
Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

857

AN REFINEMENT PROACH FOR LARGE GRAPHS
APPROXIMATE MATCHING

1,2ANLIANG NING, 1XIAOJING LI, 1CHUNXIAN WANG

1Center of Engineering Teaching Training, Tianjin Polytechnic University, Tianjin 300387, China
2Department of Computer, Tianjin Polytechnic University, Tianjin 300387, China

ABSTRACT

How to match two large graphs by maximizing the number of matched edges, which is known as maximum
common subgraph matching and is NP-hard. We give heuristics to select a small number of important
anchors using a new similarity score, which measures how two nodes in two different graphs are similar to
be matched by taking both global and local information of nodes into consideration. And then to refine a
matching we focus on a subset of nodes to refine while giving every node in the graphs a chance to be
refined. We show the optimality of our refinement. We also show how to randomly refine matching with
different combinations. Our refinement can improve the matching quality with small overhead for both
unlabeled and labeled graphs. The approach that can efficiently match two large graphs over thousands of
nodes with high matching quality is proved in theorized.

Keywords: Approximate Matching, Refinement Matching, Randomly Refinement

1. INTRODUCTION

Graph proliferates in a wide variety of

applications, including social networks in psycho-
sociology, attributed graphs in image processing,
food chains in ecology, electrical circuits in
electricity, road networks in transport, protein
interaction networks in biology, topological
networks on the Web. Graph processing has
attracted great attention from both research and
industrial communities. Graph matching is an
important type of graph processing, which aims at
finding correspondences between the nodes/edges
of two graphs to ensure that some substructures in
one graph are mapped to similar substructures in
the other. Graph matching plays an essential role in
a large number of concrete applications.

The graph matching literature is extensive, and
many different types of approaches have been
proposed, which mainly focus on approximations
and heuristics for the quadratic assignment
problem. An incomplete list includes spectral
methods, relaxation labeling and probabilistic
approaches, semi-definite relaxations, replication
equations, tree search, graduated assignment, and
RKHS methods [3]. A number of algorithms have
been proposed for graph matching including exact
matching [1] and approximate matching [17]. The
exact approaches are able to find the optimal
matching at the cost of exponential running time,

while the approximate approaches are much more
efficient but can get poor matching results. More
importantly, most of them can only handle small
graphs with tens to hundreds of nodes. As an
indication, exactly matching two undirected graphs
with 30 nodes may take time about 100,000s. It is
important to note that real-world networks
nowadays can be very large. The existing
approaches cannot efficiently match graphs even
with thousands of nodes with high quality.

In this paper, we study the problem of matching
two large graphs, which is formulated as follows.
Given two graphs G1 and G2, we find a one-to-one
matching between the nodes in G1 and G2 such that
the number of the matched edges is maximized. The
optimal solution to the problem corresponds to the
maximum common subgraph (MCS) between G1
and G2, which is an NP-hard problem, and has been
studied in decades. It is known to be very difficult
to find a high-quality approximate matching
efficiently even for small graphs. In order to meet
the needs of handling large graphs for graph
matching and analysis, we propose a novel
approximate solution with polynomial time
complexity while still attaining high matching
quality. The rest of the paper is organized as
follows. Section 2 discusses some related work.
Section 3 gives the problem statement. Section 4
gives the approach and its prove. Section 5
concludes this paper.

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

858

2. RELATED WORKS

We discuss exact graph matching and

approximate graph matching, according to whether
(sub)graph isomorphism problem or maximum
common subgraph problem is involved. For exact
graph matching problems most of the algorithms
use backtracking (refer to Ullmann’s algorithm for
subgraph and graph isomorphism [1]). Existing
solutions on finding the maximum common
subgraph mainly focus on the maximum common
node induced subgraph, and most techniques can
hardly be used for the maximum common edge
induced subgraph. Among them, [4] proposes a
backtracking search method for finding the
maximum common subgraph. An improved
backtracking algorithm is given in [4] with time
complexity O(mn+1·n), where n and m are the
numbers of vertices of G1 and G2, respectively. [1]
propose an algorithm that combines backtracking
and vertex cover enumeration to solve the
maximum common node induced subgraph
problem. There are also some other studies to
calculate the maximum common node induced
subgraph by finding the maximum clique in the
association graph [8,]. The complexity of the
maximum clique approach is no better than
backtracking. For approximate graph matching,
there are three categories: propagation-based
method, spectral-based method, and optimization-
based method.

