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ABSTRACT

A distinctive optimization technique known as Argl@ny Optimization (ACO) has gained huge popularity
in these recent years due to its flexibility and #bility to avoid reaching local optima. This opiZzation
approach has become a candidate approach for nmimyization problems. Unfortunately, this attraetiv
algorithm suffers several downsides including s#igm and slow convergence toward optimal solution.
Thus, a new algorithm, termed as Differential Eviolu Ant Colony Optimization (DEACO) has been
modelled to compensate the drawbacks. The algorittas utilized to solve economic load dispatch
problem in order to verify its performance. Economodad Dispatch (ELD) problem concerns the planning
of generators outputs that can meet load demandiratnum operating costMoreover, in this research,
several ant parameters, including number of andsnaxles were manipulated to investigate the behavio
of DEACO algorithm. Comparative studies between @EAand conventional ACO suggested that the
new algorithm has successfully overcome the weaasesf classical ACO.

Keywords: Ant Colony Optimization (ACO), Differential Evolti (DE), Economic Load Dispatch (ELD)
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1. INTRODUCTION sustaining the demand, the energy provider must

aware of the operational limits of the generating

Among the greatest challenge in power systemnits and transmission facilities. Economic Load
industry is to plan energy dispatch. Power flowDispatch requires the generation facilities to plan
analysis is a crucial attention during power systerand forecast optimal energy dispatch. Several
planning, analysis, scheduling and design. Thia arerucial considerations during energy scheduling are
of studies is known as the Optimal Power Flowo determine the existing generating units, the
(OPF). Power flow analysis is the backbone oflistance between load centre and the generating
power system analysis. This non-linear and steadynit, identifying the operating limits of each
state approach is essential for handling operatiq@enerating unit for example the ramp rate,
planning, economic scheduling, and energynaximum and minimum generation levels, and the
exchange between energy providers. In essenceiaximum amount of the permissible running time
is an optimization problem and whose objective i§or the generating unit, reliability, and efficignc
to narrow down the total operating cost ofFormerly, ELD problems were solved by various
generators, without violating constrains [1]-[2hd mathematical analysis and optimization methods
principle information obtained from this study for[8].
instance the voltage magnitude, shunt elements andCurrently, several numbers of techniques has
phase angle are important for many research fieldgen developed to help overcome ELD problems,
such as transient stability, load shedding, anguch as Particle Swarm Optimization [9-10].
contingency analysis. This analysis is not a simplartificial Bee Colony Algorithm [11], Genetic
one and consists of numerous variables. Power flodMgorithm [12], Pattern Search Algorithm [13],
analysis is considered as nonlinear algebrafdeural  Networks  [14]-[15],  Evolutionary
mathematical problems and researchers hawyogramming [16], and Harmony Search Algorithm
developed several approaches to solve this problefd.7]-[18]. Each of the implemented techniques has
The first one is the Gauss-Seidel method. Thigs own advantage and disadvantages. For example,
method named after Carl Friedrich Gauss anBarticle Swarm Optimization (PSO) is known for
Philipp Ludwig von Seidel. This approach applyits ability to allow each particle to preserve a
iterative rule and known as the method ofnemory of the best solution and the best solution
successive displacement. Convergence is achieviaind by the in the particle’s area. Simple idea,
if the matrix is either diagonally dominant oreasy employment, and computationally efficient
positive definite [3]. The second one is known a§l9] are the main highlights of PSO technique.
the Newton-Raphson method. This method islowever, the inequality constraints in the next
widely used in power flow studies and wasposition of an individual produced by the PSO
developed based on the Taylor's series expansi@tgorithm can disrupt the inequality constraintp [9
[4]-[5]. Even though this method is widely used, itThis method also displays inherent difficulties in
suffers several drawbacks, especially th@erforming local search for numerical applications
complexity in calculating derivative of a function, [10].
fail to achieve convergence, and overshooting that Lately, Ant Colony Optimization (ACO) has
leads the solution to diverge away from the rofit [5 become a candidate optimization technique for

