
Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

867

BPNDIAG: BPN-BASED FAULT DIAGNOSIS FOR BPEL
PROCESS

ZHICHUN JIA, RONG CHEN
School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China

ABSTRACT

Web Service is becoming an important and popular distributed computing model for providing on-demand
service sharing on Internet. One of the difficult challenges in web service is how to deliver the reliable
service application over unreliable web services around the world. To improve the automated diagnosis
capability for web service, we completely model the BPEL process as a BPN model and propose a BPN
model-based diagnosis method. Considering the activity dependency relations in BPN model, our diagnosis
method is able to exactly and quickly localize the faulty activity. Finally, we conduct the simulation
experiments to evaluate our method. The experimental results show that our method is effective in fault
diagnosis for BPEL process.

Keywords: Web Service, Fault Diagnosis, BPEL Process, Petri Nets, Diagnosis Probability

1. INTRODUCTION

As a popular distributed computing model, web
service makes software even more attractive due to
it provides a lot of benefits like scalability,
ubiquitous network access. However, along with
these benefits, web service also raises some
concerns especially how to build high-reliable
service applications in the large-scale and complex
computing environment. With the growing
worldwide acceptance of the standard service
composition language BPEL (Business Process
Execution Language), how to detect and localize
faulty activities in BPEL becomes a critical issue.

According to observed and thrown exceptions
during the service execution, the goal of fault
diagnosis is to timely and exactly detect abnormal
activities, explain the faulty reason and bring the
process back to a normal, safe, operating state. In
2005, Ardissono et al. [1] firstly applied model-
based diagnosis (MBD) to web services
composition. In recent years, many researchers
proposed their fault diagnosis methods for web
service [2-5]. Some researchers used automaton
model [6], some used Petri nets model [7, 8], and
others used probabilistic graphical model [9]. From
methodology point view, some methods belong to
exception handling in the field of software
engineering; some others belong to MBD or
statistical anomaly detection in the field of artificial
intelligence (AI). However, these methods aren’t
adequate to meet the growing requirements of
business processes for a diagnostic system.

To improve the diagnostic accuracy and
efficiency, we propose a BPN model-based
diagnosis method to diagnose faults in BPEL
process. We firstly define the Petri nets-based
process model for each activity in BPEL (BPN
model). Then, we build the diagnosis model which
defines the rules of diagnosis and faulty types.
According to these rules and faulty types, we can
quickly infer that which activity is fault. Moreover,
to raise diagnostic efficiency, we first diagnose the
more suspicious activity by computing the
diagnosis probability of activities. Finally, we
conduct the simulation experiments to evaluate the
accuracy and efficiency of our method. The
experimental results show that our method is more
accuracy and costs less time than an existing MBD
method.

The rest of paper is organized as follows. Section
2 introduces BPEL and Petri nets. Section 3
presents the BPN model. Section 4 proposes our
diagnosis model and diagnosis method. Section 5
evaluates the experimental results. Section 6
discusses related work. Finally, we conduct the
conclusion in Section 7.

2. PRELIMINARY

In this section, we simply introduce BPEL and
Petri nets to be used in this paper.

2.1 BPEL
BPEL for web services is a standard executable

language for specifying actions within business
process based on composite web services. BPEL
gives the formal specification for defining business

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

868

process behavior and business interaction protocols.
It provides two kinds of activities for describing the
internal behavior: basic activity and structured
activity. Structured activities prescribe the order in
which a collection of activities take place. They
describe how a business process is created by
composing the basic activities [10].