The propagation-based method is mainly based
on the intuition that two nodes are similar if their
respective neighborhoods are similar. In [2], a
similarity flooding approach is proposed, which
starts from string-based comparison of the vertices
labels to obtain an initial alignment between nodes
of two graphs and refines it by an iterative fix-point
computation. [8] construct a similarity measure
between any two nodes in any two graphs based on
Kleinberg’s hub and authority idea of HITS
algorithm [6]. This procedure will, in general,
converge to different even and odd limits which
will depend upon the initial conditions. Recently,
[18] extends the propagation-based method by
adding the weight of propagation into the iteration
process.

Spectral-based method aims to represent and
distinguish structural properties of graphs using
eigenvalues and eigenvectors of graph adjacency
matrices. It is based on the observation that if two
graphs are isomorphic, their adjacency matrices will
have the same eigenvalues and eigenvectors. Since
the computation of eigenvalues can be solved in
polynomial time, it is used by a lot of works in

graph matching [4]. Among these works, [18] uses
the eigende composition of adjacency matrices of
the graphs to derive a simple expression of the
orthogonal matrix that optimizes the objective
function. [15] propose a solution to the weighted
isomorphism problem that combines the use of
eigenvalues/eigenvectors with continuous
optimization techniques. These two methods are
only suitable for graphs with the same number of
nodes. In [6], the authors solve the problem to
handle graphs with different number of nodes,
using the Laplacian eigenmaps scheme to perform a
generalized eigende composition of the Laplacian
matrix. [10] propose a method of projecting vertex
into eigen-subspace for graph matching, which is
used for inexact many-to-many graph matching
other than one-to-onematching, and in [12] extend
Umeyama’s work to match two graphs of different
sizes by choosing the largest k-eigenvalues as the
projection space. [17] improve the matching result
by performing eigende composition on the
Laplacian matrix since it is positive and
semidefinite. [14] is used to embed the nodes of the
graph into vector-space based on the graph-spectral
method, and the correspondence matrix between the
embedded points of two graphs is computed by a
variant of the Scott and Longuet-Higgins algorithm.

The optimization-based method aims to model
graph matching as an optimization problem and
solve it. The representative algorithms include
PATH and GA [5]. In PATH, the graph matching
problem is formulated as a convex-concave
programming problem, and is approximately
solved. It starts from the convex relaxation and then
iteratively solves the convex-concave programming
problem by gradually increasing the weight of the
concave relaxation and following the path of
solutions thus created. GA is a gradient method
based approach, which starts from an initial
solution and iteratively chooses a matching in the
direction of a gradient objective function.

Aside from the propagation-/spectral-based
methods that compute the similarity score by
iterations of random walks or spectral
decomposition of adjacency matrix, [2] propose a
vector-based node signature that can be computed
straightforwardly from the adjacency matrix. Here,
every node is associated with a vector containing its
node degree and the incident edge weights. The
similarity between two nodes is computed based on
their signatures, and the graph matching problem is
reduced to a bipartite graph matching problem. A
survey can be found in [6].

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

859

3. PROBLEM STATEMENT

We first focus on undirected and unlabeled

graphs, since the most difficult part for graph
matching is the structural matching without any
assistance of labels. We will discuss how to handle
labeled graphs later in this paper. For a graph G(V,
E), we use V(G) to denote the set of nodes and
E(G) to denote the set of edges.

Definition 1: Graph/Subgraph Isomorphism.
Graph G1 is isomorphic to graph G2, if and only

if there exists a bijective function f: V(G1)→V(G2)
such that for any two nodes u1∈V(G1) and u2∈
V(G1), (u1, u2)∈E(G1) if and only if (f (u1), f
(u2))∈E(G2). G1 is subgraph isomorphic to G2, if
and only if there exists a subgraph G’ of G2 such
that G1 is isomorphic to G’.

