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ABSTRACT

In this paper, a trust-region algorithm combininghwthe limited memory BFGS (L-BFGS) update is

proposed for solving nonlinear equations, wherestifger relaxation technique(SRT) is used. We ahoos
the next iteration point by SRT. The global conesrce without the nondegeneracy assumption is aatain

under suitable conditions. Numerical results shdwat tthis method is very effective for large-scale
nonlinear equations problems.
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1. INTRODUCTION ming (x),x 00" (1.2)

Consider the following system of nonlinear

equations: The trust region method is one of thffeetive

methods for the above problem, where the
g(x)=0,x00", (1.1) traditional trust region methods, at each iterative

_ _ ) pointX, , the trial stepﬂk is obtained by solving the
Where g: 0" - O"is continuously dferenti- able. ) )
following trust-region subproblem

The problem (1.1) has many applications in

engineering, such as nonlinear fitting, function Minimize p, (d) such that||d||sA, (1.3)
approximating and parameter estimating.

There are many algorithms that have beenWhere p.(d) =1]a(x)+Dg(x)d|* . The trust
proposed for (1.1), for examples, Gauss- Newtqagion methods are globally and superlinearly

method [1, 8, 12, 14], Levenberg-Marquardt methqgyyergent under the condition thatg(x") (x is

5, 20, 31], trust region method [4, 21], and ) .
Equasi-Nevvt(])n methodg[7 32], etc.. If[ the J;cobia% solution of (1.1)) is nondegenerate, where nonde-

ix O £ g i ric § I generacy means nonsingularity. Nondegeneracy of
matrix Cig(x) of g 'S~ symmetricfora Og(x”) seems a too stringent requirement for the
n . . :
xUO", then this problem is called symmetriG, nse of ensuring superlinear convergence. Then

nonlinear equations. Li and Fukushimal9,1 hang and Wang [31] give a new trust region
presented Gauss-Newton-based BFGS methodsi@inog:

solve it. These years we made a further study and
got some results (see [22, 23, 25, 26, 27, 28, 30]) Minimize ¢ (d) such thatc®|g(x,)|", (1.4)

Let ¢ be the norm function defined by N A e _
#(x)=3lg(x) |} .Suppose thatg(X) has a zero, where g (d) =3]g(x) +D0g(x)d[,0<c<1p is

then the nonlinear equation problem (1.1) g non- negative integer, and.5< y < 1.

problem

e
1202




Journal of Theoretical and Applied Information Technology
20" February 2013. Vol. 48 No.2 B

© 2005 - 2013 JATIT & LLS. All rights reserved-

SATIT

ISSN:1992-8645 www.jatit.org E-ISSN817-3195

the local error bound condition which is weaker Inspired by the above observations, we present a
than the nondegeneracy assumption [see [20flew method, which not only possesses the global
However, the global convergence also need tlsenvergence without the nondegeneracy assumption
nondegeneracy oflg(x”). Presently, there is nounder suitable conditions, but also does not comput

algorithm which has the property that the iterativg‘e matrix completely at every iterations. Natyzall

: . limited memory quasi-Newton update
sequence generated by the algorithm can satlgrﬁ(? use . .
||g(Xk)|| _. 0. Without the assumption thaflg(x") atrix instead of the normal matrix (the Jacobian o

the quasi-Newton matrix). The given algorithm has
is nondegenerate. In order to overcome thife following attributes.

drawback, Yuan et al. [27] presented the trustoegi . . .
subproblem sthe matrix of the trust region subproblem is

generated by limited memory quasi-Newton update.

Minimize h (d) such that”d"SAk’ (1.5) «the the next iteration point is determined by
’ ) super relaxation technique.

Where h(d) =4[ g(x,) +Bd|", the radius of trust
, ) i the global convergence without the nondegen-
region A, is defined by, =c”|g(x)|,cO(0,1),

eracy assumption under suitable conditions is
pis a nonnegative integer, aByis generated by established.