The set of basic activities includes:
� receive: waits for a matching message to arrive
� invoke: invokes an operation on a port offered

by a partner
� reply: replies a message to a partner
� assign: copies to target variables with new data
� wait: waits for a given time period or until a

certain time has passed
� throw: signals a fault
� empty: does nothing
The set of structured activities includes:
� sequence: defines a collection of activities to

be performed sequentially
� switch: selects exactly one branch of activity

by a condition it holds true
� while: defines loop execution of an activity

until the condition has been met
� flow: specifies some activities to be performed

concurrently
� pick: selects an activity path depending either

on an occurring event or timeout

2.2 Petri nets
Petri nets are a basic modeling tool of parallel

and distributed systems. They originated from Carl
Adam Petri’s dissertation in 1962 for the purpose of
describing chemical processes [11]. The basic idea
is to describe state changes in a system with
transitions. The choice of Petri nets for modeling
BPEL is motivated by following reasons: (1) the
formal semantics is essential for representing the
business process of web services compositions; (2)
the causality between places and transition will help
analysis the relationship between input, output and
activities; (3) the graphical representation helps
understand the whole model.

Petri nets contain places and transitions that may
be connected by directed arcs. Transitions
symbolize actions; places symbolize states or
conditions that need to be met before an action can
be carried out. Places may contain tokens that may
move to other places by executing actions.

Definition 1 a Petri Net is a 3-tuple,
(, ,)N P T F= where:

� P is a finite set of places;
� T is a finite set of transitions;
� () ()F P T T P⊆ × ×U is the flow relation;

� P T φ=I and P T φ≠U ;

� () ()dom F cod F P T=U U ;

� () { | : (,) }dom F x y x y F= ∃ ∈ ;

� () { | : (,) }cod F y x x y F= ∃ ∈ .

Definition 2 the remarks of Petri Net
(, ,)N P T F= are:

� If (,)p t F∈ for a transition t and a place p,

then p is an input place of t;
� If (,)t p F∈ for a transition t and a place p,

then p is an output place of t;
� Let ,x y P T∈ U , the set { | (,) }y x x y F• = ∈ is

called the pre-set of y and the set
{ | (,) }x y x y F• = ∈ is the post-set of x;

� { }x x
•

= .

3. MODELING BPEL PROCESS

In this section, we model each BPEL activity as a
BPN model which is an extended model of Petri
nets. First, let us briefly give some remarks:
� Each activity and each BPN both start from a

starting place and end in an ending place, and the
pre-set of starting place and post-set of ending place
are empty sets.
� Each place includes a set of variables seen as a

token set. The token set moves to other places by
transition and their values are changed by operation
in the transition.
� Each transition includes an operation which

represents the concept of operation in BPEL. An
operation incorporates operation name, port name
and service name. The conditions and expressions
in activities are viewed as computing operations
which obtain weight ‘t’ or ‘ f’ in transition and select
the next places by weight values.

Definition 3 a BPN model is
(, , , , , , ,)s eBPN p p P T F W V OP= , where:

� sp is the starting place of BPN, ep is the

ending place of BPN, s ep P p P∈ ∧ ∈

� 1 2{ , , , }mP p p p= L is a finite set of places;

� 1 2{ , , , }rT t t t= L is a finite set of transitions,

and ,t T t tϕ ϕ• •∀ ∈ ≠ ∧ ≠ ;

� () ()F P T T P⊆ × ×U is the flow relation;

� : { , , }W F t f φ→ is the arc weight mapping,

the default is φ ;

� 1 2{ , , , }kV v v v= L is a finite set of variables,

1 , (, , ,)ii k v vname vtype vvalue Part∀ ≤ ≤ = , vname

denotes the name of iv , vtype denotes the type of

iv , vvalue denotes the value of iv ;

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

869

� 1 2{ , , , }lPart part part part= L , 1 i l∀ ≤ ≤ ,

(, ,)i i i ipart name type value= ;

� l is the total count of parts, iname denotes the

name of ipart , itype denotes the type of ipart ,

ivalue denotes the value of ipart ;

� 1 2{ , , , }nOP op op op= L is a finite set of

operations and
1 , (, ,)ii n op opn port service∀ ≤ ≤ = , where opn

denotes the operation name, port denotes the port
name including the operation opn, service denotes
the service name including the port port;
� 1 & 1i m j k∀ ≤ ≤ ∀ ≤ ≤ , .i jp v denotes the

variable jv in place ip ;

� 1 i r∀ ≤ ≤ , .it op denotes the operation op in

transition it .