Definition 2: Maximum Common Subgraph.
A graph G is the maximum common subgraph

(MCS) of two graphs G1 andG2, denoted as
mcs(G1, G2), if G is a common subgraph of G1 and
G2, and there is no other common subgraph G’,
such that G’ is larger than G.

The MCS of two graphs can be disconnected, and
there are two kinds of MCSs, namely maximum
common node induced subgraph (MCSv) and
maximum common edge induced subgraph
(MCSe). The former requires the MCS to be the
node induced subgraph of both G1 and G2, and G’
is larger than G iff |V(G’)| > |V(G)|. The latter
requires the MCS to be the edge induced subgraph
of both G1 and G2, and G’is larger than G iff
|E(G’)| >|E(G)|. Figure 1 shows the difference
between MCSv and MCSe. Figure 1a shows the
MCSv of G1 and G2, whereas Fig. 1b shows the
MCSe of G1 and G2.

 (a) (b)
Figure 1 (A) Mcsv And (B) Mcse

As can be seen from this example, MCSe can
possibly get more common substructure for the
given two graphs. In this paper, we adopt MCSe
since it can possibly get more common substructure
for the given two graphs, and we use MCS (mcs) to
denote MCSe. Finding the MCS of two graphs is
NP-hard.

Definition 3: Graph Matching.
Given two graphs G1 and G2, a matching M

between G1 and G2 is a set of vertex pairs M
={(u,v)|u∈V(G1), v∈V(G2)}, such that for any

two pairs (u1,v1) ∈ M and (u2,v2)∈M, u1≠u2
and v1≠v2. The optimal matching M of two graphs
is the one with the largest number of matched
edges. Finding the optimal matching M is the same
as finding the MCS.

Problem Statement: We aim to compute the
optimal matching M for two given graphs G1 and
G2. For a given matching M, we evaluate its quality
by computing score(M) as follows.

score(M) = 1, 2 , 2(1, 1) (2, 2)

2

u u vi vu v M u v M
e e

∈ ∈
×∑ ∑ (1)

where eu,v = 1 if there is an edge between u and v,
and eu,v = 0, otherwise. Obviously, finding the
optimal matching M is actually to find a matching
with the maximum score(M), and the maximum
score(M) is |E(mcs(G1, G2))|.

It is known that the MCS problem is NP-hard,
and it is also known that it is very difficult to obtain
a tight, or even useful, approximation bound,
because finding a maximum common subgraph of
two graphs is equivalent to finding a maximum
clique in their association graph, which cannot be
approximated with ratio nεfor any constant ε> 0
unless P=NP. For the quality of the MCS result, [16]
give a bound of O(n2) based on the number of
mismatched edges, where n is the size of the larger
graph. This means that it may mismatch all the
edges. [19] provide an upper bound for the size of
the MCS, which is computed by sorting the degree
sequences of two graphs separately followed by
summarizing the corresponding smaller degrees.
The bound is almost the smaller graph, without
considering any structural information of the two
graphs, which does not provide much information.
For the time complexity, in [15], it is O(n6 L),
where n is the size of the graph and L is the size of
an LP model formulated for graph matching (at
least n). It cannot handle graphs with more than 100
nodes.

4. REFINEMENT MATCHING APPROACH

We propose a novel approach to solve the graph

matching problem. We construct the initial
matching M by identifying anchors of two graphs
G1 and G2 followed by expanding from the anchors.
We do so based on a new similarity between nodes
in the two different graphs, which combines both
global and local information of nodes. The
framework of the algorithmis shown in Algorithm
1.

