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ABSTRACT 
 

A distinctive optimization technique known as Ant Colony Optimization (ACO) has gained huge popularity 
in these recent years due to its flexibility and the ability to avoid reaching local optima. This optimization 
approach has become a candidate approach for many optimization problems. Unfortunately, this attractive 
algorithm suffers several downsides including stagnation and slow convergence toward optimal solution. 
Thus, a new algorithm, termed as Differential Evolution Ant Colony Optimization (DEACO) has been 
modelled to compensate the drawbacks. The algorithm was utilized to solve economic load dispatch 
problem in order to verify its performance. Economic Load Dispatch (ELD) problem concerns the planning 
of generators outputs that can meet load demand at minimum operating cost.  Moreover, in this research, 
several ant parameters, including number of ants and nodes were manipulated to investigate the behaviour 
of DEACO algorithm. Comparative studies between DEACO and conventional ACO suggested that the 
new algorithm has successfully overcome the weaknesses of classical ACO.  
Keywords: Ant Colony Optimization (ACO), Differential Evolution (DE), Economic Load Dispatch (ELD) 
 
NOMENCLATURE 

00i0ij B,B,B  B-loss coefficient 

rC  Crossover factor 

)P(Fi i  Operating cost function 

)r(kJ  set of unvisited nodes in order to 
make feasible   solution 

gbL  Length of globally best tour from 
the beginning of the tour 

DN  Number of demand buses 

gN  Numbers of generating unit 

DP  Total load demand 

DjDj Q,P  Real and reactive power demand at 
bus j 

max
Gi

min
Gi P,P  Lower and upper limit of real power 

generated at bus i 

GjGj Q,P  Real and reactive power generated 
at bus j 

LL Q,P  Real and reactive power losses 

iP  Real power of unit i 

maximini P,P  Minimum and maximum generation 
limit of unit i 

max
Gi

min
Gi Q,Q  Lower and upper limit of reactive 

power generated at bus i 

)s,r(T  Local pheromone update 

0T  Initial pheromone layer 

max
Gi

min
Gi V,V  Lower and upper limit of voltage at 

bus i 

j,miX +  Pheromone mutation function 

maxjminj X,X  Smallest and largest visited node 

iii c,b,a  Cost coefficient of unit i 

id  Distance between two nodes 

maxd  Maximum distances for every ant 
tour 

if  distance travelled by ant 

maxf  Longest distance travelled by ant 

maxx  Maximum value of x 

( )s,rτ∆  The changes of pheromone intensity 

H  Inverse of the distance travelled 
S  Random variable selected by a 

probability distribution 
T  Pheromone 
m  Number of ants 
n  Number of nodes 
q  Randomly distributed numbers 
r  Current node 
u  Unvisited node 
x  Fitness variable 
α  Pheromone decay factor 
β  Pheromone deposit factor  
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1. INTRODUCTION  
 