Among the related topic and widely discussed imany applications [20]-[22] that stress on
OPF is the Economic Load Dispatch problemcombinatorial optimization travelling salesman
Economic Load Dispatch (ELD) is the procedure oproblem (TSP), quadratic assignment problem
generating electrical energy at the lowest possibl€@AP), and optimal design and scheduling problem
cost to feasibly feed the energy necessitated sy ©f thermal units [23]. ACO is a probabilistic
consumers. Economic load dispatch problem itechnique that was introduced by Marco Dorigo in
among the fundamental topics in power systerh992 in his PhD thesis. The algorithm resembles
operation [6]-[7]. The entire energy demand musthe behaviour of an ant colony, seeking a good path
be dispersed accordingly among the generatirfgetween food source and their nest. In their journe
units. Among the factors that influence loado search for food, ant will deposit a type of
dispatch are the operating efficiencies of genegati chemical trace called pheromone. If other ants
unit, fuel cost, and transmission losses. Note th&und the pheromone trail, they will break random
even the most ideal generator could not guarantedravelling and begin to follow the trail. In doirsg,
viable cost if the generator is positioned at ayverthey will reconstruct the existing pheromone trail
remote location from the load distribution point oby spreading additional amount of the chemical
the fuel price is considerably expensive. Whilessence on the track. However, less travelled path
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will have its pheromone layer evaporated, thudifferent generating units in the system. Operating
reducing its attractiveness. efficiency of prime mover, fuel cost and
Another highlighted approach in this reseasch itransmission losses are among the issues that might
the Differential Evolution (DE). DE was introducedimpact the operating cost. The generator costs are
by Storn and Price in 1995 [24], established tdypically characterized by several types of quadrat
optimize real parameter and real valued functiongurves. Energy output can be measured by using a
DE was used to solve the Chebychev Polynomialattmeter over a period of time. The generator’s
Fitting Problem, and iteratively improve theinput can be identified by measuring the fuel
optimization agent with respect to a giventonnage used to fire the generator in MBTU/ton
parameter. In 1996, DE successfully won the thirdnit. The fuel input can be plot in MBTU/hour as a
place during the First International Contest orfunction of the output power in MW. Such plot is
Evolutionary Computer (1ICEO) in Nagoya. DE known as input-output curve as indicated in Figure
optimizes an objective function by creating a new
candidate solution, termed as “offspring” out of th Hwar
original one. The algorithm then combines the METU
offspring with the original one through a process
called ascrossover Later on,a new fithess score
will be calculated. Candidate with the best fitness
score will be reserved, but the one with bad fignes
will be discarded. Similar to Genetic Algorithm,
DE is a typical Evolutionary Algorithm (EA),
stochastic and population-based optimization
algorithm [25]. DE is suitable to solve non-
differentiable, non-continuous, non-linear, noisy,
flat, and multi-dimensional objective function. In The second representation is the fuel-cost curve
1997, Storn and Price claimed that DE is muclds depicted in Figure .IIThe plot begins by
better and more efficient than Simulated Annealingxtracting the ratio of fuel rate to the power for

and Genetic Algorithms [26]. DE has been applie@dvery point from the input-output curve. The plbt o

broadly in optimization problems such asthese ratios versus the generation level will poadu
multiprocessor  synthesis, Neural = Networkihe fuel-cost curve.

Learning, Radio Network design, optimization of
non-linear chemical process, and gas transmission

network design. DE also has been implemented into ;‘;”
MWhr

economic load dispatch problem [27].
This paper presents Differential Evolution Ant \/
Colony Optimization (DEACO) technique in

solving Economic Load Dispatch problem. The
study stress on the development of new algorithm
called as DEACO which integrates DE and ACO
together to improve the performance of both
algorithms. To verify its performance, DEACO is Figure Il. Fuel-Cost Curv

used to optimizing the ELD on a reliable test g e ||| depicts the heat rate curve. This

system namely the IEEE 26-Bus Reliable Test, e is not to be confused with Figure I sincis it
System and IEEE 57-Bus Reliable Test Systemy,qt identical to the input-output curve. The

The results from this study indicates that thejiference is that heat rate curve representsatie r
proposed technique outperformed the traditiongfs \aiues of fuel rate to values of generation.sThi

ACO in terms of cost minimization and ¢\ne expresses how the cost per MWhr varies with
computation time. the output generation.