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

860

Algorithm 1: match(G1, G2)
Require: two graphs, G1 and G2;
Ensure: a graph matching between G1 and G2;
1: A ←anchor-selection (G1, G2);
2: M ←anchor-expansion (G1, G2, A);
3: M ← refine(G1, G2, M);
4: return M;
In this paper, we propose a new approach to

refine the initial matching. The novelty of our
refinement is as follows. First, we refine a matching
M to a better one, which is most likely to exist and
can be identified. Second, we consider the
efficiency, and focus on a subset of nodes to refine
while giving every node in the graphs a chance to
be refined. We show the optimality of our
refinement. We also show how to randomly refine
matching with different combinations. Our
refinement can improve the matching quality with
small overhead for both unlabeled and labeled
graphs. We conducted extensive testing using real
and synthetic datasets, and confirmed the quality
and efficiency of our approach. The average ratio of
our approximate matching to the exact matching is
above 90%, while the computational cost is less
than 1% of the state-of-the-art exact algorithms.
This is a big step compared to all the approximate
algorithms to match large graphs in the literature.

The initial matching M is computed using the
heuristics that match the anchors first followed by
matching the nodes around the anchors in a top-
down fashion. The heuristics used cannot guarantee
that all the anchors are correctly matched. In this
section, we propose a new approach to refine the
initial matching M. It is important to note that our
strategy is to refine the initial matching and is not to
find a completely new matching. By refinement, we
mean the following two things. First, we are not to
explore all possibilities without a goal when we
refine a matching. In other words, we refine a
matching M to a better one which is most likely to
exist and can be identified. Second, we consider the
efficiency when refining a matching. In our
approach, each time we focus on a subset of nodes
to refine by excluding a subset of nodes and
including a subset of nodes. The set of nodes to be
excluded from refinement at one time is neither
large nor small. Also, we give every node in the
graphs a chance to be refined.

P1 F1 C

G1

P2 F2

G2

Figure 2 Vertex Cover Refinement

4.1 Vertex Cover Based Refinement
We use a vertex cover C to refine a matching M.

A vertex cover C of a graph G is a subset of nodes
in V(G), that is, C⊆V(G), such that for every edge
(u,v)∈E(G),we have u∈C or v∈C. A minimum
vertex cover of graph G is a vertex cover with the
minimum number of nodes.

A vertex cover C of G is a minimal vertex cover,
if there does not exist a vertex cover C’ of G such
that C’⊂C.

A set of nodes C is a vertex cover of graph G if
and only if its complement I =V(G)−C is an
independent set of G. Here, an independent set I of
G is a subset of nodes in V(G), that is, I⊆V(G),
such that for any u∈I and v∈I, (u,v)∉E(G).

Below, we introduce some notations we use to
refine a matching M based on vertex cover.
Suppose we match two graphs G1 and G2, and M is
a matching found. Let P1 and P2 be the matched
nodes in G1 and G2, respectively, using the
matching M. For any (u,v)∈M,wehave u∈P1 and
v∈ P2. Given a cover C of G1, we use F1 to denote
C∩P1.

For any subset of nodes S⊆P1, we use M[S] to
denote the corresponding matched part of S in P2
using matching M. For any subset of nodes S⊆P2,
we use M−1[S] to denote the matched part of S in
P1 using matching M. Let F2=M[F1]. The
relationships among G1,G2,P1,P2,F1,F2 and C are
illustrated in Figure. 2

The vertex cover structure plays an important
role when wematch two graphs G1 and G2. It
allows us to focus on one graphG1, with the
assistance of its vertex cover. The intuition is as
follows. By definition, a vertex cover of G1 is the
set of nodes that covers all possible edges in G1.
This implies that a node in the vertex cover can
possibly have many edges to cover (or possibly
have many matched edges with another graph G2).
A vertex cover C of G1 divides V(G1) into three
parts, F1= C∩ P1, C−F1 and V(G1)−C. The
implications are given below. The nodes in F1 are
most likely to lead to good matches, based on the
definition of vertex cover. We exclude nodes in F1
to refine. We include nodes in V(G1)−C to refine,
because the complement of the vertex cover
V(G1)−C is an independent set. Such a property
makes it possible to apply some efficient
polynomial algorithms for optimizing the matching.
For C−F1, we will first discuss how to refine by
excluding nodes in C−F1, and then discuss how to
include nodes C−F1 to refine.

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

861

4.2 Refinement And Its Optimality
Given two graphs G1 and G2, a matching M, and

a vertex cover C of G1, we give a refinement M+(C)
of M, and show its optimality below.