Among the greatest challenge in power system 
industry is to plan energy dispatch. Power flow 
analysis is a crucial attention during power system 
planning, analysis, scheduling and design. This area 
of studies is known as the Optimal Power Flow 
(OPF). Power flow analysis is the backbone of 
power system analysis. This non-linear and steady-
state approach is essential for handling operation 
planning, economic scheduling, and energy 
exchange between energy providers. In essence, it 
is an optimization problem and whose objective is 
to narrow down the total operating cost of 
generators, without violating constrains [1]-[2]. The 
principle information obtained from this study for 
instance the voltage magnitude, shunt elements and 
phase angle are important for many research fields 
such as transient stability, load shedding, and 
contingency analysis. This analysis is not a simple 
one and consists of numerous variables. Power flow 
analysis is considered as nonlinear algebraic 
mathematical problems and researchers have 
developed several approaches to solve this problem. 
The first one is the Gauss-Seidel method. This 
method named after Carl Friedrich Gauss and 
Philipp Ludwig von Seidel. This approach apply 
iterative rule and known as the method of 
successive displacement. Convergence is achieved 
if the matrix is either diagonally dominant or 
positive definite [3]. The second one is known as 
the Newton-Raphson method. This method is 
widely used in power flow studies and was 
developed based on the Taylor’s series expansion 
[4]-[5]. Even though this method is widely used, it 
suffers several drawbacks, especially the 
complexity in calculating derivative of a function, 
fail to achieve convergence, and overshooting that 
leads the solution to diverge away from the root [5].   
    Among the related topic and widely discussed in 
OPF is the Economic Load Dispatch problem. 
Economic Load Dispatch (ELD) is the procedure of 
generating electrical energy at the lowest possible 
cost to feasibly feed the energy necessitated by its 
consumers. Economic load dispatch problem is 
among the fundamental topics in power system 
operation [6]-[7]. The entire energy demand must 
be dispersed accordingly among the generating 
units. Among the factors that influence load 
dispatch are the operating efficiencies of generating 
unit, fuel cost, and transmission losses. Note that 
even the most ideal generator could not guarantee a 
viable cost if the generator is positioned at a very 
remote location from the load distribution point or 
the fuel price is considerably expensive. While 

sustaining the demand, the energy provider must 
aware of the operational limits of the generating 
units and transmission facilities. Economic Load 
Dispatch requires the generation facilities to plan 
and forecast optimal energy dispatch.  Several 
crucial considerations during energy scheduling are 
to determine the existing generating units, the 
distance between load centre and the generating 
unit, identifying the operating limits of each 
generating unit for example the ramp rate, 
maximum and minimum generation levels, and the 
maximum amount of the permissible running time 
for the generating unit, reliability, and efficiency. 
Formerly, ELD problems were solved by various 
mathematical analysis and optimization methods 
[8].  
    Currently, several numbers of techniques has 
been developed to help overcome ELD problems, 
such as Particle Swarm Optimization [9-10]. 
Artificial Bee Colony Algorithm [11], Genetic 
Algorithm [12], Pattern Search Algorithm [13], 
Neural Networks [14]-[15], Evolutionary 
Programming [16], and Harmony Search Algorithm 
[17]-[18].  Each of the implemented techniques has 
its own advantage and disadvantages. For example, 
Particle Swarm Optimization (PSO) is known for 
its ability to allow each particle to preserve a 
memory of the best solution and the best solution 
found by the in the particle’s area. Simple idea, 
easy employment, and computationally efficient 
[19] are the main highlights of PSO technique. 
However, the inequality constraints in the next 
position of an individual produced by the PSO 
algorithm can disrupt the inequality constraints [9]. 
This method also displays inherent difficulties in 
performing local search for numerical applications 
[10].  
    Lately, Ant Colony Optimization (ACO) has 
become a candidate optimization technique for 
many applications [20]-[22] that stress on 
combinatorial optimization travelling salesman 
problem (TSP), quadratic assignment problem 
(QAP), and optimal design and scheduling problem 
of thermal units [23]. ACO is a probabilistic 
technique that was introduced by Marco Dorigo in 
1992 in his PhD thesis. The algorithm resembles 
the behaviour of an ant colony, seeking a good path 
between food source and their nest. In their journey 
to search for food, ant will deposit a type of 
chemical trace called pheromone. If other ants 
found the pheromone trail, they will break random 
travelling and begin to follow the trail. In doing so, 
they will reconstruct the existing pheromone trail 
by spreading additional amount of the chemical 
essence on the track. However, less travelled path 
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will have its pheromone layer evaporated, thus 
reducing its attractiveness.  
    Another highlighted approach in this research is 
the Differential Evolution (DE). DE was introduced 
by Storn and Price in 1995 [24], established to 
optimize real parameter and real valued functions. 
DE was used to solve the Chebychev Polynomial 
Fitting Problem, and iteratively improve the 
optimization agent with respect to a given 
parameter. In 1996, DE successfully won the third 
place during the First International Contest on 
Evolutionary Computer (1st ICEO) in Nagoya. DE 
optimizes an objective function by creating a new 
candidate solution, termed as “offspring” out of the 
original one. The algorithm then combines the 
offspring with the original one through a process 
called as crossover. Later on, a new fitness score 
will be calculated. Candidate with the best fitness 
score will be reserved, but the one with bad fitness 
will be discarded.  Similar to Genetic Algorithm, 
DE is a typical Evolutionary Algorithm (EA), 
stochastic and population-based optimization 
algorithm [25]. DE is suitable to solve non-
differentiable, non-continuous, non-linear, noisy, 
flat, and multi-dimensional objective function.  In 
1997, Storn and Price claimed that DE is much 
better and more efficient than Simulated Annealing 
and Genetic Algorithms [26].  DE has been applied 
broadly in optimization problems such as 
multiprocessor synthesis, Neural Network 
Learning, Radio Network design, optimization of 
non-linear chemical process, and gas transmission 
network design. DE also has been implemented into 
economic load dispatch problem [27]. 
    This paper presents Differential Evolution Ant 
Colony Optimization (DEACO) technique in 
solving Economic Load Dispatch problem. The 
study stress on the development of new algorithm 
called as DEACO which integrates DE and ACO 
together to improve the performance of both 
algorithms. To verify its performance, DEACO is 
used to optimizing the ELD on a reliable test 
system namely the IEEE 26-Bus Reliable Test 
System and IEEE 57-Bus Reliable Test System. 
The results from this study indicates that the 
proposed technique outperformed the traditional 
ACO in terms of cost minimization and 
computation time. 

