
Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1253

SURVEY ON SCIENTIFIC DATA MANAGEMENT USING
HADOOP MAPREDUCE IN THE KEPLER SCIENTIFIC

WORKFLOW SYSTEM

1KONG XIANGSHENG
1Department of Computer & Information, Xinxiang University, Xinxiang, China

E-mail: victor_kong@163.com

ABSTRACT

Scientific workflows produce huge amounts of scientific data. Hadoop MapReduce has been widely
adopted for data-intensive processing of large datasets. The Kepler system can support scientific
workflows, high–performance and high-throughput applications, which can be data-intensive and compute-
intensive. The paper presented a "Kepler + Hadoop" framework for executing MapReduce-based scientific
workflows on Hadoop.

Keywords: Mapreduce; Hadoop; Scientific Workflow; Parallel Processing; Actor-Oriented Modeling

1. INTRODUCTION

Currently scientific workflows assist scientists
and programmers with tracking their data through
all transformations, analyses, and interpretations. A
Scientific Workflow Systems is a specialized form
of a workflow management system designed
specifically to compose and execute a series of
computational or data manipulation steps, or a
workflow, in a scientific application. In the future,
scientific workflows will refer to the large scale
science that will increasingly be carried out through
distributed global collaborations enabled by the
Internet. Typically, a feature of such collaborative
scientific enterprises is that they will require access
to very large data collections, very large scale
computing resources and high performance
visualization back to the individual user scientists.
Current initiatives to effectively manage, share, and
reuse ecological data are indicative of the
increasing importance of data provenance.

Now scientific workflows are typically used to
automate the processing, analysis, and management
of scientific data. More and more automation tools,
such as Kepler, Taverna, Vistrails, and many others
have been designed in order to allow for scientific
workflows to be created, executed, and shared
among scientists and laboratories. They provide not
only a way of tracing provenance and
methodologies to help foster reproducible science
and the publications of executable papers, but also a
visual programming front end enabling users to
easily construct their applications as a visual graph

by connecting nodes together. By providing front-
end visualizations and adaptations of shell scripts
and manual steps, it is easier for scientists to do
their work, especially when integrating grids and
parallel processing or external databases.

2. RELATED WORK

Scientific workflows produce huge amounts of
scientific data from observations, experiments,
simulations, models, and higher order assemblies,
along with the associated documentation needed to
describe and interpret the data, which are stored in
large data warehouses in digital form [1]. Currently,
more and more large-scale scientific problems are
facing similar processing challenges on large
scientific datasets which are a group of data
structures used to store and describe
multidimensional arrays of scientific data, where
Hadoop could potentially help [2, 3]. Hadoop has
become a widely used open source framework for
large scale scientific data processing. In this paper
I'm proposing that Kepler Scientific Workflow
System and Hadoop MapReduce are better
approaches and solutions for scientific data
management.

2.1 MapReduce

MapReduce is a programming model for
processing large datasets including scientific
datasets. With the MapReduce programming
model, programmers only need to specify two
functions: Map and Reduce [4]. The map function
takes an input pair and produces a set of

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1254

intermediate key/value pairs. It is an initial
transformation step, in which individual input
records can be processed in parallel. The Reduce
function adds up all the values and produces a
count for a particular key. It is an aggregation or
summarization step, in which all associated records
must be processed together by a single entity. It
merges together these values to form a possibly
smaller set of values. Typically just zero or one
output value is produced per Reduce invocation.
MapReduce functions are as follows.

Map:(in_key,in_value)→{keyj, valuej | j=1…k}
Reduce:(key, [value1, value2,…,

valuem])→(key, final_value)
The input parameters of Map are in_key and

in_value. The output of Map is a set of <key,value>.
The input parameters of Reduce is (key, [value1, ...,
valuem]). After receiving these parameters, Reduce
is to merge the data which were get from Map and
output (key, final_value) [5].

2.2 Hadoop

Hadoop which is an open source implementation
of the Google's MapReduce parallel processing
framework is a more general distributed file
system. The three Hadoop components that are
analogous to Google's components described above
are:

1. The MapReduce programming model

2. Hadoop's Distributed File System (HDFS).

HDFS is a flat-structure distributed file system
that store large amount of data with high
throughput access to data on clusters. HDFS has a
master/slave architecture, and multiple replicas of
data are stored on multiple compute nodes to
provide reliable and rapid computations [6]. Its
master node is called JobTracker or NameNode
which is a simple master server, and TaskTrackers
or DataNodes which are slave servers [7].