First, we show how to obtain a refinement M+(C)
of M. We build a complete weighted bipartite graph
Gb. On one side, Gb includes the nodes in
V(G1)−C, and on the other side, Gb includes the
nodes in V(G2)−F2. For any node u∈V(G1)−C and
node v∈V(G2)−F2, we add an edge (u,v) in E(Gb),
and the weight of the edge (u,v) is defined as
follows.

w(u,v) =|M[N(u)∩F1]∩(N(v)∩F2)| (2)
where N(u) and N(v) are the sets of immediate

neighbors of u and v in graphs G1 and G2,
respectively. Intuitively, w(u,v) is the contribution
of the matched edges if we match u in graphG1
with v in graph G2. Next, we find the maximum
weighted bipartite matching Mb of Gb using the
Hungarian algorithm, such that the total weight of
edges in Mb is maximized. We obtain our new
matching M+(C) as follows.

M+(C) = (M∩(F1×F2))∪Mb (3)
where F1×F2 is the cartesian product of F1 and

F2. It includes all pairs (u,v) such that u∈F1 and v
∈F2.

Example 1 To make it simpler, let’s only
consider part of the matching in the initial
matching. Suppose the first graph in figure 3(a) is
the partial graph induced by nodes {u6, u8, u11,
u12, u13} in G1, and the second graph in figure 3(b)
is the partial graph induced by nodes
{v6,v8,v11,v12,v13} in G2. In the initial matching
M generated in Example 4, only three edges are
matched, which is showed as the bold edges in
figure 3(a)(b). We have P1={u6, u8, u11, u12, u13}
and P2={v6,v8,v11,v12,v13}. Suppose C={u6, u8,
u12},we have F1=C ∩ P1={u6, u8, u12} and
F2=M[F1]={v6,v8,v12}. In the bipartite graph Gb,
the left part consists of the nodes in V(G1)−C,
which is {u11, u13}, and the right part consists of
the nodes in V(G2)−F2, which is {v11,v13}. The
graph Gb is shown in figure 3(c). For the edge
(u11,v11), its weight is 2 because if we match node
u11 with node v11, 2 edges will be matched in the
original graphs, that is, edge (u11, u8) is matched to
edge (v11,v8), and edge (u11, u12) is matched to
edge (v11,v12). The maximum weighted bipartite
matching of Gb is Mb ={(u11,v11), (u13,v13)}.
Modifying the result in Example 1 using the new
matching, we can improve the number of matched
edges from 18 to 20. Similarly, we can refine
matching pairs {(u2,v7), (u7,v2)} to be {(u2,v2),
(u7,v7)} such that it will improve the number of

matched edges to 21, which is the optimal value in
this example.

u6

u11

u13u12

u8

 (a) (b)

(c) (d)
Figure 3 Vertex Cover Refinement Example.

 (A) G1, (B) G2, (C) C ={U6, U8, U12},
 (D) C ={U11, U12, U13}

Second, we give the optimality of M+(C) over a
matching space M. The space M is a set of
matching between nodes in G1 and G2, such that
for any matching M’, M’∈M if and only if M’∩
(F1×F2)=M∩(F1×F2) and M’((C−F1)×V(G2)) =
∅ . For the matching M, a matching M’∈M, if and
only if the matching for nodes in F1 is not changed
and the matching for nodes in C−F1 is ∅ . The
second condition can also be expressed as
M’[C−F1]=∅ .

Theorem 1 Suppose min = min{|V(G1)|−|C|,
|V(G2)|−|F2|} and max = max{|V(G1)|−|C|,
|V(G2)|−|F2|}, then we have:

(1) |M|=
min

0

min! max!
 and

! (min)! (max)!i i i i=

×
× − × −∑

minmax!
| | (max 1)