 

2. ECONOMIC LOAD DISPATCH  
 

For interconnected systems, the goal of economic 
load dispatch is to find the real and reactive power 
scheduling in order to cut-down the cost function of 

different generating units in the system. Operating 
efficiency of prime mover, fuel cost and 
transmission losses are among the issues that might 
impact the operating cost. The generator costs are 
typically characterized by several types of quadratic 
curves. Energy output can be measured by using a 
wattmeter over a period of time. The generator’s 
input can be identified by measuring the fuel 
tonnage used to fire the generator in MBTU/ton 
unit. The fuel input can be plot in MBTU/hour as a 
function of the output power in MW. Such plot is 
known as input-output curve as indicated in Figure 
I 

 

 

 

 

 

 

 

The second representation is the fuel-cost curve 
as depicted in Figure II. The plot begins by 
extracting the ratio of fuel rate to the power for 
every point from the input-output curve. The plot of 
these ratios versus the generation level will produce 
the fuel-cost curve. 

 

 

 

 

 

 

 

    Figure III depicts the heat rate curve. This 
curve is not to be confused with Figure I since it is 
almost identical to the input-output curve. The 
difference is that heat rate curve represents the ratio 
of values of fuel rate to values of generation. This 
curve expresses how the cost per MWhr varies with 
the output generation.  

 

 

 

 

Figure I. Input-Output Curve 
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Figure II. Fuel-Cost Curve 
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 Another illustration of generator cost is the 
incremental cost curve, as reflected by Figure IV, 
which represent the desired $/MWhr characteristic 
of the operating cost. The data on its y-axis can be 
obtained by differentiating operating cost ($/hr) 
with respect to the generation output. Another 
approach to acquire the incremental cost rate is by 
multiplying fuel price by the incremental heat rate.  

 

 

 

 

 

 

 

 

The total operating cost is modeled by summing 
up the individual cost function of each generator. 
Thus, an optimal generated output can be acquired 
from the solution. Figure V below is a graphical 
representation of a simple, single line diagram 
which encompasses the basic elements of a power 
system.   

