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ABSTRACT 
 

Scientific workflows produce huge amounts of scientific data. Hadoop MapReduce has been widely 
adopted for data-intensive processing of large datasets. The Kepler system can support scientific 
workflows, high–performance and high-throughput applications, which can be data-intensive and compute-
intensive. The paper presented a "Kepler + Hadoop" framework for executing MapReduce-based scientific 
workflows on Hadoop. 
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1. INTRODUCTION  
 

Currently scientific workflows assist scientists 
and programmers with tracking their data through 
all transformations, analyses, and interpretations. A 
Scientific Workflow Systems is a specialized form 
of a workflow management system designed 
specifically to compose and execute a series of 
computational or data manipulation steps, or a 
workflow, in a scientific application. In the future, 
scientific workflows will refer to the large scale 
science that will increasingly be carried out through 
distributed global collaborations enabled by the 
Internet. Typically, a feature of such collaborative 
scientific enterprises is that they will require access 
to very large data collections, very large scale 
computing resources and high performance 
visualization back to the individual user scientists. 
Current initiatives to effectively manage, share, and 
reuse ecological data are indicative of the 
increasing importance of data provenance.  

Now scientific workflows are typically used to 
automate the processing, analysis, and management 
of scientific data. More and more automation tools, 
such as Kepler, Taverna, Vistrails, and many others 
have been designed in order to allow for scientific 
workflows to be created, executed, and shared 
among scientists and laboratories. They provide not 
only a way of tracing provenance and 
methodologies to help foster reproducible science 
and the publications of executable papers, but also a 
visual programming front end enabling users to 
easily construct their applications as a visual graph 

by connecting nodes together. By providing front-
end visualizations and adaptations of shell scripts 
and manual steps, it is easier for scientists to do 
their work, especially when integrating grids and 
parallel processing or external databases. 

2. RELATED WORK 
 

Scientific workflows produce huge amounts of 
scientific data from observations, experiments, 
simulations, models, and higher order assemblies, 
along with the associated documentation needed to 
describe and interpret the data, which are stored in 
large data warehouses in digital form [1]. Currently, 
more and more large-scale scientific problems are 
facing similar processing challenges on large 
scientific datasets which are a group of data 
structures used to store and describe 
multidimensional arrays of scientific data, where 
Hadoop could potentially help [2, 3]. Hadoop has 
become a widely used open source framework for 
large scale scientific data processing. In this paper 
I'm proposing that Kepler Scientific Workflow 
System and Hadoop MapReduce are better 
approaches and solutions for scientific data 
management. 

2.1 MapReduce 

MapReduce is a programming model for 
processing large datasets including scientific 
datasets. With the MapReduce programming 
model, programmers only need to specify two 
functions: Map and Reduce [4]. The map function 
takes an input pair and produces a set of 
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intermediate key/value pairs. It is an initial 
transformation step, in which individual input 
records can be processed in parallel. The Reduce 
function adds up all the values and produces a 
count for a particular key. It is an aggregation or 
summarization step, in which all associated records 
must be processed together by a single entity. It 
merges together these values to form a possibly 
smaller set of values. Typically just zero or one 
output value is produced per Reduce invocation. 
MapReduce functions are as follows. 

Map:(in_key,in_value)→{keyj, valuej | j=1…k} 
Reduce:(key, [value1, value2,…, 

valuem])→(key, final_value) 
The input parameters of Map are in_key and 

in_value. The output of Map is a set of <key,value>. 
The input parameters of Reduce is (key, [value1, ..., 
valuem]). After receiving these parameters, Reduce 
is to merge the data which were get from Map and 
output (key, final_value) [5]. 

2.2 Hadoop 

Hadoop which is an open source implementation 
of the Google's MapReduce parallel processing 
framework is a more general distributed file 
system. The three Hadoop components that are 
analogous to Google's components described above 
are: 

1. The MapReduce programming model 

2. Hadoop's Distributed File System (HDFS). 

HDFS is a flat-structure distributed file system 
that store large amount of data with high 
throughput access to data on clusters. HDFS has a 
master/slave architecture, and multiple replicas of 
data are stored on multiple compute nodes to 
provide reliable and rapid computations [6]. Its 
master node is called JobTracker or NameNode 
which is a simple master server, and TaskTrackers 
or DataNodes which are slave servers [7]. 

 

Fig.1 Architecture of Hadoop MapReduce

2.3 Scientific Workflow System 

Kepler is a free software system for designing, 
executing, reusing, evolving, archiving, and sharing 
scientific workflows. Kepler is a type of “actor-
oriented modeling” where actors are components 
that are designed to perform various processing 
tasks. Kepler actors perform operations including 
process and data monitoring, provenance 
information, and high-speed data movement 
solutions. Each actor has a set of input and output 
ports that provide the communication interface to 
other actors. Kepler’s design actor can be seen as a 
“blank slate” which prompts the scientist for critical 
information about an actor, e.g., the actor’s name, 
and port information. Kepler’s web and Grid 
service actors allow scientists to utilize 
computational resources on the net in a distributed 
scientific workflow. Kepler includes database 

actors, e.g., DBConnect which emits a database 
connection token (after user login) to be used by 
any down-stream DBQuery actor that needs it [8]. 