(max-min)!
M≤ ≤ +

(2) M ∈M
(3) M+(C) ∈M and
(4) M+(C) is optimal in M
Proof 1 We prove it step by step.
(1) To make things simple and without loss of

generality, we assume |V(G1)|−|C|≤|V(G2)|−|F2|,
then min =|V(G1)|−|C| and max =|V(G2)|−|F2|.
Since V(G1)−C and V(G2)− F2 are the included
parts of G1 and G2, respectively, we only consider
the number of different matching between V(G1) −
C and V(G2) − F2. Suppose in V(G1)−C, there are i
nodes that participate in the matching in M, there
are min

iC different selections of the i nodes, and for
each selection, there are max

iP different matching
between the i nodes and nodes in V(G2)−F2. There
are totally min

iC × max
iP different matching for a

certain i . Since i ∈[0, min], the total number of
different matching is

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

862

|M|=
min

min max
0

i i

i

C P
=

×∑
min

0

min! max!

! (min)! (max)!i i i i=

×=
× − × −∑

When i= min, we have:

min max

max!
| |

(max-min)!
i iM C P≥ × =

If we remove the constraint that different nodes
in V(G1)−C must match different nodes in
V(G2)−F2, each node in V(G1)−C will have max +
1 choices include max nodes in V(G2)−F2 and an
empty match. The number of different relaxed
matching is then changed to (max+1) min which is
an upper bound of |M|.

(2) We only need to prove that M satisfies the
two conditions of M. For the first condition,
obviously, M∩(F1×F2)=M∩(F1×F2). For the
second condition, the part C−F1 is the nodes in C
that are not matched in M, so M[C−F1] =∅. As a
result, M∩((C−F1)×V(G2)) =∅.

(3) We need show that M+(C) satisfies the two
conditions of M.

– For the first condition, we have:
M+(C)∩(F1×F2)
= ((M ∪∩(F1×F2)) Mb)∩(F1×F2)
= (M ∪∩(F1×F2)) (Mb∩(F1×F2))
Since Mb only includes nodes in V(G1)−C and

V(G2)−F2,wehave Mb∩(F1×F2) =∅.As a result,
M+(C)∩(F1×F2)=M∩(F1×F2).

– For the second condition, we have:
M+(C)∩((C−F1)×V(G2))
= ((M∩(F1×F2))∪ Mb)∩((C−F1)×V(G2))
=

((M∩(F1×F2))∩((C−F1)×V(G2)))∪(Mb∩((C−F1)×
V(G2)))

Moreover, we have
(M∩(F1×F2))∩((C−F1)×V(G2)) =∅, because
M∩((C−F1)×V(G2)) =∅ is already proved in (2)
and Mb∩((C−F1)×V(G2)) =∅ due to the fact that
Mb does not contain any nodes in C−F1. Thus, we
have M+(C)∩((C−F1)×V(G2)) =∅.

(4) For any matching M’∈M, we define a
matching '

bM as '
bM =M’∩

((V(G1)−C)×(V(G2)−F2)). We use scoreb(Mb) to
denote the total weight for the bipartite matching
Mb of the bipartite graph Gb. We claim: (a) 'bM is a

bipartite matching of Gb; (b) score('
bM) =

scoreb(
'
bM)+score(M∩(F1×F2)); (c) score(M+(C))

= scoreb(Mb)+score(M∩(F1×F2)).
For (a), it is obvious because of two reasons. (1)
'
bM only contains the nodes in V(G1)−C and

V(G2)−F2, which is exactly the set of nodes in Gb.
(2)Any edge in '

bM is also an edge of Gb since Gb
is a complete bipartite graph.

For (b), we have:
score(M’)= score(M’ ∪∩((C (V(G1)−C))×(F2∪

(V(G2)−F2))))= score((M’ ∪∩(C×F2)) (M’∩(C
×(V(G2)−F2)))∪(M’∩((V(G1)−C)×F2))∪(M’∩((V
(G1)−C)×(V(G2) −F2)))). Since C×F2,
C×(V(G2)−F2), (V(G1)−C)×F2 and (V(G1)−C)
×(V(G2)−F2) are mutually exclusive with each
other, we have:

score(M’)= score(M’∩(C×F2))+score(M’∩(C
×(V(G2)−F2)))+score(M’∩((V(G1)−C)×
F2))+score(M’∩ ((V(G1)−C)×(V(G2)−F2)))
Since M’[F1]=F2 and M’[C−F1]=∅, we have

M’[C]=M’[F1] ∪M’[C−F1]=F2, and thus M’∩(C
×(V(G2)−F2))=∅. Since M’−1[F2]=F1 and F1⊆C,
we have M’∩((V(G1)−C)×F2) =∅.