 

 

 

 

 

 

 

 

 

 

 

    Where G is the generating unit, Zline1, Zline2, and 
Zline3 are the line impedances, PD1 and PD2 are the 
real power demand, and QD1 and QD2 are the 
reactive power demand. Some of the equations in 
this research were referred from [24]. Equation (1) 
represents the cost of generating units in a power 
system. 
 
 
 

Where CTot is the summation of operating cost, 
Ci(Pi) of generator Gi. The cost function is used to 
calculate the cost of operating each generator in the 
bus system. The operating cost can be written as a 
quadratic equation with respect to the generated 
power, Pi as shown below:  

  
 
Where ai, bi, and ci are the cost coefficients of unit 
i. The cost function for each generating units are 
required to calculate the total operating cost. The 
followings are the generators’ operating costs for 
IEEE 26-Bus System.  

 
 
 
 
 
 
 
 
 
    The operating costs for IEEE 57-Bus System also 
use equation (12) and are shown as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
Moreover, the power loss PL is another important 
consideration during dispatch planning. The power 
loss must be kept as minimal as possible.  

 

Figure III. Heat Rate Curve 
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Figure IV. Incremental Cost 
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Figure V. Single Line Diagram Of A Power 
System 

∑=
Ng

i
iiTot )P(C  C  (1) 

 

iii
2

iiii cPbPa)P(C ++=  (2) 

 

Ci a b c 

C1 200 7.0 0.0070 

C2 200 10.0 0.0095 

C3 220 8.5 0.0090 

C4 200 11.0 0.0090 

C5 220 10.5 0.0080 

C26 190 12.0 0.0075 

 

Ci a b c 

C1 400 7.0 0.0070 

C2 200 10.0 0.0095 

C3 220 8.5 0.0090 

C6 200 11.0 0.0090 

C8 240 10.5 0.0080 

C9 200 12.0 0.0075 

G12 180 10.0 0.0068 
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The equation to calculate PL is shown below: 

 

 
Where Bij, B0i, and B00 are the B-loss coefficient. 
 

3. DIFFERENTIAL EVOLUTION ANT 
COLONY OPTIMIZATION 
FORMULATION 

 
ACO algorithm can easily couple with other 
optimization method. It requires small number of 
search agents, and can avoid falling into local 
optima problem. Because of these attractive 
features, this optimization approach quickly 
acquires a good reputation among researchers. 
However, this algorithm converges to an optimal 
solution slowly due to its positive feedback design 
and random selection process, and may experience 
stagnation problem which may limit its wide 
application in various optimization problems [28]. 
Moreover, recent employment of ACO shows that 
the technique is not effective enough to solve 
complex problems. On the contrary, DE is more 
robust, and able to quickly reach convergence. 
Therefore, the benefits reflected by DE were taken 
into account to compensate for the disadvantages of 
ACO algorithm.  
    The pheromone layer in ACO will be modified 
by DE mutation, crossover, and selection process. 
In this paper, DEACO algorithm is devised into 
ELD problem. The following steps explain briefly 
about the algorithm. 
 
Step 1: Initialization 
The algorithm starts with heuristically initialize all 
the parameters. The parameters are assigned within 
a certain limits in order to overcome large 
computation time [28]. The followings are the 
necessary parameters during initialization: 
 

r : no. of nodes 
s : no. of ant 
ρβ : relative importance of pheromone versus 

distance  (ρβ > 0) 
ρe : pheromone evaporation coefficient  
              (0 < ρe < 1) 
ρα : pheromone decay coefficient (0 < ρα < 1) 
ρ0 : initial pheromone level 
 
Each ant will tour and select the next unvisited node 
and the ants are not permitted to make the random 
tour more than once. Therefore, the random 

travelling distance for each ant is different. The 
longest distance, lmax is determined by calculating 
the longest distance that the ant would travel. 
 
Step 2: Generate the First Node 
    The ant will randomly select the first node to 
visit. The possibilities are based on a uniform 
distribution ranged between 1 to n.  
 
