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ABSTRACT 
 

In this paper, a trust-region algorithm combining with the limited memory BFGS (L-BFGS) update is 
proposed for solving nonlinear equations, where the super relaxation technique(SRT) is used.  We choose 
the next iteration point by SRT. The global convergence without the nondegeneracy assumption is obtained 
under suitable conditions. Numerical results show that this method is very effective for large-scale 
nonlinear equations problems. 
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1. INTRODUCTION 

Consider the following system of nonlinear 
equations: 

( ) 0, ,ng x x= ∈ ℜ         (1.1)                      

Where : n ng ℜ → ℜ is continuously differenti- able. 

The problem (1.1) has many applications in 
engineering, such as nonlinear fitting, function 
approximating and parameter estimating. 

There are many algorithms that have been 
proposed for (1.1), for examples, Gauss- Newton 
method [1, 8, 12, 14], Levenberg-Marquardt method 
[5, 20, 31], trust region method [4, 21], and 
quasi-Newton method [7, 32], etc.. If the Jacobian 
matrix ( )g x∇ of ( )g x  is symmetric for all 

nx ∈ ℜ , then this problem is called symmetric 
nonlinear equations. Li and Fukushima[9,10] 
presented Gauss-Newton-based BFGS methods to 
solve it. These years we made a further study and 
got some results (see [22, 23, 25, 26, 27, 28, 30]). 

Let ϕ be the norm function defined by 
21

2( ) || ( ) || .x g xϕ = Suppose that ( )g x  has a zero, 

then the nonlinear equation problem (1.1) is 
equivalent to the following global optimization 
problem 

min ( ), .nx xϕ ∈ℜ         (1.2) 

The trust region method is one of the effective 
methods for the above problem, where the 
traditional trust region methods, at each iterative 

point kx , the trial stepd
k

is obtained by solving the 

following trust-region subproblem  

Minimize ( )kp d such that ,d ≤ ∆   (1.3) 

where
21

2( ) ( ) ( )k k kp d g x g x d= + ∇ . The trust 

region methods are globally and superlinearly 
convergent under the condition that ( )g x∗∇ ( x∗  is 

a solution of (1.1)) is nondegenerate, where nonde- 
generacy means nonsingularity. Nondegeneracy of 

( )g x∗∇  seems a too stringent requirement for the 

purpose of ensuring superlinear convergence. Then 
Zhang and Wang [31] give a new trust region 
method: 

Minimize ( )k dφ such that ( )p
kc g x

γ
,  (1.4) 

where
21

2( ) ( ) ( ) ,0 1,k k kd g x g x d c pφ = + ∇ < <  is 

a non- negative integer, and 0.5 1.γ< <  

The superlinear convergence is obtained under 
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the local error bound condition which is weaker 
than the nondegeneracy assumption [see [20]]. 
However, the global convergence also need the 
nondegeneracy of ( )g x∗∇ . Presently, there is no 

algorithm which has the property that the iterative 
sequence generated by the algorithm can satisfy 

( ) 0kg x → . Without the assumption that ( )g x∗∇  

is nondegenerate. In order to overcome this 
drawback, Yuan et al. [27] presented the trust region 
subproblem 

Minimize ( )kh d such that ,kd ≤ ∆     (1.5) 

Where 
21

2( ) ( ) ,k k kh d g x B d= + the radius of trust 

region k∆ is defined by ( )p
k kc g x∆ = , c ∈ (0, 1),  

p is a nonnegative integer, andkB is generated by 

BFGS formula. Comparing with the first two 
methods, the third method uses the BFGS update 
matrix instead of the Jacobian matrix. It is well 
known that the trust-region method will be very 
useful with the situation when the exact Jacobian or 
Hessian computation is inexpensive or possible. 
However, this case is very inferquent in many 
practices. Then the third trust region method is more 
efficient than the first two methods for normal 
practical problems. However, all of these three 
methods need to store and compute the matrix (the 
Jacobian or the BFGS update matrix) at every 
iterations in the algorithm. It can  clearly increase 
the storage and workload in computation, especially 
for large-scale problems. One of the effective 
methods to overcome this insufficient is reducing 
the matrix term. In this paper, we give a trust region 
method based on the method of [27] which does not 
compute and store the matrix completely. 