We also have:
M’∩(C×F2)= M’∩(((C ∪−F1) F1)×F2)
= (M’∩((C−F1)×F2))∪(M’∩(F1×F2))
= M’∩(F1×F2)
The last equation is due to M’∩((C−F1)×F2) =∅

because M’[C−F1]= ∅. Since M’∩(F1×F2)
=M∩(F1×F2), we can derive:

score(M’) = score(M’∩(F1×F2)) +score(M’∩
((V(G1)−C)×(V(G2)−F2)))

= score(M∩(F1×F2)) + score('
bM)

We only need to prove score('bM) = scoreb(
'
bM).

Since V(G1)−C is a independent set which only
have edges with C and C is the excluded part of the
matching M’ ,we can derive that
score(M’∩((V(G1)−C)× (V(G2)−F2))) only
consists of the contributions of the edges
(u,v)∈E(G1) such that u∈ ∈C and v V(G1)−C.
From the construction of Gb, the contribution for
each v∈V(G1)−C in M’ is just the weight (v, M’[v])
in the bipartite graph Gb.

This implies score('
bM) = scoreb(

'
bM).

For (c), it can be easily derived from (b) because
M+(C) ∈Mand Mb = M+(C) ∩ ((V(G1)−C)×(V(G2)
− F2)).

Since Mb is the maximum weight bipartite

matching of Gb, we have costb(Mb) ≥ costb('
bM).

Hence, we have:
score(M+(C)) =scoreb(Mb) +score(M∩(F1×F2))

≥scoreb(
'
bM)+score(M∩ (F1×F2))= score(M’)

As a result, M+(C) is the optimal solution in M.
The theorem holds.

Theorem 1 shows that the size of M is
exponentially large. Both M and M+(C) are
elements in M, and M+(C) is the optimal matching
for all matching in M. It implies that M+(C) is the
best among a large number of matching in M and
score(M+(C)) ≥ score(M). For two graphs with
2,000 nodes each, the number of nodes in a vertex

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

863

cover can be assumed as 1,000 (50%) reasonably.
M+(C) is the best among a factorial of 1,000 (1,000!)
possible matching.

4.3 Randomly Refinement Excluding C−F1

If M itself is an optimal matching in M, or the
selected vertex cover C includes most nodes in G1
that are not well matched, it is possible that M+(C)
cannot improve M. As an example, suppose C
={u11, u12, u13}, in Example 1, then the new
bipartite graph Gb is the one shown in Figure 3(d).
In other words, using the maximum weighted
bipartite matching of Gb, the matching M+(C)
might be the same with M. The reason is that the
mismatched nodes are excluded by the vertex cover
C to refine. We give an approach based on two
strategies to solve such a problem. (1) Making C
smaller, such that more mismatched nodes can be
included and thus can be used to refine. (2)
Iteratively refining the current matching using
different vertex covers, such that every mismatched
node will have a chance to be included to refine.
The first strategy is based on the following Lemma.

Lemma 1 For any two vertex covers C1 and C2
of G1, if C1 ⊆ C2, then score(M+(C1)) ≥
score(M+(C2)).

Proof 2 Suppose M(C1) and M(C2) are the
matching spaces generated by C1 and C2,
respectively. We use F1(C1), F1(C2), F2(C1), and
F2(C2) to denote F1 generated by C1, F1 generated
by C2, F2 generated by C1, and F2 generated by
C2, respectively. Since we have F1(C1) ⊆ F1(C2)
and F2(C1) ⊆ F2(C2), we need show M(C2) ⊆
M(C1). For any M’∈M(C2), we have:

M’∩(F1(C2)×F2(C2))=M∩(F1(C2)×F2(C2)),
M’∩((C2−F1(C2))×V(G2))= ∅. Since
F1(C1)×F2(C1)⊆F1(C2)×F2(C2), we derive: M’∩
(F1(C1)×F2(C1))=M∩(F1(C1)×F2(C1)). We also
have C1−F1(C1)⊆C2−F1(C2), which yields: M’∩
((C1−F1(C))×V(G2))= ∅. Thus, we have M’∈
M(C1), that is, M(C2)⊆M(C1). Since M+(C1) and
M+(C2) are the optimal solutions in M(C1) and
M(C2) respectively, we have score(M+(C1))≥
score(M+(C2)).