BFGS formula. Comparing with the first two < numerical results show that the given algorithm
methods, the third method uses the BFGS updagtﬁ/ery dfective for largescale problems.

matrix instead of the Jacobian matrix. It is well .

known that the trust-region method will be very Here and throughout this paper, we use the
useful with the situation when the exact Jacobian tllowing notations|| Denote the Euclidian norm
Hessian computation is inexpensive or possiblgt yectors or its induced matrix norm, ank, ) is
However, this case is very inferquent in many laced b

practices. Then the third trust region method isemno eplaced by, -

efficient than the first two methods for normal This paper is organized as follows. In Section 2,

practical problems. However, all of these threge algorithm is represented. In Section 3, we @rov
methods need to store and compute the matrix (§éme convergent results. The numerical results of
Jacobian or the BFGS update matrix) at evefiie method are reported in Section 4.

iterations in the algorithm. It can clearly incsea

the storage and workload in computation, especial?y MOTIVATIONS AND ALGORITHM

for large-scale problems. One of thefegtive In this section, we will introduce the limited
methods to overcome this irf§igient is reducing memory BFGS (L-BFGS) method and the super
the matrix term. In this paper, we give a trusioag relaxation technique (SRT) respectively. Then we
method based on the method of [27] which does ri@ve the proposed algorithm.

compute and store the matrix completely. 2.1 The limited memory BFGS method

Limited memory quasi-Newton methods are The L-BFGS method is an adaptation of the
known to be Efective techniques for solving certainBFGS method to  large-scale problems. The

classes of large-scale unconstrained optimizatidfiPleémentation described by Liu and Nocedal [11]
problems (see Buckley and Le Nir [3], Liu andS almost |dent|ca! to that 'of.the standgrd BFGS
Nocedal [11], Gilbert and Lemar’echal [6], an&nethod-jche only dllffere-nce is in the mgtrlx update,
Byrd, Nocedal, and Schnabel[2]). They makér getting Hessian inverse approximatg,, ,
simple approximations of Hessian matrices, whidhstead of storing matrice$i®, at every iteration

are often good enough to provide a fast rate gf yho method stores a small number, say m, of
linear convergence, and require minimal storage.

The implementation is almost identical to thatraf t Correction pairgs, y}, i =k-1K k-m,where

standard BFGS method, the onlyffdience is that § =x . —x_,V, = g“t-g~.

the inverse Hessian approximation is not formed

explicitly, but def.ined by a smf’;\II number of BFGS Whereg* and g*"* denote the gradients of the
updates. Thus it Oﬂef‘ provlld.es a fast rate %fbjective functionf (x) atx, andx,,,, respectively.
convergence and requires minimal storage. Some

authors have made a study about this technique (Y48 consider here only BFGS since we have consi-
[15, 18, 19, 24, 28, 29] etc.). derable computational experience in the unconstr-
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ained case indicating the limited memory BFGS¢, = x +d/. (2) Super relaxation point:

k+1

erforms well. Letp =_ L and U =I-gys.If .

P P ys, U=l -Rys X = WX +(1-w)x.,,,wO[0,1] is the super
we use the stored correction pairs, then relaxation factor.

Ho. According to the new trust region subproblem

(2.3) and the above super relaxation point, we

=Uy [(UH)T U k’1+pk*1s“’lsz’l]uk *ASS define the actual reduction as

=VUH U+ U A SCsMi + s (2.1)
=L Ared, (df) =d(x, +d¢) = (%), (2.4)
=V L Ul palHina[Uimal U+ pen UG and the predict reduction as

L UTfm+ -m+ T7m+ u -m+ LU - +L o+ Y

k-me2]Sc-merSeemed Y come 2 k-1 PSS Pred, @) =g, (@°)-q. (0). 2.5)
Wheres, = X, =X andy, =9 (X, 6.1) ~9" (% &) Now we the algorithm for solving (1.1) is given
To maintain the positive definiteness of the L-BFG8s follows.

matrix, some researches discard a correction pair Algorithm 1.(L-BFGS trust region with SRT)
[s. y.]if the curvature]y, >ois not satisfied (see '