Limited memory quasi-Newton methods are 
known to be effective techniques for solving certain 
classes of large-scale unconstrained optimization 
problems (see Buckley and Le Nir [3], Liu and 
Nocedal [11], Gilbert and Lemar´echal [6], and 
Byrd, Nocedal, and Schnabel[2]). They make 
simple approximations of Hessian matrices, which 
are often good enough to provide a fast rate of 
linear convergence, and require minimal storage. 
The implementation is almost identical to that of the 
standard BFGS method, the only difference is that 
the inverse Hessian approximation is not formed 
explicitly, but defined by a small number of BFGS 
updates. Thus it often provides a fast rate of 
convergence and requires minimal storage. Some 
authors have made a study about this technique (see 
[15, 18, 19, 24, 28, 29] etc.). 

Inspired by the above observations, we present a 
new method, which not only possesses the global 
convergence without the nondegeneracy assumption 
under suitable conditions, but also does not compute 
the matrix completely at every iterations. Naturally, 
we use limited memory quasi-Newton update 
matrix instead of the normal matrix (the Jacobian or 
the quasi-Newton matrix). The given algorithm has 
the following attributes. 

•the matrix of the trust region subproblem is 
generated by limited memory quasi-Newton update. 

•the the next iteration point is determined by 
super relaxation technique. 

•the global convergence without the nondegen- 
eracy assumption under suitable conditions is 
established. 

• numerical results show that the given algorithm 
is very effective for largescale problems. 

Here and throughout this paper, we use the 
following notations.. Denote the Euclidian norm 

of vectors or its induced matrix norm, and( )kg x is 

replaced by kg . 

This paper is organized as follows. In Section 2, 
the algorithm is represented. In Section 3, we prove 
some convergent results. The numerical results of 
the method are reported in Section 4. 

2. MOTIVATIONS AND ALGORITHM 

In this section, we will introduce the limited 
memory BFGS (L-BFGS) method and the super 
relaxation technique (SRT) respectively. Then we 
give the proposed algorithm. 

2.1 The limited memory BFGS method 
The L-BFGS method is an adaptation of the 

BFGS method to large-scale problems. The 
implementation described by Liu and Nocedal [11] 
is almost identical to that of the standard BFGS 
method-the only difference is in the matrix update, 
for getting Hessian inverse approximate 1kH + , 

instead of storing matrices kH , at every iteration 

kx the method stores a small number, say m, of 

correction pairs{ , },i is y  1, , ,i k k m= − −K where 
1

1 , .k k
k k k ks x x y g g+

+= − = −  

Where kg and 1kg + denote the gradients of the 

objective function ( )f x at kx and 1kx + , respectively. 

We consider here only BFGS since we have consi- 
derable computational experience in the unconstr- 
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ained case indicating the limited memory BFGS 

performs well. Let 1
k T

k ky s
ρ =  and .T

k k k kU I y sρ= − If 

we use the stored correction pairs, then 

[ ]

1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1

2 1 1 2 1

( )

[ ] [

] [ ]

k

T T T T
k K k k k k k k k k k

T T T T T
k k k k k k k k k k k k

T T T
k k m k m k m k k m k

T T T
k m k m k m k m k k k k

H

U U H U s s U s s

V U H U U s s U s s

U U H U U U

U s s U U s s

ρ ρ

ρ ρ

ρ

ρ

+

− − − − − −

− − − − − −

− + − + − + + − −

− + − + − + − + −

 = + + 

= + +
=
= +

+ +

L

L L

L L L

(2.1)  

                                      
Where 1k k ks x x+= − and 1 1( , ) ( , )k k k k ky g x g xα αε ε+ += −  

To maintain the positive definiteness of the L-BFGS 
matrix, some researches discard a correction pair 
[ , ]k ks y if the curvature 0T

k ks y > is not satisfied (see 

[18]). Another approach was proposed by Powell 

[17] where ky is defined by 

,       0.2

(1 ) ,   ,

T T
k k k k k k

k

k k k k k

y if s y s B s
y

y B s othersθ θ
 ≥=  + −

        (2.2)  

Where 0.8 T
k k k

k T T
k k k k k

s B s

s B s s y
θ =

−
and 1( ) .k kB H −=  

2.2 The Super Relaxation Technique 
The super relaxation technique (SRT) is often 

used in computation mathematics to improve the 
accuracy, where two target values are generally 
chosen as a weighted average. The heart of the 
super relaxation technique is the development of 
advantage and the inhibition of inferior in the 
relaxation process, where the relaxation factor plays 
an important role. However, this technique is rarely 
used in numerical optimization methods. In the 
algorithm of this paper, we will use the SRT to 
improve the efficiency for large scale nonlinear 
equations. 