Step 3: State Transition Rule 
    The ant that is initially situated at node (m) will 
move to the next node (n). The selection of the 
consecutive node is based on equation (19): 
 
 
 
 
 
 
 
Where: 
ρ : pheromone trace 
ρk(r) : set of unvisited nodes  
η : 1/l is the inverse of the distance l(m,n) 
m : current node 
n : next node 
u : unvisited node 
 
During the random tour, each ant can only visit the 
same node once. Once an ant has stopped a definite 
node, the ant is prohibited to visit the same node 
again. The length for each travel is different. The 
longest distance, lmax is determined by calculating 
the longest ant tour. 
 
Step 4: Local Updating Rule 
After reaching the new node, the pheromone level 
will be updated. The pheromone level of the 
travelled path will be varied to alter its 
attractiveness. The updating process is according to 
the following equation:  

 
Where:  
 
 

 

 

In this research, the pheromone evaporation rate, ρe 
is set to 0.45. This process allows the ant to 
discover the visited node once again during their 
next exploration.  
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( )n,mρ  : current pheromone trace 

( ).n.,mρ  : new  pheromone trace 
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Step 5: Pheromone Mutation 
    DE Mutation process was integrated into ACO, 
where the level of pheromone is the candidate of 
mutation. This research is focusing on Gaussian 
Distribution Equation. The pheromone mutation 
rate shown in (23) is derived from Gaussian 
Distribution function.  
 
 
 
 
 
Where: 
Mi+m,j : mutator function 
Mjmax : maximum node value 
Mjmin : minimum node value 
lmax : longest ant tour 
l i :  length of current ant tour 
 
Mutation process will improve the diversification 
of pheromone trail by creating the mutated 
pheromone trail, ρx(m,n). 
 
Step 6: Crossover 
    DE crossover process is very similar to that of 
GA [21].  The mutated and the original pheromone 
trail will merge together into the trial matrix, Mtrial. 
Mtrial will sort the pheromone level in descending 
order. 
 
Step 7: Selection 
    Comparison between the trial and the original 
pheromone trail are made during the selection 
process. Firstly, the trial and original pheromone 
trail will be normalized, and compared with a 
predetermined selection variable, Asel.  Asel is set 
between 0 to 1. The selection process will choose 
pheromone layer that scored 1 or near to 1. 

Step 8: Fitness Evaluation 
    Fitness evaluation is performed after all ants 
have completed their tour. The control variable Fx, 
is calculated by means of equation (27): 
 
 
 
 
Where: 
l : distance for every ants tour 
lmax : maximum distance for every ants tour 
Fxmax : maximum of Fx 
 

    The values of variable Fx will be assigned and 
multiplied with fitness of this research. 
 
Step 9: Global Updating Rule 
After all ants have completed their travels, the best 
ant is allowed to update the amount of pheromone 
level to determine the best global fitness. The 
following equation is applied to update the 
pheromone level globally: 

 

    The best route will have its pheromone level 
amplified.  
 
Step 10: End Condition 
    Once the maximum number of iteration (Qmax) 
has been reached and all ants have completed their 
tour, DEACO will stop its processes. 
 
4. RESULTS AND DISCUSSION 

The modelling and program development of 
DEACO was accomplished by using MATLAB 
R2010a software. To test the engine’s capability 
and effectiveness, two case studies, involving IEEE 
26-Bus system and IEEE 57-Bus System were 
applied. The effect of ant parameters to DEACO 
algorithm is also investigated for both cases. Since 
DEACO shares several similar parameters of ACO, 
therefore, DEACO requires the same parameters 
setting as the original ACO algorithm. 

Case study 1: IEEE 26-Bus System 

This case study considers IEEE 26-Bus System 
which contains 6 generating units. The objective is 
to reduce the total operating cost, while conserving 
the system constraints under the allowable limits. 
While cutting down the operating cost, it was 
initially projected that the power loss might be 
reduced to minimal. Power loss is the marginal 
value between the demanded power and the total 
generated power by the generating units. 
 