Fig.1 Architecture of Hadoop MapReduce

2.3 Scientific Workflow System

Kepler is a free software system for designing,
executing, reusing, evolving, archiving, and sharing
scientific workflows. Kepler is a type of “actor-
oriented modeling” where actors are components
that are designed to perform various processing
tasks. Kepler actors perform operations including
process and data monitoring, provenance
information, and high-speed data movement
solutions. Each actor has a set of input and output
ports that provide the communication interface to
other actors. Kepler’s design actor can be seen as a
“blank slate” which prompts the scientist for critical
information about an actor, e.g., the actor’s name,
and port information. Kepler’s web and Grid
service actors allow scientists to utilize
computational resources on the net in a distributed
scientific workflow. Kepler includes database

actors, e.g., DBConnect which emits a database
connection token (after user login) to be used by
any down-stream DBQuery actor that needs it [8].

Workflows can be organized visually into sub-
workflows. Each sub-workflow encapsulates a set
of executable steps that conceptually represents a
separate unit of work. The Kepler system can
support different types of workflows ranging from
local analytical pipelines to distributed, high–
performance and high-throughput applications,
which can be data-intensive and compute-intensive
[9]. Along with the scientific workflow design and
execution features, Kepler has ongoing research on
a number of built-in system functionalities, as
illustrated in Fig.1.

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1255

3. SCIENTIFIC DATA MANAGEMENT
USING HADOOP MAPREDUCE IN THE
KEPLER SCIENTIFIC WORKFLOW
SYSTEM

While Hadoop and the MapReduce paradigm can

provide immense processing benefits for scientific
users, there is also a considerable learning curve
involved with using the Hadoop framework. The
Kepler allows users to create workflows using a
graphical user interface [10]. Using Kepler,
scientists can capture workflows in a format that
can easily be exchanged, archived, versioned, and
executed.

In the case of Kepler, MapReduce is
implemented as an actor that can be added to
workflows. In a workflow, actors have “ports”
which either produce or consume data. Actors
generally take data items in, process them, and then
pass the results on to the next actor in the workflow.
Data may take different paths through the workflow
and can execute both serially and in parallel as
shown in Fig.2. Kepler provides a good solution for
users wanting to benefit from MapReduce without
having to use it for every step in their processing.

Fig.2 Hadoop Mapreduce In The Kepler Scientific Workflow System

Since Map and Reduce are two separate
functions in the MapReduce programming model,
Map and Reduce are treated as two independent
sub-workflows in Kepler MapReduce actor [11].
Data written by some actors are read by actors on
different nodes. Reduce tasks read outputs of Map
tasks.

By default, data files are not stored in HDFS and
instead are copied into HDFS from the filesystem

before the MapReduce actor runs, so large changes
to an existing workflow are not necessary. It is also
possible to configure Kepler to use data that is
already stored in HDFS, but then other actors
would need to support HDFS as well if they need
access to the data. The implications of copying files
into HDFS before processing are not entirely clear,
but could be a large bottleneck when working with
massive datasets.

Fig.3 The Execution Semantics For Mapreduce Actor Execution In The Map And Reduce Function

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1256

We implemented the Map and Reduce interface
provided by Hadoop. When execution begins, the
input data read by the Hadoop slaves will be
transferred to the Map and Reduce subworkflows
by our auxiliary input actors, such as the
MapInputKey and MapInputValue actor. Next, the
Kepler engine will execute the Map/Reduce sub-

workflows with the input data. Finally, our
auxiliary output actors will transfer the output data
of the subworkflows to the Hadoop slaves. The
execution semantics for MapReduce actor
execution in the Map and Reduce function are
illustrated as shown in Fig.3.

The Hadoop MapReduce programming model
will refer to a single master and multiple slave
nodes. The master starts with sending such a
message to each of the slaves. Then the master
waits for any slave to return a result. As soon as the
master receives a result, it will insert the result into
the output array and provide further work to the
slave if any is available. As soon as all work has
been submitted to the slaves, the master will just
wait for the slaves to return their last result. The
master code would thus look like listed as shown in
Fig.4.

Fig.4 Pseudo-Code For The Master

The slave code would thus look like listed as
shown in Fig.5.