Based on the above discussions, the given 
L-BFGS trust region subproblem is defined by 

Minimize ( )kq d such that ,kd ≤ ∆  (2.3) 

Where 21
2( ) ( ) ,k k kq d g x B d= + the radius of trust 

region k∆ is defined by p
k c∆ =  ( )kg x , 

(0,1),c p∈ is a nonnegative integer, and 1
k kB H −=  is 

generated by the L-BFGS formula (2.1) and0B is an 

initial symmetric positive definite matrix. Letpkd be 

the solution of (2.3) corresponding top , and 

let kx be thekth iteration point. Then the next point 

is defined by the SRT. (1) Updated point: 

1 .d p
k k kx x d+ = +  (2) Super relaxation point: 

1 1(1 ) , [0,1]d
k k kx wx w x w+ += + − ∈ is the super 

relaxation factor. 

According to the new trust region subproblem 
(2.3) and the above super relaxation point, we 
define the actual reduction as 

( ) ( ) ( ),p p
k k k k kAred d x d xϕ ϕ= + −    (2.4) 

and the predict reduction as  

          Pr ( ) ( ) (0).p p
k k k k ked d q d q= −   (2.5) 

Now we the algorithm for solving (1.1) is given 
as follows. 

• Algorithm 1.(L-BFGS trust region with SRT) 

Initial:  Given constants , [0,1]cρ ∈  [0,1],w ∈  

00, 0, ,np xε= > ∈ ℜ 1
0 0

n nB H I−= = ∈ℜ × ℜ is 

symmetric and positive definite. Let k := 0; 

Step 1: If
kg ε< , stop. Otherwise, go to step 2; 

Step 2: Solve the trust region subproblem (2.3) 
with k∆ = ∆ to get kd ; 

Step 3: Calculate ( )p
k kAred d ,and the radio of 

actual reduction over predict reduction as 

       
( )

.
Pr ( )

p
p k k

k p
k k

Ared d
r

ed d
=            (2.6) 

If ,p
kr ρ< then we let p = p + 1, go to step 2. 

Otherwise, go to step 4; 

Step 4: Let
1 ,d p

k k kx x d+ = + 1 1(1 ) ,d
k k kx wx w x+ += + −  

1k k ky g g+= − , update 1
1 1k kH B−

+ += by (2.1). 

Step 5: Set k := k + 1 and p = 0. Go to step 1. 

Remark. (i) In this algorithm, the procedure of 
“Step 2-Step 3-Step 2” is named as inner cycle. 

(ii) In order to ensure the update matrix 
kH  

generated by (2.1), the technique (2.2) of [17] is 
used. 

(iii) In Step 4, if 0,w =  then
1 1

d
k kx x+ += =  

,p
k kx d+  the given algorithm is the normal L-BFGS 

trust region algorithm. 

3. CONVERGENCE ANALYSIS 
 
This section will analyze some convergence 

results. Similar to Mor´e [13], Zhang and Wang [31], 
or Yuan et al.[27], the following result holds. Here 
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we also give the detail proof. 

Lemma 3.1 If p
kd is the solution of (2.3), then 

 
2

1
P r ( ) m in { , } .

2
k kp

k k k k k

k

B g
e d d B g

B
− ≥ ∆

 (3.1)               

Proof. Since p
kd is the solution of (2.3), for any 

[ ]0,1 ,α ∈ we get 

2 2

2

2 2

Pr ( ) P r ( )

1
                   ( )

2

                       ( ) /

1
                  .

2

p k
k k k k k

k k

T
k k k k k k k

k k k k k

k k k k k k

ed d ed B g
B g

B g B B g

B B g B g

B g B B

α

α α

α α

∆
− ≥ − −

= ∆ − ∆

≥ ∆ − ∆

 

Thus, we have 

22 2

0 1

2

1
Pr ( ) max[ ]

2

1
                    min{ , }.

2

p
k k k k k k k

k k
k k k

k

ed d B g B

B g
B g

B

α
α α

≤ ≤
− ≥ ∆ − ∆

≥ ∆

 

The proof is complete. 

In order to get the global convergence, similar to 
[27, 31], the following assumption conditions are 
needed. 

Assumption i (A)  Let the level setΩ  

0{ ( ) ( )}x x xϕ ϕΩ = ≤        (3.2)                        

be bounded. 