3.1 Modeling basic activities

<receive>

ps

trec

pe

<invoke>

ps

tinv

pe

<reply>

ps

trpl

pe

<assign>

ps

tasn

pe

<wait>

ps

twat

pe

f

t

<throw>

ps

ttrw

pe

<empty>

ps

temt

pe

Figure 1: BPN Model Of Basic Activities

(1) receive
 ({ , },{ },{(,), (,)},rec s e rec s rec rec eBPN p p t p t t p=

{ },{ },{ })recv opφ

Receive activity is activated when a message is
received by operation recop , and assign the value of

message to variable v which is received by
place ep .

(2) invoke
({ , },{ },{(,), (,)},inv s e inv s inv inv eBPN p p t p t t p=

{ },{ , },{ })i o invv v opφ

An invoke operation invop can be a synchronous

request/response or an asynchronous one-way
operation. An asynchronous invocation only
requires input variable iv because it doesn’t expect

a response as a part of invocation, while a
synchronous invocation requires an input variable

iv and an output variable ov . Here,

. .i ov vtype v vtype= .

(3) reply
({ , },{ },{(,), (,)},rpl s e rpl s rpl rpl eBPN p p t p t t p=

{ },{ },{ })rplv opφ

A reply activity is used to send a response to a
request previously accepted by a receive activity.
Such responses are only meaningful for
synchronous interactions. The variable v is to be
used to construct the output message.
(4) assign

({ , },{ },{(,), (,)},asn s e asn s asn asn eBPN p p t p t t p=

{ },{ , },{ (,)})i o i oV V copy V Vφ

The assign activity can be used to copy message
from a set of input variable iV to a set of output

variable oV by operation copy.

(5) wait
({ , },{ },{(,), (,),wat s e wat s wat wat eBPN p p t p t t p=

(,)},{ , },{ },{ })wat st p t f cndφ

The wait activity specifies a delay for a certain
period of time or until a certain deadline is reached.
In our model, we don’t consider time. Hence, the
notion of delay is not considered, it is viewed as a
condition cnd. When the condition is met (W=t), the
activity moves to the next place ep , otherwise

(W=f) it will wait to be met in place sp .

(6) throw
({ , },{ },{(,), (,)},trw s e trw s trw trw eBPN p p t p t t p=

{ },{ },{ ()})f fV throw Vφ

The throw activity can be used when it needs to
signal an internal fault explicitly. It is required to
provide such a name .fV vname for the fault and

can optionally provide a data .fV value that

provides further information about the fault. A fault
handler can use such data to analyze and handle the
fault and also to populate any fault messages that
need to be sent to other services.
(7) empty

({ , },{ },{(,), (,)},emt s e emt s emt emt eBPN p p t p t t p=

{ },{ },{ })φ φ φ

There is often a need to use an activity that does
nothing and the empty activity is used for this
purpose.

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

870

3.2 Modeling structured activities

Figure 2: BPN Model Of Structured Activities

(1) sequence
{ |1 }seq i seqBPN b i n= ≤ ≤

where:
� (, , , , , , ,)i si ei i i i i i ib p p P T F W V OP= , 1 i n≤ ≤

� 1,s s e enp p p p= =

� (1)
1

(') \ { , |1 }
n

i s i ei
i

P P P p p i n+
=

= ≤ <UU

{ | ,1 }i i eiP p p p i n
• •

′ = = ≤ <

�
1

n

i
i

T T
=

=U

� (1) (1)
1

() \ {(,), (,) |
n

i ei ei s i s i
i

F F F p p p p• •
+ +

=

′= UU

1 }i n≤ <

(1){(,), (,) |1 , }ei i i s i iF p p p p i n p P• •
+′ ′= ≤ < ∈

� (1) (1)
1

() \ { (,), (,)
n

i ei ei s i s i
i

W W W w p p w p p• •
+ +

=

′= UU

 |1 }i n≤ <

{ (,) | (,) (,)ei i ei i ei eiW w p p w p p w p p• • •′ = = ∧

(1)1 } { (,) |i i s ii n p P w p p•
+′≤ < ∧ ∈ U

(1) (1) (1)(,) (,) 1i s i s i s iw p p w p p i n• •
+ + += ∧ ≤ <

'}ip P∧ ∈

�
1

n

i
i

V V
=

=U

�
1

n

i
i

OP OP
=

=U

A sequence activity is used to connect different
activity blocks that are performed sequentially. The
set of variables in the ending place of ib is the same