Py

Figure I. Input-Output Curv:

Pq

2. ECONOMIC LOAD DISPATCH

For interconnected systems, the goal of economic
load dispatch is to find the real and reactive powe
scheduling in order to cut-down the cost functién o
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WhereG is the generating unigjne1, Zine2, and
Zinez are the line impedanceBp; and Pp, are the
real power demand, an@®p; and Qp, are the
reactive power demand. Some of the equations in
this research were referred from [24]. Equation (1)
represents the cost of generating units in a power
system.

Py
Figure Ill. HeatRate Curv

Another illustration of generator cost is the
incremental cost curve, as reflected by Figure 1V,
which represent the desired $/MWhr characteristigvhere Cr; is the summation of operating cost,
of the operating cost. The data on its y-axis can IC(P;) of generatoiG;. The cost function is used to
obtained by differentiating operating cost ($/hricalculate the cost of operating each generatdrdn t
with respect to the generation output. Anothepus system. The operating cost can be written as a

approach to acquire the incremental cost rate is kyuadratic equation with respect to the generated
multiplying fuel price by the incremental heat tate power,P, as shown below:

Ng
Crac=D G (R) (1)

3 G(R)=aR’+hR +q @)
Wherea;, b, andc; are the cost coefficients of unit
i. The cost function for each generating units are
required to calculate the total operating cost. The
followings are the generators’ operating costs for
IEEE 26-Bus System.
Py Ci a b c
Figure IV. IncrementaCost C 200 7.0 0.0070
C 200 10.0 0.0095
The total operating cost is modeled by summing Cs 220 85 0.0090
up the individual cost function of each generator. C 200 11.0 0.0090
Thus, an optimal generated output can be acquire
. . X . Cs 220 10.5 0.0080
from the solution. Figure V below is a graphical
representation of a simple, single line diagram | G2 190 12.0 0.0075

which encompasses the basic elements of a power,, operating costs for IEEE 57-Bus System also

system. ;
Y use equation (12) and are shown as follows:
1 7 2
litu
— Q}Jl G a b c

C 400 7.0 0.0070
7 7 > Ppy C 200 10.0 0.0095

lin Liru
Cs 220 8.5 0.0090
Cs 200 11.0 0.0090
3 Cs 240 10.5 0.0080
\l/ i; Co 200 12.0 0.0075
Gi2 180 10.0 0.0068

Pps Qp2
Figure V. Single Line Diagram Of A Power Moreover, the power losB, is another important

consideration during dispatch planning. The power
loss must be kept as minimal as possible.
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The equation to calcula® is shown below: travelling distance for each ant is different. The
longest distancel, is determined by calculating
Sk \ 3 the longest distance that the ant would travel
PL:ZZI?ajP'+Za)iF)i+BOO 3) '
i i

N Step 2: Generate the First Node
WhereB;, By, andByare theB-losscoefficient. The ant will randomly select the first node to
visit. The possibilities are based on a uniform

3 DIFFERENTIAL EVOL UTION ANT distribution ranged between 110

COLONY OPTIMIZATION

FORMULATION Step 3: State Transition Rule

The ant that is initially situated at node (wi)l
move to the next node (n). The selection of the

ACO algorithm can easily couple with otherconsecutive node is based on equation (19):
optimization method. It requires small humber of

search agents, and can avoid falling into localPk (Mn)=

optima problem. Because of these attractive [p(mn)][ﬁq(m.n)pﬂl _
features, this optimization approach quickly —=1 F—————,if s0 19
acquires a good reputation among researcher .Zﬂfpk(m)[/?(m,u)][hﬂ(mu) ﬂ] Pimy  (19)
However, this algorithm converges to an optimal 0,otherwist

solution slowly due to its positive feedback design

and random selection process, and may experiengghere:

stagnation problem which may limit its wide, : pheromone trace

application in various optimization problems [28].,, : set of unvisited nodes

Moreover, recent employment of ACO shows tha : 1/ is the inverse of the distanken,n)
the technique is not effective enough to solven : current node

complex problems. On the contrary, DE is more : next node

robust, and able to quickly reach convergencey : unvisited node

Therefore, the benefits reflected by DE were taken
into account to compensate for the disadvantages ﬁﬁring the random tour, each ant can only visit the