(B) ( )g x is twice continuously differentiable on 

an open convex set1Ω containingΩ . The normal 

function 21
( ) || ( ) ||

2 kx g xϕ =  is descent along the 

direction , .,p
kd ie  

( ) 0.T p
k kx dϕ∇ ≤          (3.3) 

 (C)  The following relation 

[ ( ) ] ( )p
k k k kg x B g O d∇ − =    (3.4) 

 Holds. 

(D) The matrices{ }kB are uniformly bounded 

on 1Ω ,which means that there exist positive 

constants 00 M M< ≤ and 10 m< such that 

                         
1

0 1,k kM B M B m−≤ ≤ ≤ .k∀   (3.5) 

Assumption i(B) implies that there exists1 0M >  

such that 

   1( ) ( ) , .T
k kg x g x M k∇ ∇ ≤ ∀    (3.6)                      

Similar to [27], we have the following two 
lemmas, here we only state them but omit the proof. 

Lemma 3.2 (Lemma 3.1 of [27]) If p
kd is the 

solution of (2.3). Let Assumption i hold 
and{ }kx be generatedby Algorithm 1. Then 

2
( ) Pr ( ) ( ).p p p

k k k k kAred d ed d O d− =  

Lemma 3.3 (Lemma 3.2 of [27]) Let Assumption 
i hold and { }kx be generated by Algorithm 1. Then 

Algorithm1 does not circle in the inner cycle 
infinitely. 

Lemma 3.3 shows that the proposed algorithm is 
well-defined. 

Lemma 3.4 Let Assumption i hold and{ }kx be 

generated by Algorithm 1. Then{ }kx ⊂ Ω . More- 

over, { ( )}kxϕ converges. 

Proof. By Taylor formula and (3.3), we have 

1( ) ( ) [ (1 )( )] ( )

                         (1 ) ( ) ( ) 0

p
k k k k k k

T p p
k k k

x x wx w x d x

w x d o d

ϕ ϕ ϕ ϕ

ϕ
+ − = + − + −

= − ∇ + ≤
(3.7)      

The above relation implies that 1( ) ( )k kx xϕ ϕ+ ≤  

0( )xϕ≤ ≤L . Then we conclude that { ( )}kxϕ  

converges. The proof is complete. 

Similar to [27], we have the global convergence, 
here state it and give the proof process as follows. 
The following theorem says that the iterative 
sequence { }kx  generated by Algorithm 1 satisfies 

|| ( ) || 0kg x →  without the assumption that *( )g x∇ is 

nondegenerate, where *x is a cluster point of { }kx . 

Theorem 3.1 Let Assumption i holds, { }kx be 

generated by the Algorithm 1. Then the algorithm 
either stops finitely or generates an infinite 
sequence{ }kx  such that 

 lim || || 0.k
k

g
→∞

=            (3.8) 

Proof. If the algorithm does not stop finitely, 
suppose that the relation 

          lim || || 0k k
k

B g
→∞

=           (3.9) 

holds. By (3.5), we get 
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1 1
10 || || || || || |||| || || ||,k k k k k k k k kg B B g B B g m B g− −≤ = ≤ ≤

then we can get (3.8). Thus, in order to complete 
this lemma, we only to obtain (3.9).Assume, on the 
contrary, that there exists a constant 0ε > and an 
subsequence{ }jk such that 

|| ||
j jk kB g ε≥           (3.10) 

Define the index set  { | || || }k kK k B g ε= ≥ . Mean- 

while, by Assumption i and|| || ,( ),|| ||k k kB g k K gε≥ ∈  

( )k K∈ is bounded away from 0. Without loss of 

generality, we can assume|| || ,kg k Kε≥ ∀ ∈ . 

By Lemma 3.1 and the definition of Algorithm 1, 
we have 

2

1
[ ( ) ( )] .Pr ( )

2

                                      .min{ , }. ,

k

k

pp
k k k k k

k K k K

p

k K

x x d ed d

c
M

ϕ ϕ ρ

ερ ε ε

∈ ∈

∈

− + ≥ −

≥

∑ ∑

∑

where kp is the largestp value obtained in the inner 

circle at the iterative pointkx . 

    Lemma 3.4 shows that{ ( )}kxϕ is convergent, 

then the following relation 

2

1
. min{ , }.
2

kp

k K

c
M

ερ ε ε
∈

< +∞∑  

holds. Thus, kp → +∞ ask → +∞  andk K∈ . 