with the set of variables in the starting place of 1ib+ ,

otherwise the sequence is invalid.
(2) switch

{(,) |1 n}swc i i swcBPN c b i= ≤ ≤

where:
� (, , , , , , ,)i si ei i i i i i ib p p P T F W V OP= , 1 i n≤ ≤

�
1

1 1

{ } { , }
n n

i i s e
i i

P P p p p
−

= =

= U UU U

�
1 1

{ } { }
n n

i i e
i i

T T t t
= =

= U UU U

�
1

1 1
1 1

{(,), (,)} {(,), (,)}
n n

i s e e i i i i
i i

F F p t t p t p p t
−

+
= =

= U UU U

1

{(,), (,)}
n

i si ei e
i

t p p t
=

UU

�
1

1 1

{ (,) }
n n

i i i
i i

W W W t p f
−

= =

= =U UU U

1

1

{ (,) }
n

i si
i

W t p t
−

=

=U

�
1

n

i
i

V V
=

=U

�
1 1

{ }
n n

i i
i i

OP OP c
= =

= UU U , nc φ=

The switch activity includes an ordered list of
one or more conditional transitions. These
transitions are considered in the order of
appearance. If the condition 1c holds true, the

activity block 1b is performed. If no any conditions

hold true in { |1 1}ib i n≤ ≤ − , nb is performed.

(3) while
{(,) }whl k swcBPN c b=

where:
� (, , , , , , ,)s eb p p P T F W V OP′ ′ ′ ′ ′ ′ ′ ′=

� { , }s eP P p p′= U

� { }T T t′= U , .t op c=

� {(,), (,), (,), (,)}s e s eF F p t t p t p p t′ ′ ′= U

� { (,) , (,) }s eW W W t p t W t p f′ ′= = =U

� V V′=
� { }OP OP c′= U

� k is the number of cycles
The while activity iterates performance of a

specified activity block b until the given condition c
no longer holds true.
(4) flow

{ |1 }flw i flwBPN b i n= ≤ ≤

where:
� (, , , , , , ,)i si ei i i i i i ib p p P T F W V OP= , 1 i n≤ ≤

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

871

�
1

{ , }
n

i s e
i

P P p p
=

= UU

�
1

{ , }
n

i s e
i

T T t t
=

= UU

�
1 1

{(,),(,)} {(,),(,)}
n n

i s s e e s si ei e
i i

F F p t t p t p p t
= =

= U UU U

�
1

n

i
i

W W
=

=U

�
1

n

i
i

V V
=

=U

�
1

n

i
i

OP OP
=

=U

The flow activity includes concurrent
performance of a set of activity blocks
{ |1 }ib i n≤ ≤ . It finishes when all activity blocks

terminated.
(5) pick

{(,) |1 }pck i i pckBPN e b i n= ≤ ≤

where:
� (, , , , , , ,)i si ei i i i i i ib p p P T F W V OP= , 1 i n≤ ≤

�
1

1 1

{ , } { }
n n

i s e i
i i

P P p p p
−

= =

= U UU U

�
1 1

{ } { }
n n

i e i
i i

T T t t
= =

= U UU U , .i it op e=

� 1
1

{(,), (,), (,)}
n

i s e e n s
i

F F p t t p t p
=

= U UU

1

1
1 1

{(,), (,)} {(,), (,)}
n n

i i i i i si ei e
i i

t p p t t p p t
−

+
= =

UU U

�
1

1 1 1

{ (,) } { (,) }
n n n

i i i i si
i i i

W W W t p f W t p t
−

= = =

= = =U UU U U

 { (,) }n sW t p f=U

�
1

n

i
i

V V
=

=U

�
1 1

{ }
n n

i i
i i

OP OP e
= =

= UU U

The pick activity is a set of branches of the
activity blocks, and one of the branches will be
selected based on the occurrence of the events
associated with it. Note that after the pick activity
has accepted an activity for handling, the other
activities are no longer accepted by that pick. The
last activity nb is triggered by a time-out event ne .