ACO algorithm. _ _ . same node once. Once an ant has stopped a definite
The pheromone layer in ACO will be modified,qe, the ant is prohibited to visit the same node

by DE mutation, crossover, and selection procesggain. The length for each travel is different. The

In this paper, DEACO algorithm is devised intojongest distanceln,, is determined by calculating
ELD problem. The following steps explain briefly {,o longest ant tour.

about the algorithm.

o Step 4: Local Updating Rule
Step 1: Initialization :

. . . L After reaching the new node, the pheromone level
The algorithm starts with heuristically initializsl .

. . will be updated. The pheromone level of the
the parameters. The parameters are assigned within . . .
Lo travelled path will be varied to alter its

a certain limits in order to overcome large
computation time [28]. The followings are the

necessary parameters during initialization:

attractiveness. The updating process is according t
the following equation:

p(mn) < (1-p)e(mn)+p(mn)  (20)

r : no. of nodes Where:

S : no. of ant

Pp : relative importance of pheromone versus p(m,n) - current pheromone trace
distance ;> 0)

De (.Opzir;o:nf)ne evaporation coefficient p(m,n.) “new pheromone trace

Do : pheromone decay coefficiert € p, < 1)

In this research, the pheromone evaporation pate,
is set to 0.45.This process allows the ant to
discover the visited node once again during their
Each ant will tour and select the next unvisitedeo next exploration.

and the ants are not permitted to make the random

tour more than once. Therefore, the random

o : initial pheromone level
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Step 5: Pheromone Mutation The values of variable, will be assigned and
DE Mutation process was integrated into ACOmultiplied with fitness of this research.

where the level of pheromone is the candidate of

mutation. This research is focusing on Gaussiagtep 9: Global Updating Rule

Distribution Equation. The pheromone mutationafter all ants have completed their travels, thetbe

rate shown in (23) is derived from Gaussiamnt is allowed to update the amount of pheromone

Distribution function. level to determine the best global fitness. The
following equation is applied to update the
Mismj = pheromone level globally:

l. J (23) p(min) - (1—pa)p(m,n)+p0, -Ap(m!n) (28)

Mi,j + N(O,ﬂ[ﬁM jmax_'vI jmin)EII I
max
The best route will have its pheromone level

Where: amplified.

Miimj . mutator function

Mjmax ~ : maximum node value
Mjmin  : minimum node value

| max : longest ant tour

l; . length of current ant tour

Step 10: End Condition

Once the maximum number of iteratioQ(,)
has been reached and all ants have completed their
tour, DEACO will stop its processes.

Mutation process will improve the diversification
of pheromone traill by creating the mutated™
pheromone trail, px(m,n)

RESULTSAND DISCUSSION

The modelling and program development of
DEACO was accomplished by using MATLAB

ol?ZOlOa software. To test the engine’'s capability
nd effectiveness, two case studies, involving IEEE

trail will merge together into the trial matriijyiz . 6-Bus system and IEEE 57-Bus System were

Myia Will sort the pheromone level in descendingapp“?d' The effe.ct of ant parameters to DEA.CO
order. algorithm is also investigated for both cases. &inc

DEACO shares several similar parameters of ACO,
therefore, DEACO requires the same parameters

Step 7: Selection _ ~ setting as the original ACO algorithm.
Comparison between the trial and the original

pheromone trail are made during the selectiogase study 1: IEEE 26-Bus System
process. Firstly, the trial and original pheromone

trail will be normalized, and compared with aThis case study considers IEEE 26-Bus System

predetermined selection variabllse; Asel IS €t \hich contains 6 generating units. The objective is
between 0 to 1. The selection process will choosg (equce the total operating cost, while conseyvin

Step 6: Crossover
DE crossover process is very similar to that
GA [21]. The mutated and the original pheromon

pheromone layer that scored 1 or near to 1. the system constraints under the allowable limits.
. . While cutting down the operating cost, it was
Step 8: Fitness Evaluation initially projected that the power loss might be

Fitness evaluatio_n is performed after _aII antfaduced to minimal. Power loss is the marginal
have completed their tour. The control variable  vajue between the demanded power and the total
is calculated by means of equation (27): generated power by the generating units.