[18]). Another approach was proposed by Powell ~ Initial:  Given constants p,cofo,1]  wO[0,1],
[17] wherey, is defined by p=0e>0x00", B =H=100"x0" IS
symmetric and positive definite. Let k := 0;
Yio i SIYk 2 O'gBkS( (2 2) S . i .
= . tep 1:If , stop. Otherwise, go to step 2;
) {Hkyk +(1-6,)B.s,, others, P Hng<£ P g P
08B o Step 2: Solve the trust region subproblem (2.3)
Where 4 - 0&BS _andB = (H,)™ with A = A, to get d, ;
S BeSe S Yk
2.2 The Super Relaxation Technique Step 3: CalculateAred, (d?) ,.and the radio of

The super relaxation technique (SRT) is ofteactual reduction over predict reduction as
used in computation mathematics to improve the
accuracy, where two target values are generally [P = Ared, (d?)
chosen as a weighted average. The heart of the k Pred, (dkp)'
super relaxation technique is the development of
advantage and the inhibition of inferior in the P < - p +
relaxation process, where the relaxation factoysplao i < pythen we let p = p + 1, go to step 2.
an important role. However, this technique is narel
used in numerical optimization methods. In the Step 4: Let x!, =x +d”, X, =wx +{L-W)x,,,
algorithm of this paper, we will use the SRT to, — - "
improve the efficiency for large scale nonlinea?ryk Ga = G- UpdateH,,, =8,by (2.1).
equations. Step 5:Setk:=k + 1 and p = 0. Go to step 1.

(2.6)

therwise, go to step 4;

Based on the above discussions, the givenRemark. (i) In this algorithm, the procedure of
L-BFGS trust region subproblem is defined by “Step 2-Step 3-Step 2” is named as inner cycle.

Minimize g, (d) such that|d| < 4,, (2.3) (i) In order to ensure the update matrix,

generated by (2.1), the technique (2.2) of [17] is

* the radius of trust ysed.

Where q,(d) =3]g(x) + Bd
region A, is defined bya, =cP la(x)| >
c0(0,1),pis a nonnegative integer, ang =H;* is
generated by the L-BFGS formula (2.1) @yt an
initial symmetric positive definite matrix. Ldf be
the solution of (2.3) corresponding , and

letx, be thekthiteration point. Then the next point This section will analyze some convergence

is defined by the SRT. (1) Updated pointfesults. Similar to Mor’e [13], Zhang and Wang [31]
or Yuan et al.[27], the following result holds. lder

(i) In Step 4, ifw=0, thenx, =x =
x +d?, the given algorithm is the normal L-BFGS
trust region algorithm.

3. CONVERGENCE ANALYSIS
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we also give the detail proof. such that
Lemma 3.1If dis the solution of (2.3), then |IDa(x)" Da(x)| < M,, Ok, (3.6)

—pred, @7)> L8 g, |minga, J2:2:ly  (3-1)  Similar to [27], we have the following two
2 B lemmas, here we only state them but omit the proof.

Proof. Since d/is the solution of (2.3), for any | emma 3.2 (Lemma 3.1 of [27]) If dfis the

a0[o,1] ,we get solution of (2.3). Let Assumptioni hold

and{x} be generatedby Algorithm 1. Then

A
-Pred, d?)= - Pred, ((a —*—B,9, )
o ‘ B gl o

2
= ab, [8.9,] - 50" 8,80, ) |red, (d?) - Pred, @) = O fa? ).

B.B.g, )[B.g, | _ Lemma 3.3(Lemma 3.2 of [27]) Let Assumption
i hold and {x} be generated by Algorithm 1. Then

Algorithm1l does not circle in the inner cycle
infinitely.

1
> ah, |B.9y| - EaZAf B B] -

Thus, we have
Lemma 3.3 shows that the proposed algorithm is

- Pred, (d7) 2 maxpa, HBkng-w A¢ B "] well-defined.
ZEHBkng ming, w L Lemma 3.4 Let Assumption i hold arfd} be
‘ generated by Algorithm 1. Thér} 0 Q. More-
The proof is complete. over, {#(x)} converges.