3.3 Modeling the travel planning process

Travel planning process is shown in Figure 3.
When a customer needs to plan his travel, he sends

a request to travel planning process by inputting his
travel information. The process receives his
information and sends use customer ID to retrieve
the customer class such as common user, vip user.
Finally, the process retrieves ticket prices of
American Airline and Air China according to the
class ID and returns a cheaper offer to the customer.

Figure 3: Travel Planning Process

1 t1 2 t2 3 t3 4 t4

5

6

7

8

9

t9

t11

10

11

t5

t7

t6

t8

t12

t10

m1 m2 m3

m4

m5

m6

m5

m6

t

fm7

m8

m9
Figure 4: BPN Model For Travel Planning Process

The complete BPN model for the travel planning
process is described as follows (also reference to
Figure 4):
� 1 1 2 1 2({ , },{ 1},{(, 1), (1,)},{ },tBPN p p t p t t p φ=

1{ 1},{ })m op

� 2 2 3 2 3({ , },{ 2},{(, 2), (2,)},{ },tBPN p p t p t t p φ=
 { 1, 2},{ (1, 2)})m m copy m m

� 3 3 4 3 4({ , },{ 3},{(, 3), (3,)},{ },tBPN p p t p t t p φ=

2{ 2, 3},{ })m m op

� 4 4 5 4 5({ , },{ 4},{(, 4), (4,)},{ },tBPN p p t p t t p φ=
 { 3, 4},{ (3, 4)})m m copy m m

� 5 5 6 5 6({ , },{ 5},{(, 5), (5,)},{ },tBPN p p t p t t p φ=

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

872

3{ 4},{ })m op

� 5 5 6 5 6({ , },{ 5},{(, 5), (5,)},{ },tBPN p p t p t t p φ=

3{ 4},{ })m op

� 7 5 7 5 7({ , },{ 7},{(, 7), (7,)},{ },tBPN p p t p t t p φ=
 5{ 4},{ })m op

� 8 7 8 7 8({ , },{ 8},{(, 8), (8,)},{ },tBPN p p t p t t p φ=

6{ 6},{ })m op

� 9 10{(. . ,),t tBPN AA price AC price BPN= ≥

11(. . ,)}t swcAA price AC price BPN<

with
− 10 9 11 9({ , },{ 10},{(, 10),tBPN p p t p t=

11(10,)},{ },{ 7, 8},t p m mφ

{ (7, 8)})copy m m

− 11 10 11 10({ , },{ 11},{(, 11),tBPN p p t p t=

11(11,)},{ },{ 7, 9},t p m mφ

{ (7, 9)})copy m m

− 8 9 10 11{ , , , }P p p p p=

− { 9, 10, 11}T t t t=

− 8 9 10 9{(, 9), (9,), (9,), (, 10),F p t t p t p p t=

10 11 11(, 11), (10,), (11,)}p t t p t p

− 9 10{ (9,) , (9,) }W W t p t W t p f= = =

− { 7, 8, 9}V m m m=

− { (7, 8), (7, 9),OP copy m m copy m m=

. . ,AA price AC price≤

. . }AA price AC price>

� 12 11 12 13 11 12({ , , },{ 12},{(, 12), (,tBPN p p p t p t p=

13 712), (12,)},{ },{ 8, 9},{ })t t p m m opφ

4. DIAGNOSIS METHOD

A BPEL process can run down for many reasons.
For example, messages mismatch the interface, data
format is wrong; Internet is down, and so on. The
diagnostic aim is to quickly and exactly find out the
faulty activities and analyzes causes by the thrown
exception.

For facilitating diagnosis, the BPEL diagnosis
process has to be extended for the following tasks:
� record the executed activities in order;
� record the input and output SOAP messages;
� record the thrown exception.