Table I. Generating Limits For 6 Generat

E = F 27 . . Minimum Maximum
X Ima> Xmax ( ) Generating Unit (MW) (MW)
1 100 500
Where: _ 5 50 200
I : distance for every ants tour 3 80 300
| max : maximum distance for every ants tour
. ; 4 50 150
Fimax  : maximum ofF,
5 50 200
26 50 120
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To prove the effectiveness of the DEACO engineCase study 2: IEEE 57-Bus System
comparisons are made between DEACO and the
conventional Ant Colony Optimization technique. The IEEE 57-Bus System which contains 7
Table | tabulates the operation limit for eaclgenerating units has been chosen as the second test
generating unit in the bus-system. system. Similar to the previous case study, tha tot
operating cost is the summation of the generators’
Table Il depicts the results of comparativeoperating cost equations. Table Il tabulates the
studies between DEACO and ACO. Bothgenerating limits for each generating units. Table
algorithms were implemented into economic loadV indicates that DEACO has effectively
dispatch problem. The table clearly shows thahinimized the generation output of each generating
DEACO generates smaller outputs than ACO. It isnit. The total operating cost was reduced by 0.5%,
also observed that the computation time fofrom $17,347.57 per hour to $17245.85 per hour. It
DEACO is much superior to that in ACO asis found that DEACO demonstrated to be beneficial

highlighted in the table. in reducing the total power loss. In this case wtud
Table Il. Results Comparison Between ACO And DEACO outperformed ACO by significantly
DEACO reducing the total power loss. Furthermore,
Engine ACO DEACO DEACO optimizes ELD problem at a faster
G, (VW) 247 1142 2470700 ﬁ?rﬂﬁuﬁlﬂgr:ﬂ ;ﬁteet;rl;?et the conventional ACO as
G, (MW) 172.7343 172.7460 ghiig '
G; (MW) 261.6889 261.4793 Table lll. Generating Limits For 7
G, (MW) 138.4072 138.3812 - — -
Generating Minimum Maximum
Gs (MW) 168.6463 | 168.9707 Unit (MW) (MW)
Gy (MW) 87.1335 87.0760 1 100 575
(Tl\c/l’f,?/')ee”erated POWer| 1575.7244| 1275.7000 2 50 100
3 50 140
A o s
Total Cost ($/Hour) 1 ' 4 ) 8 100 550
Computation Time (s) 25.554026  0.414134 9 50 100
12 100 410

The results indicate that DEACO has successfully

minimized each of the generators’ output to an Table IV. Results Comparison Between ACO And
optimal point. After the economic power scheduling DEACO

for each generating units has been calculatedgngine ACO DEACO

Equation (27) was used to compute the total

operating cost for this case study. DEACO slightly G, (MW) 136.2812 133.3403
cuts down the total operating cost by 0.00009%. InG, (MW) 98.2218 95.8749
this case study, the discount percentage JsG; (MW) 45.3719 45.1676

insignificant due to the fact that the considereJG MW 235391 23.1239
system is a small system. Next, DEACO hag 6 ( ) : :

successfully minimized the total power loss, from Gg (MW) 457.9186 457.4348
12.7244AMW to 12.7232MW by 0.01%. Note that Go(MW) 08.8826 08.4765

power loss is the difference between total powet
demand and total generated power. In this small b ,le(MW) 364.0922 362.3069
system, DEACO might not reveal substantial Total Generated Power .-, 200, | 1565 7049
differences from its ACO counterpart. However| (MW)
DEACO has already outperformed ACO through its Total Loss (MW) 11.3074 2.7249
rapid computation capability. While ACO requireq Total Cost ($/hour) 173475731 17245.85B81
25.554026 seconds to run its task, DEACO onlycomputation Time (s) 23.367137 2721108
needs 0.414134 second to finish its job. This
noteworthy capability is the new improvement
DEACO introduced to the conventional ACO.
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Case study 3: The Effect of Ant Parameters tdhe experiment is conducted on IEEE 57-Bus