Then we assume that 1kp ≥ for all k K∈ . 

Using the determination of ( )kp k K∈  in the 

inner circle, the solution kd ′  corresponding to the 

following subproblem 

2

1

1
min  ( ) || ( ) ||

2
            . .         || || || ||,k

k k k

p
k

q d g x B d

s t d c g−

= +

≤

   (3.11) 

is unacceptable. Let 1k k kx x d+′ ′= + , we get 

       1( ) ( )
.

( )
k k

k k

x x

Pred d

ϕ ϕ ρ+′−
<

′−
        (3.12) 

From Lemma 3.1, we have 

1
2

1
( min{ , }. .

2
kp

k kPred d c
M

εε ε−′− ≥  

By Lemma 3.2, we obtain 

1

2( 1)2

( ) ( ) ( )

                               (|| || ) ( ).k

k k k k

p
k

x x Pred d

O d O c

ϕ ϕ+

−

′ ′− −
′= =

 

Therefore, 

2( 1)
1

1
2

( ) ( ) ( )
| 1 | .

( ) 0.5min{ , }.

k

k

p
k k

pk k

x x O c

Pred d c
M

ϕ ϕ
εε ε

−
+

−

′ −
− ≤

′
 

Since kp → +∞ as k → +∞ and k K∈ , we have 

1( ) ( )
1, ,

( )
k k

k k

x x
k K

Pred d

ϕ ϕ +′−
→ ∈

′−
this contradicts (3.12). 

This completes the proof. 

4. NUMERICAL RESULTS 
 
In this section, we report results of some large 

scale numerical experiments with the proposed 
method. We list the test functions as follows [16] 

1 2( ) ( ( ), ( ), ( ))T
ng x f x f x f x= L , 

where these functions have the associated initial 
guess 0x . Where A of Function 8 is the n×n tridiago- 

nal matrix given by 

8 1

1  8 1

1 8 1
 

1

1  8

A

− 
 − − 
 − −

=  
 
 −
 

−  

O O O

O O

 

In the experiments, the parameters were chosen 
as 0.0001ρ = ，

510 ,ε −= 0.1,c = 0.7,γ =  0.2w = ，

0B is the unit matrix. We obtainkd by (2.3) from 

Dogleg method. In the inner circle of Algorithm 1, 
we will accept the trial step if 5p >  holds.We also 

stop the program if the iteration number is larger 
than fifteen hundred. The program was coded in 
MATLAB 7.0. The columns of the tables have the 
following meaning: Dim: the dimension of the 
problem. NG: the number of the norm function 
evaluations. NI: the total number of iterations. 

*( )g x  : the final function value at the last point. 

From Table 2, we can see that our algorithm 
performs quite well from these problems, and the 
dimension does not influence the performance of 
the presented method obviously. For Problem 3 and 
Problem 7, we can see that the iteration number and 
the normal function number of dimension 3000 is 
less than those of dimension 1000.The reason 
maybe lie in that the number is limited（ 5p ≤ ）in 

the inner cycle. 

5. CONCLUSION 
 
In this paper, a L-BFGS trust-region algorithm is 

presented for large scale nonlinear equations. The 
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global convergence is established. The main work 
of this paper is extent the super relaxation to the 
nonlinear equation problems, moreover, the 

L-BFGS update is used to replace the matrix of the 
trust-region subproblem. 

Table 1 (Test Functions) 

1.Trigonometric function 
1

( ) 2( (1 cos ) sin

cos )(2sin cos ), 1,2,3, ,

i i i

n

j i ij

f x n i x x

x x x i n
=

= + − −

− − =∑ L

 
0

101 101 101
( , , , ) .
100 100 100

Tx
n n n

= L
 

2.Logarithmic function ( ) ln( 1) , 1,2,3, ,i
i i

x
f x x i n

n
= + − = L

 
0 (1,1, ,1) .Tx = L  

3.Broyden Tridiagonal function 
1 1 1 2

1 1

1

( ) (3 0.5 ) 2 1,

( ) (3 0.5 ) 2 1, 2,3, , 1,

( ) (3 0.5 ) 1.
i i i i i

n n n n

f x x x x

f x x x x x i n

f x x x x
− +

−

= − − +
= − − + + = −
= − − +

L

 
0 ( 1, 1, , 1) .Tx = − − −L  

4.Trigexp function 
1

1

3
1 1 2 1 2 1 2

2
1 1

1 1

1

( ) 3 2 5 sin( )sin( ),

( ) (4 3 ) 2

sin( )sin( ) 8, 2,3, , 1,

( ) 4 3.