Fig.5 Pseudo-Code For The Slave

4. EXPERIMENT AND RESULTS

The improved Kepler scientific workflow was
executed in a compute Cluster environment to
measure its scalability. The nodes used in these
experiments have two dual-core AMD 2GHz CPUs,
8GB of memory, and run Redhat Enterprise Linux
5. The nodes can access a shared file system via

NFS, which store Kepler, the query sequence data,
and the MapReduce programs. Reference sequence
data is staged in HDFS before execution. The tests
were done with Hadoop 0.20.2, Stratosphere 0.1.2
and Kepler 2.3. For all the experiments, both
Hadoop and Stratosphere were configured to run
four Map and one Reduce instance on each node so
that we can utilize all four cores of each node for
Map instances. In our experiments, the data sizes of
query and reference data file are 56MB and 244MB,
respectively. The block size of HDFS is configured
to be 16MB so HDFS will automatically split the
244MB reference data into 16 blocks. In these
experiments, HadoopDirector is implemented by
extending existing SDF director in Kepler.

Fig.6 shows execution times for the improved
Kepler scientific workflow using different numbers
of Slave CPU cores. For both Stratosphere and
Hadoop directors, the workflow executions show
good scalability and acceleration. The performances
using the Stratosphere and Hadoop execution
engine are almost the same. In the future we will
run more complex DDP workflows with larger-
scale datasets on bigger computing environments.

Fig.6 The Improved Kepler Scientific Workflow
Execution

5. SUMMARY

It is clear to us that the traditional super
computing centers consisting only of petascale
computing resources are not sufficient to tackle the
broad range of e-Science challenges. A reliable,

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1257

data-intensive and compute-intensive, high–
performance and high-throughput scientific
workflow equipped with automation tools (i.e.
Kepler) and parallel data analysis frameworks
Hadoop MapReduce programming tool is needed.

REFRENCES:

[1] Xiao Liu, Key Research Issues in Scientific

Workflow Temporal Verification, THE FIRST
CS3 PHD SYMPOSIUM 2010, 2010, 49-51.

[2] R. E. Bryant. Data-intensive Supercomputing:
The Case for DISC. Technical Report CMU-
CS-07-128, Carnegie Mellon University,
(2007).

[3] J. Ekanayake, S. Pallickara, and G. Fox.
MapReduce for Data Intensive Scientific
Analyses. In Proceedings of the 4th IEEE
International Conference on eScience, 2008,
277-284.

[4] Zhifeng Xiao and Yang Xiao, Accountable
MapReduce in Cloud Computing, The First
International Workshop on Security in
Computers, Networking and Communications,
2011, 1099-1104.

[5] DING Jian-li and YANG Bo, A New Model of
Search Engine based on Cloud Computing,
International Journal of Digital Content
Technology and its Applications, Volume 5,
Number 6, 2011, 236-243.

[6] B.Thirumala Rao and L.S.S.Reddy, "28 Survey
on Improved Scheduling in Hadoop
MapReduce in Cloud Environments,"
International Journal of Computer
Applications, vol.34, 2011, 28-32.

[7] Chen Zhang, Hans De Sterck, Ashraf
Aboulnaga, Haig Djambazian, and Rob Sladek,
Case Study of Scientific Data Processing on a
Cloud Using Hadoop, In Douglas Mewhort,
Natalie Cann, Gary Slater, and Thomas
Naughton, editors, High Performance
Computing Systems and Applications, volume
5976 of Lecture Notes in Computer Science,
2010, 400-415.

[8] Ilkay Altintas, Chad Berkley, Efrat Jaeger,
Matthew Jones, Bertram Ludäscher and Steve
Mock, Kepler: An Extensible System for
Design and Execution of Scientific Workflows,
In 16th Intl. Conference on Scientific and
Statistical Database Management(SSDBM),
2004.

[9] Sangmi Lee Pallickara,Matthew Malensek, and
Shrideep Pallickara, On the Processing of
Extreme Scale Datasets in the Geosciences,
Handbook of Data Intensive Computing.
Springer. 2012, 521-537.

[10] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-
Frank, Provenance Collection Support in the
Kepler Scientific Workflow System, L.
Moreau and I. T. Foster, editors, Intl.
Provenance and Annotation Workshop
(IPAW), volume 4145 of Lecture Notes in
Computer Science, Springer, 2006, 118–132.

[11] Jianwu Wang, Prakashan Korambath and Ilkay
Altintas1, A Physical and Virtual Compute
Cluster Resource Load Balancing Approach to
Data-Parallel Scientific Workflow Scheduling,
2011 IEEE World Congress on Services, 2011,
212-215.