DEACO System. All the constraint and system limitation
The effect of ant parameters to DEACO has alswere similar to case study 2. The number of ants

been investigated. The involved parameters wei@nd number of nodes will be manipulated to see the

the number of ants and number of nodes. Ant is theffect of ant parameters to the performance of

search agent for ACO algorithm, while node is th®©EACO algorithm.

term that defines the visiting point of ants during

their tour.
Table V. Effects Of Ant Parameters To ACO Algorithm

A | Nod Pg1 Pg2 Pgs Pge Pgs Pgo Pg12 Protal Ploss Time () Total Cost

nt | e MW) | (MW) | (MwW) | MW) | (MW) | (MW) (MW) (MW) (MW) ($MWhr)
5 1367'641 90.0463 | 45.145| 76.1207 4635379 100 3586763 127(1)'097 20.0971 4'45395 17317.36
10 1362;281 95.8749 | 45.3719| 73.539] 4575434 98.8826 3625306 1262'691 19.6914 3'33713 17284.48

5 | 15 1382'216 96.6722 | 45.4058| 75.0607  458.231 95.925636(2704 1278'215 20.2159 9'72523 17280.75
20 1362'281 95.957 | 45.3719| 73.539] 4578'434 99.7539 3621'926 1271.264 |  21.264 15'179854 17306.45
25 1362;281 95.957 | 45.3719| 73.539] 4575434 99.7539 3621‘926 1271.264 |  21.264 32’2648 17306.45
5 1375'119 91.1863 | 44.975| 74.5774 4631270 100 358?;672 1263'800 19.8009 8'72003 17317.36
10 1362'281 95.957 | 45.3719| 73.5391 4578'434 99.7539 3621‘926 1271.264 | 21.264 5'73944 17306.45

10 | 15 1362'281 95.957 | 45.3719| 73.5391 4578'434 99.7539 3621'926 1271.264 | 21.264 11'2221 17306.45
20 1362'281 95.957 | 45.3719| 73.539] 4578'434 99.7539 3621'926 1271.264 |  21.264 18'2215 17306.45
25 1362;281 95.957 | 45.3719| 73.539] 4575434 99.7539 3621‘926 1271.264 |  21.264 30'41;87 17306.45
5 1362;281 95.957 | 45.3719| 73.5391 4575434 99.7539 3621‘926 1271.264 | 21.264 | 5.65861 17306.45
10 1362'281 95.957 | 45.3719| 73.5391 4578'434 99.7539 3621'926 1271.264 | 21.264 | 8.55872 17306.45

15 | 15 1362'281 95.957 | 45.3719| 73.539] 4578'434 99.7539 3621'926 1271.264 |  21.264 16:2457 17306.45
20 1362;281 95.957 | 45.3719| 73.539] 4575434 99.7539 3621‘926 1271.264 |  21.264 25'231665 17306.45
25 1362;281 95.957 | 45.3719| 73.5391 4575434 99.7539 3621‘926 1271.264 | 21.264 38'51)169 17306.45
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Table VI. Effects Of Ant Parameters To DEACO Aldponi

Total
An | Nod Pyt Pgz Pgs Pgs Pos Pgo Par2 Puota Ploss Time(s) C(:)st

e (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) EMWh)
2.86109

5 129.4661| 90.9768|  45.5035 77.388  464.3q14 10 4368. | 1271.1724| 20.8724 9 17371.57
] 2.72110

10 | 133.3403| 98.2218|  45.1676 73.1239  457.9186  9B.476364.0922 | 1270.3409  20.0409 3 17308.94
| 3.69613

15 | 135.2651| 95.8749|  45.337] 73.095  457.3123 98.8132662.3069 1268.0739  17.7739 3 17267.46
| 4.44740