In order to get the global convergence, similar to

[27, 31], the following assumption conditions are Proof. By Taylor formula and (3.3), we have

needed. P05.2) =905 = oo, +(L=w)(x, + 3] = 9O%) 5 2,
Assumption i (A) Let the level se® = @wDg X " +od] 3
Q ={x|@(X <A x)} (3-2) The above relation implies tha®(X,,,) < #(X,)
be bounded. <---<¢(%,) . Then we conclude tha{#(x)}

. . . . . converges. The proof is complete.
(B) g(x)is twice continuously differentiable on

an open convex s containingQ. The normal Similar to [27], we have the global convergence,

here state it and give the proof process as follows

function @(X) '—||9(Xk )} is descent along the The following theorem says that the iterative
sequence{x} generated by Algorithm 1 satisfies
directiond,’, e, lat )| C without the assumption thag(x')is
D¢(Xk) df <o0. (3.3) nondegenerate, where’ is a cluster point of{ X} -
(C) The following relation Theorem 3.1 Let Assumption i holds{x} be

_ generated by the Algorithm 1. Then the algorithm
||[Dg(xk) _Bk]gk"'o(”dkp”) (3-4) either stops finitely or generates an infinite
sequencéx} such that

Holds.

(D) The matrice§B} are uniformly bounded lim [} g IF O. (3.8)
on & ,which means that there exist positive Proof. If the algorithm does not stop finitely,
constant® < M, <M and 0<m,such that suppose that the relation

lim || B,g, |IF O (3.9)

= ”Bk" =M ’”Bk_lu sm bk (39 holds. By (3.5), we get

Assumption i(B) implies that there exidtg >0

e
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o<l|lg, ¥IB B # B B9 <Im Blg,

then we can get (3.8). Thus, in order to complete B(X.) - B(X)
this lemma, we only to obtain (3.9).Assume, on the | -

contrary, that there exists a constant-0and an
subsequendg} such that

1B, g lbe

Define the index sé€ ={k| || B.g, [k &}. Mean-
while, by Assumption i angB g, [k<,.kOK),|b,

(3.10)

Therefore,

O(CZ(PK-l))

Pred, (d;) 1k Ve '

0.5 min{c“k'lg,i
M

Since p, » +o ask —» +0 andkOK , we have
#(x) ~ (%)
~Pred, (d;)
This completes the proof.

- 1LkOK,this contradicts (3.12).

(kOK)is bounded away from 0. Without loss oft- NUMERICAL RESULTS

generality, we can assuifhg, [k & OkOK .

In this section, we report results of some large

By Lemma 3.1 and the definition of Algorithm 1,scale numerical experiments with the proposed

we have

2[8(x) —P(x +dD] = -3

kOK kOK

>> p infche

kOK

1
pPred, (-0%)

E
Ve

wherep, is the largesp value obtained in the inner

circle at the iterative poin, .

Lemma 3.4 shows tha#( x,)} is convergent,
then the following relation

> p.1 min{c®¢, iz}. £ < +00
kOK M

holds. Thus, p, » +o ask » +o andkOK .
Then we assume thgt =1for all kOK .

Using the determination af (kOK) in the

method. We list the test functions as follows [16]
g(x) = (f,(x), f,(x), £, ()",

where these functions have the associated initial
guesst, . Where A of Function 8 is the nxn tridiago-
nal matrix given by
8 -1
-18 -1
A= -1 .8 .—1
.o -1
-1 8
In the experiments, the parameters were chosen
asp=0.0001, £=10°,¢=0.1, y=0.7, w=02,
B,is the unit matrix. We obtaity by (2.3) from
Dogleg method. In the inner circle of Algorithm 1,
we will accept the trial step f >5 holds.We also
stop the program if the iteration number is larger
than fifteen hundred. The program was coded in

inner circle, the solutiond, corresponding to the MATLAB 7.0. The columns of the tables have the

following subproblem

min @)= l96)*BA (599
§ < )

is unacceptable. Lef,, = x, +d,, we get

P(%) = #(Xer) _
—Pred, (d,)

st.

0. (3.12)

From Lemma 3.1, we have

—Pred, (d, = %min{cpk‘la iz .

M}‘g

By Lemma 3.2, we obtain

P(X.) ~905) ~ Pred, (d)
=0 ¢ o et

following meaning: Dim: the dimension of the
problem. NG: the number of the norm function
evaluations. NI: the total number of iterations.