Workflows can be organized visually into sub-
workflows. Each sub-workflow encapsulates a set 
of executable steps that conceptually represents a 
separate unit of work. The Kepler system can 
support different types of workflows ranging from 
local analytical pipelines to distributed, high–
performance and high-throughput applications, 
which can be data-intensive and compute-intensive 
[9]. Along with the scientific workflow design and 
execution features, Kepler has ongoing research on 
a number of built-in system functionalities, as 
illustrated in Fig.1. 
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3. SCIENTIFIC DATA MANAGEMENT 
USING HADOOP MAPREDUCE IN THE 
KEPLER SCIENTIFIC WORKFLOW 
SYSTEM 

 
While Hadoop and the MapReduce paradigm can 

provide immense processing benefits for scientific 
users, there is also a considerable learning curve 
involved with using the Hadoop framework.  The 
Kepler allows users to create workflows using a 
graphical user interface [10]. Using Kepler, 
scientists can capture workflows in a format that 
can easily be exchanged, archived, versioned, and 
executed. 

In the case of Kepler, MapReduce is 
implemented as an actor that can be added to 
workflows. In a workflow, actors have “ports” 
which either produce or consume data. Actors 
generally take data items in, process them, and then 
pass the results on to the next actor in the workflow. 
Data may take different paths through the workflow 
and can execute both serially and in parallel as 
shown in Fig.2. Kepler provides a good solution for 
users wanting to benefit from MapReduce without 
having to use it for every step in their processing. 

 

Fig.2 Hadoop Mapreduce In The Kepler Scientific Workflow System

Since Map and Reduce are two separate 
functions in the MapReduce programming model, 
Map and Reduce are treated as two independent 
sub-workflows in Kepler MapReduce actor [11]. 
Data written by some actors are read by actors on 
different nodes. Reduce tasks read outputs of Map 
tasks. 

By default, data files are not stored in HDFS and 
instead are copied into HDFS from the filesystem 

before the MapReduce actor runs, so large changes 
to an existing workflow are not necessary. It is also 
possible to configure Kepler to use data that is 
already stored in HDFS, but then other actors 
would need to support HDFS as well if they need 
access to the data. The implications of copying files 
into HDFS before processing are not entirely clear, 
but could be a large bottleneck when working with 
massive datasets. 

 

Fig.3 The Execution Semantics For Mapreduce Actor Execution In The Map And Reduce Function
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We implemented the Map and Reduce interface 
provided by Hadoop. When execution begins, the 
input data read by the Hadoop slaves will be 
transferred to the Map and Reduce subworkflows 
by our auxiliary input actors, such as the 
MapInputKey and MapInputValue actor. Next, the 
Kepler engine will execute the Map/Reduce sub-

workflows with the input data. Finally, our 
auxiliary output actors will transfer the output data 
of the subworkflows to the Hadoop slaves. The 
execution semantics for MapReduce actor 
execution in the Map and Reduce function are 
illustrated as shown in Fig.3. 

The Hadoop MapReduce programming model 
will refer to a single master and multiple slave 
nodes. The master starts with sending such a 
message to each of the slaves. Then the master 
waits for any slave to return a result. As soon as the 
master receives a result, it will insert the result into 
the output array and provide further work to the 
slave if any is available. As soon as all work has 
been submitted to the slaves, the master will just 
wait for the slaves to return their last result. The 
master code would thus look like listed as shown in 
Fig.4. 

 

Fig.4 Pseudo-Code For The Master 

The slave code would thus look like listed as 
shown in Fig.5. 

 

Fig.5 Pseudo-Code For The Slave 

4. EXPERIMENT AND RESULTS 
 

The improved Kepler scientific workflow was 
executed in a compute Cluster environment to 
measure its scalability. The nodes used in these 
experiments have two dual-core AMD 2GHz CPUs, 
8GB of memory, and run Redhat Enterprise Linux 
5. The nodes can access a shared file system via 

NFS, which store Kepler, the query sequence data, 
and the MapReduce programs. Reference sequence 
data is staged in HDFS before execution. The tests 
were done with Hadoop 0.20.2, Stratosphere 0.1.2 
and Kepler 2.3. For all the experiments, both 
Hadoop and Stratosphere were configured to run 
four Map and one Reduce instance on each node so 
that we can utilize all four cores of each node for 
Map instances. In our experiments, the data sizes of 
query and reference data file are 56MB and 244MB, 
respectively. The block size of HDFS is configured 
to be 16MB so HDFS will automatically split the 
244MB reference data into 16 blocks. In these 
experiments, HadoopDirector is implemented by 
extending existing SDF director in Kepler. 

Fig.6 shows execution times for the improved 
Kepler scientific workflow using different numbers 
of Slave CPU cores. For both Stratosphere and 
Hadoop directors, the workflow executions show 
good scalability and acceleration. The performances 
using the Stratosphere and Hadoop execution 
engine are almost the same. In the future we will 
run more complex DDP workflows with larger-
scale datasets on bigger computing environments. 

 

Fig.6 The Improved Kepler Scientific Workflow 
Execution 

5. SUMMARY 
 

It is clear to us that the traditional super 
computing centers consisting only of petascale 
computing resources are not sufficient to tackle the 
broad range of e-Science challenges. A reliable, 
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data-intensive and compute-intensive, high–
performance and high-throughput scientific 
workflow equipped with automation tools (i.e. 
Kepler) and parallel data analysis frameworks 
Hadoop MapReduce programming tool is needed. 
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