20 | 135.2651| 95.8749|  45.337] 73.095  457.3123  98.882862.3069 | 1268.073  17.7739 . 17267.46
| L 5.42863

25 | 135.2651| 95.8749|  45.337] 73.095  457.3123  98.882862.3069 | 1268.073  17.7739 8 17267.46
6.23111

5 129.4661| 90.9768|  45.5035 77.388  464.3q14 10 4368. | 1271.1724| 20.8724 ) 17371.57
| 7.07673

10 | 135.2651| 95.8749|  45.337] 73.095  457.3123 98.8132662.3069 1268.0739  17.7739 ) 17267.46
| 7.30882

10 15 | 135.2651| 95.8749|  45.337] 73.095  457.3123  98.882862.3069 | 1268.0739  17.7739 : 17267.46
| 5.19466

20 | 135.2651| 95.8749|  45.337] 73.095  457.3123  98.882862.3069 | 1268.073  17.7739 ; 17267.46
| L 7.04411

25 | 135.2651| 95.8749|  45.337] 73.095  457.3123  98.882862.3069 | 1268.073  17.7739 8 17267.46
I 9.18301

5 135.2651| 95.8749|  45.3371 73.09 457.3123  98.882862.3069 | 1268.0739  17.7739 ) 17267.46
| 6.05430

10 | 135.2651| 95.8749|  45.337] 73.095  457.3123 98.8132662.3069 1268.073  17.7739 . 17267.46
| 7.42040

15 15 | 135.2651| 95.8749|  45.337] 73.095  457.3123  98.882862.3069 | 1268.073d  17.7739 3 17267.46
| 7.69724

20 | 135.2651| 95.8749|  45.337] 73.095  457.3123 98.8*32662.3069 1268.073  17.7739 3 17267.46
| 8.85050

25 | 135.2651| 95.8749| 45,3371 73.095  457.3123 98.8*32662.3069 1268.0739  17.7739 5 17267.46

Table V tabulates the calculated generation outputThe first properties that need to be notedas th

of each generating unit. The total power is th®EACO has effectively reduced the total operating
summation of all generating units in the systencost lower than ACO. At small number of ants, for
Poss is the loss that was introduced by theexample 5 ants; the algorithm seems to be
transmission line. It is the difference between thdepending on the number of nodes to properly
demanded power and the total generated poweagenerate a desired solution. DEACO performance
Table V depicts that ACO is greatly dependent oihcreased correspondingly to the increased number
ant parameters. To generate consistent amd nodes. For example, initially the algorithm
promising total operating cost, ACO requires higtproduced fluctuating operating cost that varies
number of ants and nodes. For example, at 10 nodestween 17371.57$/MWhr and 17267.46$/MWhr.
and 5 ants, the algorithm computes a total opeyatitHowever, these undesired outcomes have been
cost of 17317.36 $/MWhr, and calculatedovercome by increasing the number of ant, from 5,
1270.0971IMW of power loss. ACO continues t010 and 15 ants. At large number of ants, DEACO
generate fluctuating and irregular total operatingppears to be very independent of the number of
cost while having small number of ants. nodes in order to work appropria‘[e|y_

However, by setting the number of nodes anglzying the example of DEACO having 10 numbers
number of ants to a greater value, the algorithngs ants: starting from 10 nodes to 25 nodes, the
starts to generate consistent and more promisingsrithm consistently generated the total opegatin
solution. Starting from 10 numbers of ants with 1Q. ¢ of 17267.46$/MWhr. It implies that DEACO
numbers of nodes, ACO computed the totalyn perform ideally with less impact from ant
operating cost of 17306.45 $/MWhr. The solution,,.ameters. Based on the results tabulated in Table
remains constant afterwards. Table VI tabulates the 5nq Table VI. it was found that DEACO has
effect of ant parameters towards the performance B[Jtperformed the original ACO in terms of the

DEACO algorithm. requirement of search agent. DEACO proved to be

s
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requiring only small numbers of search agent REFRENCES:

achieve optimal solutions. However, ACO starts to
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has been increased.

The result also implies that DEACO can rapidly
hit convergence and more dependable than ACO
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