Jaex)| : the final function value at the last point.

From Table 2, we can see that our algorithm
performs quite well from these problems, and the
dimension does not influence the performance of
the presented method obviously. For Problem 3 and
Problem 7, we can see that the iteration number and
the normal function number of dimension 3000 is
less than those of dimension 1000.The reason
maybe lie in that the number is limitedp<5) in

the inner cycle.
5. CONCLUSION

In this paper, a L-BFGS trust-region algorithm is
presented for large scale nonlinear equations. The
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global convergence is established. The main wotkBFGS update is used to replace the matrix of the
of this paper is extent the super relaxation to thmust-region subproblem.
nonlinear equation problems, moreover, the

Table 1 (Test Functions)

1 Tii icf . f.(x) =2(n+i(1- cosq )~ sirk 101 101 lOl)T
.Trigonometric function n . ==, —.
9 e et —ZHCOSXJ )(2six — cog )= 1,2,3; n, % 10n" 100 106

2.Logarithmic function f.(X) =In(x +1)—%,i =1,2,3;-- n % =01 ,1

f,()=(38-0.5¢ - 2,+1,
3.Broyden Tridiagonal function f(x)=(3-0.5¢ % —%_,+ %, +1= 23, n-1 % =(1,-1- ~1 .
f,(X) = (3= 0.5¢, &, =X, + 1.

f,(x) =3 - 2x, - 5+ sinf, — x, ) sink, + X, ),
fi(x) = =% =% (4+ 3)§2)+ 24

4 Trigexp function rings % )sink +x.. ) 8 = 2.8+ o 1 %, =(0,0,-+,0f
fo(0) = =X, €7 +4x, -3,
. . . 12
5.Strictly convex function f.(x) = e -1i=12,3;--n Xy = (_,_'... ,) .
nn

f(x)=%x-Li=1,2,3;-- n— 2
6.Variable dimensioned fL(x)= Zﬁ“: ji(x, -1 1 2 y
n- j= ! Ty .

function L
£,09=C" i(x ~DY-

f,(X) =2%+0.50° (, +h} = x,,

7.Discrete boundry value f(x)=2x +0.50% (x +hi F—x_, +X,,i= 2,3 n-1 X, = (h(h=1),--- ,h(nh-1)
function 1
fo(0) =2, +0.80° (&, +hnf-x , h=—"o".
_ 1
8.Discretized two-point 90 = Ax+ (n+1y FO) %, =(50,0,50,0,- )

boundry value function

F(X) = (Fl(X), Fz(x)!"' 1Fn (X))T 'Fi (X): Sin)ﬁ B 1‘

Table 2 (Test results for Algorithm 1)

Functions Dim N1/NG/||gk )| Functions Dim N1/NG/||gk )|
n =500 9/15/1.237238- 00 n="500 9/15/1.237238- 00
Function 1 n=1000 9/15/4.092946- 00 Function 1 n=1000 9/15/4.092946—- 00
n =3000 9/15/4.183238- 00 n=3000 9/15/4.183238- 00
n =500 6/7/9.059706— 00 n =500 6/7/9.059706- 00
Functon2 | n=1000 6/7/1.239486~ 00! Function2 | n=1000 6/7/1.239486~ 00!
n=3000 6/7/2.099938- 00 n = 3000 6/7/2.099938~ 00
n =500 114/120/8.063389- 0C n=500 | 114/120/8.063389- OC
Function 3 n=1000 120/126/8.41891&- 0C Function 3 n=1000 120/126/8.418918 0OC
n=3000 | 119/125/8.922338 OC n=3000 | 119/125/8.922338- 0OC
n=500 60/77/1.501568- 00 n=500 60/77/1.501566~ 00
Function 4 n=1000 58/80/2.167228- 00 Function 4 n=1000 58/80/2.167228- 00
n=3000 73/85/4.746286- 00 n =3000 73/85/4.746286— 00
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(i) Since the L-BFGS has a fast rate of linear convergent Gauss-Newton-based BFGS
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by L-BFGS update. 152-172.
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