 
 
 
 
 
 
 
 
 

( ) 









⋅−⋅+

=+

max

i
minjmaxjj,i

j,mi

l

l
MM,0NM

M

β
 (23) 

 

maxx
max

x F
l

l
F ⋅=  (27) 

( ) ( ) ( ) )n,m(.n,m1n,m ρ∆ρρρρ αα +−←  (28) 

Generating Unit Minimum 
(MW) 

Maximum 
(MW) 

1 100 500 

2 50 200 

3 80 300 

4 50 150 

5 50 200 

26 50 120 

 

Table I. Generating Limits For 6 Generators 
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  To prove the effectiveness of the DEACO engine, 
comparisons are made between DEACO and the 
conventional Ant Colony Optimization technique. 
Table I tabulates the operation limit for each 
generating unit in the bus-system.      

    Table II depicts the results of comparative 
studies between DEACO and ACO. Both 
algorithms were implemented into economic load 
dispatch problem. The table clearly shows that 
DEACO generates smaller outputs than ACO. It is 
also observed that the computation time for 
DEACO is much superior to that in ACO as 
highlighted in the table. 
 
 
 
 
 
 

     
 
 
 
 
 
 
 
 
The results indicate that DEACO has successfully 
minimized each of the generators’ output to an 
optimal point. After the economic power scheduling 
for each generating units has been calculated, 
Equation (27) was used to compute the total 
operating cost for this case study. DEACO slightly 
cuts down the total operating cost by 0.00009%. In 
this case study, the discount percentage is 
insignificant due to the fact that the considered 
system is a small system. Next, DEACO has 
successfully minimized the total power loss, from 
12.7244MW to 12.7232MW by 0.01%. Note that 
power loss is the difference between total power 
demand and total generated power. In this small bus 
system, DEACO might not reveal substantial 
differences from its ACO counterpart. However, 
DEACO has already outperformed ACO through its 
rapid computation capability. While ACO requires 
25.554026 seconds to run its task, DEACO only 
needs 0.414134 second to finish its job. This 
noteworthy capability is the new improvement 
DEACO introduced to the conventional ACO.   
 
 

Case study 2: IEEE 57-Bus System 

    The IEEE 57-Bus System which contains 7 
generating units has been chosen as the second test 
system. Similar to the previous case study, the total 
operating cost is the summation of the generators’ 
operating cost equations. Table III tabulates the 
generating limits for each generating units. Table 
IV indicates that DEACO has effectively 
minimized the generation output of each generating 
unit. The total operating cost was reduced by 0.5%, 
from $17,347.57 per hour to $17245.85 per hour. It 
is found that DEACO demonstrated to be beneficial 
in reducing the total power loss. In this case study, 
DEACO outperformed ACO by significantly 
reducing the total power loss. Furthermore, 
DEACO optimizes ELD problem at a faster 
computation rate that the conventional ACO as 
highlighted in the table. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Table II. Results Comparison Between ACO And 
DEACO 

 

Table III. Generating Limits For 7 
Generators 

Table IV. Results Comparison Between ACO And 
DEACO 

 

Engine ACO DEACO 

G1 (MW) 447.1142 447.0700 
G2 (MW) 172.7343 172.7460 
G3 (MW) 261.6889 261.4793 
G4 (MW) 138.4072 138.3812 
G5 (MW) 168.6463 168.9707 
G26 (MW) 87.1335 87.0760 

Total Generated Power 
(MW) 

1275.7244 1275.7000 

Total Loss (MW) 12.7244 12.7232 

Total Cost ($/Hour) 
15446.409

1 
15446.263

4 
Computation Time (s) 25.554026 0.414134 

 

Generating 
Unit 

Minimum 
(MW) 

Maximum 
(MW) 

1 100 575 

2 50 100 

3 50 140 

6 50 100 

8 100 550 

9 50 100 

12 100 410 

 