i i

n n

x x
i i i i i

i i i i

x x
n n n

f x x x x x x x

f x x e x x x

x x x x i n

f x x e x

−

−

−
− +

+ +

−
−

= − − + − +

= − − + +
+ − + − = −

= − + −

L

 
0 (0,0, ,0) .Tx = L  

5.Strictly convex function ( ) 1, 1, 2,3, ,ix
if x e i n= − = L  0

1 2
( , , , ) .Tx
n n

= L  

6.Variable dimensioned 
function 

2

1 1

2 2

1

( ) 1, 1,2,3, , 2,

( ) ( 1),

( ) ( ( 1)) .

i i

n

n jj

n

n jj

f x x i n

f x j x

f x j x

−
− =

−

=

= − = −

= −

= −

∑

∑

L

 
0

1 2
(1 ,1 , , ) .Tx

n n
= − − L  

7.Discrete boundry value 
function 

2 3
1 1 1 2

2 3
1 1

2 3
1

( ) 2 0.5 ( ) ,

( ) 2 0.5 ( ) , 2,3, , 1,

1
( ) 2 0.5 ( ) , .

1

i i i i i

n n n n

f x x h x h x

f x x h x hi x x i n

f x x h x hn x h
n

− +

−

= + + −

= + + − + = −

= + + − =
+

L

 
0 ( ( 1), , ( 1)).x h h h nh= − −L

 

8.Discretized two-point 
boundry value function 

2

1 2

1
( ) ( )

( 1)

( ) ( ( ), ( ), , ( )) , ( ) sin 1,T
n i i

g x Ax F x
n

F x F x F x F x F x x

= +
+

= = −L

 
0 (50,0,50,0, ).x = L  

 

Table 2 (Test results for Algorithm 1) 

Functions Dim *N1/ NG/||g( ) ||x  Functions Dim *N1/ NG/||g( ) ||x  

Function 1 

500

1000

3000

n

n

n

=
=
=

 

9 /15 /1.237232 006

9 /15 / 4.092946 006

9 /15 / 4.183233 006

e

e

e

−
−
−

 Function 1 

500

1000

3000

n

n

n

=
=
=

 
9 /15 /1.237232 006

9 /15 / 4.092946 006

9 /15 / 4.183233 006

e

e

e

−
−
−

 

Function 2 

500

1000

3000

n

n

n

=
=
=

 

6 / 7 / 9.059705 007

6 / 7 /1.239486 006

6 / 7 / 2.099938 006

e

e

e

−
−
−

 Function 2 

500

1000

3000

n

n

n

=
=
=

 

6 / 7 / 9.059705 007

6 / 7 /1.239486 006

6 / 7 / 2.099938 006

e

e

e

−
−
−

 

Function 3 

500

1000

3000

n

n

n

=
=
=

 
114 /120 / 8.063389 006

120 /126 / 8.418914 006

119 /125 / 8.922338 006

e

e

e

−
−
−

 Function 3 

500

1000

3000

n

n

n

=
=
=

 

114 /120 / 8.063389 006

120 /126 / 8.418914 006

119 /125 / 8.922338 006

e

e

e

−
−
−

 

Function 4 

500

1000

3000

n

n

n

=
=
=

 
60 / 77 /1.501565 006

58 / 80 / 2.167228 006

73 / 85 / 4.746286 006

e

e

e

−
−
−

 Function 4 

500

1000

3000

n

n

n

=
=
=

 

60 / 77 /1.501565 006

58 / 80 / 2.167228 006

73 / 85 / 4.746286 006

e

e

e

−
−
−
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(i) Since the L-BFGS has a fast rate of 
convergence and requires minimal storage. Then the 
matrix of the trust region subproblem is generated 
by L-BFGS update.  

(ii) In order to get better numerical results, the 
SRT is used in the algorithm where the next 
iteration point is determined by super relaxation 
technique.  

(iii) Similar to \cite{yuan113}, the global 
convergence without the nondegeneracy assumption 
under suitable conditions is established.  

(iv) In order to show the performance of the 
given algorithm, large-scale problems are tested. 
Practical results show that the given algorithm is 
effective. 
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