks of viruses to users.  
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