Engine ACO DEACO 

G1 (MW) 136.2812 133.3403 

G2 (MW) 98.2218 95.8749 

G3 (MW) 45.3719 45.1676 

G6 (MW) 73.5391 73.1239 

G8 (MW) 457.9186 457.4348 

G9(MW) 98.8826 98.4765 

G12(MW) 364.0922 362.3069 

Total Generated Power 
(MW) 

1274.3074 1265.7249 

Total Loss (MW) 11.3074 2.7249 

Total Cost ($/hour) 17347.5731 17245.8531 

Computation Time (s) 23.367137 2.721103 
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Case study 3: The Effect of Ant Parameters to 
DEACO 
    The effect of ant parameters to DEACO has also 
been investigated. The involved parameters were 
the number of ants and number of nodes. Ant is the 
search agent for ACO algorithm, while node is the 
term that defines the visiting point of ants during 
their tour.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The experiment is conducted on IEEE 57-Bus 
System. All the constraint and system limitation 
were similar to case study 2. The number of ants 
and number of nodes will be manipulated to see the 
effect of ant parameters to the performance of 
DEACO algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A
nt 

Nod
e 

Pg1 

(MW) 
Pg2 

(MW) 
Pg3 

(MW) 
Pg6 

(MW) 
Pg8 

(MW) 
Pg9 

(MW) 
Pg12 

(MW) 
Ptotal 

(MW) 
Ploss 

(MW) 
Time (s) 

Total Cost 
($/MWhr) 

5 

5 
136.641

7 
90.0463 45.145 76.1207 

463.379
8 

100 
358.763

6 
1270.097

1 
20.0971 

4.42395
2 

17317.36 

10 
136.281

2 
95.8749 45.3719 73.5391 

457.434
8 

98.8826 
362.306

9 
1269.691

4 
19.6914 

3.36713
7 

17284.48 

15 
138.216

2 
96.6722 45.4058 75.0607 458.231 95.9256 

360.704
4 

1270.215
9 

20.2159 
9.78523

6 
17280.75 

20 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 

15.7854
19 

17306.45 

25 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 

32.1648
4 

17306.45 

10 

5 
137.119

5 
91.1863 44.975 74.5774 

463.270
4 

100 
358.672

3 
1269.800

9 
19.8009 

8.78003
9 

17317.36 

10 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 

5.73944
1 

17306.45 

15 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 

11.5221
3 

17306.45 

20 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 

18.2215
6 

17306.45 

25 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 

30.1587
42 

17306.45 

15 

5 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 5.65861 17306.45 

10 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 8.55872 17306.45 

15 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 

16.4457
82 

17306.45 

20 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 

25.3665
21 

17306.45 

25 
136.281

2 
95.957 45.3719 73.5391 

457.434
8 

99.7539 
362.926

1 
1271.264 21.264 

38.1169
5 

17306.45 

 