4.1 Diagnosis Model
The BPN model describes the BPEL activities

using transitions, variables, places and operations.
The BPN-based diagnosis model presents the
dependency relations between activities.

Definition 4 a BPN-based diagnosis model for
BPEL process is BDM = (BPN, OBS, D), where:
� (, , , , , , ,)s eBPN p p P T F W V OP=

� (, ,)OBS T V OP′ ′ ′= , a set of observations

� { , , , , }D EQ EQT EQV IN CO= with

− EQ: an operation in BPN equates to the
one in OBS
− EQT: the data type of a variable in BPN
equates to another one in OBS
− EQV: the value of a variable in BPN
equates to another one in OBS
− IN: the output parameters are produced by
invoking another BPEL process
− CO: the computing result of an express or
condition

The details of BPN-based diagnosis model are
described as follows:

(1) basic activities diagnosis
� receive

 () { (,), (,),rec rec recD t EQ op op EQT v v′ ′=

 (,)}EQV v v′

� invoke
() { (,), (,),inv inv inv i iD t EQ op op EQT v v′ ′=

(,), (.)}o o invEQT v v IN op service′ ′

� reply
() { (,), (,),rpl rpl rplD t EQ op op EQT v v′ ′=

(,)}EQV v v′

� assign
() { (,), (,), (,)asn i i o o i oD t EQT v v EQT v v EQV v v′ ′ ′ ′=

 ((),)}i oEQV CO v v′ ′∨

� wait
() { ((), ()),watD t EQV CO c CO c′=

(, (, .))}wat wat watEQV c W t t op′ ′ ′ ′ ′

� empty
() { (. ,)}emt emtD t EQ t opφ′=

(2) structured activities diagnosis
� sequence

1

n

i
i

D D
=

=I

� switch

1

{ ((),))}
m

i
i

D EQV CO c f
=

= II

1 1(({ ((),)})m mEQV CO c t D+ +I U

((1,)))nEQV m n D+ I

� while
(((),))bD EQV CO c t D D= I I U

(((),))EQV CO c f

� flow:

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

873

1

n

i
i

D D
=

=U

� pick:

1

{ ((),)}
m

i
i

D EVQ CO e false
=

= II

1 1(({ ((),)})m mEQV CO e t D+ +I U

({ ((),)}))nEQV CO e f DI

4.2 Diagnosis for BPEL Process
When an exception occurs during the execution

of BPEL process, we firstly diagnose the exception
activity. If the exception activity isn’t a fault, we
consider the activity with the maximum diagnosis
probability as the next activity to be diagnosed.
When we find the faulty activity, we end the
diagnosis process. The diagnosis probability for
activity t is computed by

() ()
(,)

() ()

P t T tf n t T tf
DP t tf

P tf n tf

⋅ ⋅ ⋅ ⋅= =
% %

% %
 (1)

where t denotes the activity t is fault, tf% denotes

the activity tf is the exception, T denotes a set of
normal activities and N denotes the total count of
faulty execution. According to the historical data,

we can compute ()P t T tf⋅ ⋅ % and ()P tf% . Here

()n t T tf⋅ ⋅ % is the number of the executions in

which the activity t is the fault, T is the set of

normal activities and tf is the exception. ()n tf% is

the number of the executions that the activity tf is
the exception. In Equation (1), we need to consider
how to deal with the branch and loop structure of
the process. For example, an activity included in a
while activity could be executed several times. We
don’t consider how many times the activity
executed in an execution and only record it once.