Table V. Effects Of Ant Parameters To ACO Algorithm 
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Table V tabulates the calculated generation output 
of each generating unit. The total power is the 
summation of all generating units in the system. 
Ploss is the loss that was introduced by the 
transmission line. It is the difference between the 
demanded power and the total generated power. 
Table V depicts that ACO is greatly dependent of 
ant parameters. To generate consistent and 
promising total operating cost, ACO requires high 
number of ants and nodes. For example, at 10 nodes 
and 5 ants, the algorithm computes a total operating 
cost of 17317.36 $/MWhr, and calculated 
1270.0971MW of power loss. ACO continues to 
generate fluctuating and irregular total operating 
cost while having small number of ants.  
    However, by setting the number of nodes and 
number of ants to a greater value, the algorithm 
starts to generate consistent and more promising 
solution. Starting from 10 numbers of ants with 10 
numbers of nodes, ACO computed the total 
operating cost of 17306.45 $/MWhr. The solution 
remains constant afterwards. Table VI tabulates the 
effect of ant parameters towards the performance of 
DEACO algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   The first properties that need to be noted is that 
DEACO has effectively reduced the total operating 
cost lower than ACO. At small number of ants, for 
example 5 ants; the algorithm seems to be 
depending on the number of nodes to properly 
generate a desired solution. DEACO performance 
increased correspondingly to the increased number 
of nodes. For example, initially the algorithm 
produced fluctuating operating cost that varies 
between 17371.57$/MWhr and 17267.46$/MWhr.  
However, these undesired outcomes have been 
overcome by increasing the number of ant, from 5, 
10 and 15 ants. At large number of ants, DEACO 
appears to be very independent of the number of 
nodes in order to work appropriately.  
Taking the example of DEACO having 10 numbers 
of ants; starting from 10 nodes to 25 nodes, the 
algorithm consistently generated the total operating 
cost of 17267.46$/MWhr. It implies that DEACO 
can perform ideally with less impact from ant 
parameters. Based on the results tabulated in Table 
V and Table VI, it was found that DEACO has 
outperformed the original ACO in terms of the 
requirement of search agent. DEACO proved to be 

An
t 

Nod
e 

Pg1 

(MW) 
Pg2 

(MW) 
Pg3 

(MW) 
Pg6 

(MW) 
Pg8 

(MW) 
Pg9 

(MW) 
Pg12 

(MW) 
Ptotal 

(MW) 
Ploss 

(MW) 
Time (s) 

Total 
Cost 

($/MWhr) 

5 

5 129.4661 90.9768 45.5035 77.388 464.3614 100 363.4766 1271.1724 20.8724 
2.86109

9 
17371.57 

10 133.3403 98.2218 45.1676 73.1239 457.9186 98.4765 364.0922 1270.3409 20.0409 
2.72110

3 
17308.94 

15 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
3.69613

3 
17267.46 

20 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
4.44740

4 
17267.46 

25 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
5.42863

8 
17267.46 

10 

5 129.4661 90.9768 45.5035 77.388 464.3614 100 363.4766 1271.1724 20.8724 
6.23111

2 
17371.57 

10 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
7.07673

2 
17267.46 

15 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
7.30882

5 
17267.46 

20 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
5.19466

7 
17267.46 

25 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
7.04411

8 
17267.46 

15 

5 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
9.18301

2 
17267.46 

10 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
6.05430

4 
17267.46 

15 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
7.42040

3 
17267.46 

20 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
7.69724

3 
17267.46 

25 135.2651 95.8749 45.3371 73.095 457.3123 98.8826 362.3069 1268.0739 17.7739 
8.85050

6 
17267.46 

 

Table VI. Effects Of Ant Parameters To DEACO Algorithm 
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requiring only small numbers of search agent to 
achieve optimal solutions. However, ACO starts to 
produce constant solution after the number of nodes 
has been increased.  
  The result also implies that DEACO can rapidly 
hit convergence and more dependable than ACO 
algorithm. This attractive characteristic reveals that 
DEACO can work faster, yet can still provide 
effective solutions for suitable optimization 
problem 

5. CONCLUSION 

In this research, the development and 
implementation of Differential Evolution Ant 
Colony Optimization algorithm has been 
demonstrated. DEACO engine is achieved by 
symbiotically combines several elements of 
Differential Evolution into Ant Colony 
Optimization engine, in a way to compensate any 
disadvantages that were suffered by both 
algorithms. It is revealed that DEACO algorithm 
has successfully solved economic load dispatch 
optimization problem. By comparing DEACO 
results with its conventional counterpart, it is 
revealed that DEACO does better jobs than ACO. 
DEACO optimizes ELD problem by cutting down 
the operational cost of generating units. DEACO 
has minimized the power loss with better 
performance as those in ACO. Future works will be 
performed by implying several modifications to the 
mutation operation in order to enhance and control 
the evolution rate of pheromone.  
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