Algorithm 1

Algorithm 1: BPNDiag(BPN,OBS,DS)
Input: process model BPN, Observation OBS
Output: diagnosis solution DS
01: T = null; DS = null; t = OBS.tf;
02: while (T != OBS.T)
03: if D(t) = fault
04: DS = DS∪{ t};
05: break;
06: else T = T∪{ t};
07: end if
08: // the activity with the maximum diagnosis probability
09: t = maxT(DP(OBS.T-T, OBS.tf));
10: end while
11: if DS = null, DS = {OBS.input};
12: return DS;

5. EXPERIMENTS

To evaluate the diagnostic efficiency of our
method for fault diagnosis, we set up a simulation
environment in Matlab. Our simulation
environment incorporates three parts. Part one is to
build a BPEL process according to the given
numbers of activities and structured nodes. Part two
is to generate the execution traces of this process
according to the given faulty probability. Part three
is our diagnosis algorithm. For each generated
process, we randomly select an activity as the
exception for each process, and another activity as
the fault. And we define three fault types: type fault,
value fault and port fault. Then we randomly select
a fault type and assign it to the faulty activity. Each
faulty activity and exception activity is devised to
complete successfully at a probability of 0.2, and
other activities are devised to always complete
successfully. According to the given faulty
probability, we generate 100 execution traces for
each process. Finally, we generate 1000 processes
with different numbers of activities and 100 groups
of test data for each process to evaluate our method.

In our experiments, we use the accuracy of
diagnosis and diagnostic time as our evaluation
metrics and compare our method with a model-
based diagnosis method. Following is the
description of labels we use to denote two methods:
� ard: This is a model-based diagnosis method

Ardissono proposed in [12].
� bpn: This is our diagnosis method.

Figure 5: Comparison Of Accuracy

The results of comparison for diagnostic
accuracy are shown in Figure 5. We can see that the
accuracy of our method is much higher than
Ardissono’s method. The diagnostic accuracy of
Ardissono’s method is 52%-74%, while the
diagnostic accuracy of our method is 77% to 93%.
That is because our method considers more fault
types in our diagnosis model.

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

874

Figure 6: Comparison Of Diagnosed Activities’ Numbers

Figure 7: Comparison Of Diagnosed Time

From Figure 6, we can see that our method
diagnoses fewer activities than Ardissono’s. Hence,
our method costs less diagnostic time than
Ardissono’s method and the results of comparison
is shown in Figure 7. This is mainly because our
method is not to diagnose one by one according to
the observation sequence, but to select the
diagnosed activities according to the diagnosis
probability. Hence, our method reduces the
diagnostic time through decrease of the number of
diagnosed activities.

The above experiments show that our method is
more effective than Ardissono’s method in
diagnosis of BPEL process.

6. RELATED WORK

In order to enhance fault management in
composite web services with the ability of
reasoning on global failures of the overall service,
Ardissono et al. [13] proposed a framework which
integrated diagnosis services in the architecture of a
composite service. The framework includes a global
diagnosis service associated with the composite
web services process and some local diagnosis
services. Each local diagnosis service was
responsible for a web service. Local diagnosis
services cooperate with global diagnosis service.
And a global diagnosis service exchanges messages
with them, without relying on any internal structure
information of local diagnosis services. This
method recursively partition web services into
aggregations of sub-services, hide the details of the
aggregation to higher-level services so that it could
raise diagnostic efficiency and ensure the privacy of
service. However, when web services claim too
coarsely, almost all web services could be faults,

diagnosis services needs to check each service, and
these cause diagnostic efficiency depression. Li et
al. proposed [8] a diagnostic method for BPEL
processes, where processes are modeled using
colored Petri nets. According to color propagation
functions, the diagnosis service checks back from
where system throws the exception until arriving at
a final consistency. Yan et al. [6] applied
synchronized automaton to model the BPEL
process of web services composition. After an
exception is thrown, the diagnostic service
calculates the process execution track by comparing
model with observation. The diagnosis service finds
out fault according to given the rules. Mayer et al.
[14] proposed a method to identify the fault of web
services composition by observations obtained from
partial executions and re-executions of a process are
exploited. Lakshmi and Mohanty [15] proposed a
method based on stochastic automata model for
web service fault monitoring and diagnosis.

7. CONCLUSION

In this paper, we propose a BPN model-based
diagnosis method for the BPEL process. The
dependency relations between activities are
completely modeled by BPN. Our diagnosis method
localizes the faulty activity and explains faulty
reason according to five dependency rules.
Moreover, we use the diagnosis probability to fix
the diagnostic sequence for reducing the diagnostic
time. Finally, we conduct the experiments to
compare the accuracy and efficiency of our method
with a MBD method. Experimental results show
that our method is more effective than the MBD
method.

ACKNOWLEDGEMENTS

This work is supported by National Natural
Science Foundation of China (61175056), the
Dalian Maritime University Backbone Youth
Foundation (NO.2011QN033, No.2009JC29), and
IT Industry Development of Jilin Province.

REFERENCES:

[1] L. Ardissono, L. Console, A. Goy, et al.,
“Enhancing Web Services with Diagnostic
Capabilities”, Proceedings of the Third
European Conference on Web Services, IEEE
Computer Society, 2005, pp. 182-191.

[2] G. Friedrich, M. Fugini, E. Mussi, et al.,
“Exception Handling for Repair in Service-
Based Processes”, IEEE Transactions on
Software Engineering, Vol. 36, No. 2, 2010, pp.
198-215.

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

875

[3] X. Han, Z. Shi, W. Niu, et al., “Similarity-Based
Bayesian Learning from Semi-structured Log
Files for Fault Diagnosis of Web Services”,
2010 IEEE/WIC/ACM International Conference
on Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2010, pp. 589-596.

[4] O. Kopp, F. Leymann, D. Wutke, “Fault Handling
in the Web Service Stack”, Service-Oriented
Computing, Vol. 6470, 2010, pp. 303-317.

[5] Z. Zhu, W. Dou, “QoS-Based Probabilistic Fault-
Diagnosis Method for Exception Handling”,
New Horizons in Web-Based Learning: Icwl
2010 Workshops, Springer-Verlag Berlin, 2011,
pp. 227-236.

[6] Y. Yan, P. Dague, Y. Pencole, et al., “A Model-
based Approach for Diagnosing Faults in Web
Service Processes”, The International Journal
of Web Services Research (JWSR), Vol. 6, No.
1, 2009, pp. 87-110.

[7] Y. Li, T. Melliti, P. Dague, “Modeling BPEL
Web services For Diagnosis: towards self-
healing Web services”, Proceedings of 3rd
International Conference on Web Information
Systems and Technologies (WEBIST'07), 2006,
pp. 1-62.

[8] Y. Li, L. Ye, P. Dague, et al., “A Decentralized
Model-Based Diagnosis for BPEL Services”,
Proceedings of the 2009 21st IEEE International
Conference on Tools with Artificial
Intelligence, IEEE Computer Society, 2009, pp.
609-616.

[9] Y. Dai, L. Yang, B. Zhang, et al., “Exception
diagnosis for composite service based on error
propagation degree”, 2011 IEEE International
Conference on Services Computing, SCC 2011,
IEEE Computer Society, 2011, pp. 160-167.

[10] M. Tony Andrews, I. Francisco Curbera, S. S.
Hitesh Dholakia, et al., “Business Process
Execution Language for Web Services”, 2003,
pp. 1-136.

[11] T. Murata, “Petri Nets: Properties, Analysis and
Applications”, Proceedings of the IEEE, 1989,
pp. 541-580.

[12] L. Ardissono, S. Bocconi, L. Console, et al.,
“Enhancing Web Service Composition by
Means of Diagnosis”, Business Process
Management Workshops, 2008, pp. 468-479.

[13] L. Ardissono, L. Console, A. Goy, et al.,
“Cooperative Model-Based Diagnosis of Web
Services”, Proceedings of 16th International
Workshop on Principles of Diagnosis 2005.

[14] W. Mayer, G. Friedrich, M. Stumptner,
“Diagnosis of Service Failures by Trace

Analysis with Partial Knowledge”, Service-
Oriented Computing, Vol. 6470, 2010, pp. 334-
349.

[15] H. N. Lakshmi, H. Mohanty, “Automata for Web
Services Fault Monitoring and Diagnosis”,
International Journal of Computer &
Communication Technology (IJCCT) Vol. 3,
No. 2, 2011, pp. 13-18.