In order to make C small, a straight forward way
is to find a minimum vertex cover of G1. This
method is not practical for two reasons. (1) Finding
a minimum vertex cover of a graph is NP-hard. (2)
In a minimum vertex cover, the mismatched nodes
do not have a chance to be included to refine. To
avoid these, we use a minimal vertex cover instead,
because (1) a minimal vertex cover is easy to be
found and (2) the number of different minimal
vertex covers for a graph is much larger than the

number of different minimum vertex covers. Thus,
a minimal vertex cover gives the mismatched nodes
in a minimum vertex cover more chances to be
refined.

Algorithm 2 select-random-cover (G)
Require: agraph G;
Ensure: a randomly selected minimal cover of G;
1: L ←shuffled nodes in V (G); C ←∅;
2: for all u ∈ L do
3: if ∃ (u,v)∈E(G), s.t. v∉C then C ∪←C {u};
4: for all u ∈ C do
5: if C−{u} is a vertex cover of G then C←C

−{u};
6: return C;
The approach to randomly select a minimal

vertex cover of graph G is shown in Algorithm5.
First, in line1, we shuffle all nodes in the graph and
put them into a list L, such that any permutation of
V(G) has the same probability in L. In lines 2–3, we
find a vertex cover of G by adding node in L one by
one. For any node to be added, we add it into the
vertex cover if and only if it contributes at least one
edge to the currently covered edges (line 3). This
operation can be implemented as follows. For every
node in the graph, we maintain its number of
uncovered edges, which is initially set to be the
degree of the corresponding node. Every time
before we add a new node into the cover, we first
check its number of uncovered edges. If it is 0, we
skip the node, and continue to add the next one in L.
Otherwise, we add the node into the cover, and
traverse its adjacent nodes in the graph. For each
adjacent node, we decrease its number of uncovered
edges by 1. In such a way, the total complexity for
line 2–3 is O(|E(G)|), since every edge in G is
visited at most once. Lines 4–5 make the current
vertex cover minimal by removing those useless
nodes, such that the removal of such nodes does not
influence any edge currently covered. The
following lemma shows that, for any minimal cover
C of a graph G, there are considerable number of
ways for Algorithm 2 to generate C.

Lemma 2 For any minimal vertex cover C of
graph G, there are at least |C|!×|V(G)−C|!
permutations of V(G),such that Algorithm 2
generates C.

Proof 3 We construct the |C|!×|V(G)−C|!
permutations as follows. For each permutation, we
put C in the front in any order followed by V(G)−C
in any order. The number of such permutations is
|C|!×|V(G)−C|!. Now we prove for any such
permutation, Algorithm 2 can generate C. Since C
is minimal, in the first |C| loops of lines 2–3 of
Algorithm5, the conditions in line 3 are all satisfied,
and in the last |V(G)−C| loops of lines 2–3, the

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

864

conditions in line 3 are all unsatisfied because C is
already a vertex cover of G. So after the loop in
lines 2-3, C is generated. Since C is already
minimal, the loop in lines 4–5 will eliminate no
node. Thus, Algorithm 2 can generate C.

Algorithm 3 refine (G1, G2, M)
Require: two graphs G1 and G2, and the

matching M;
Ensure: a refined matching M;
1: while M is updated or it is the first iteration do
2: for i = 1 to X do
3: G ←random selection between G1 and G2;
4: C ←select-random-cover (G);
5: compute M+(C);
6: if score(M+(C)) > score(M) then M ← M+(C);
7: return M;
The main refine approach is an iterative

algorithm shown in Algorithm 3. We iteratively
update the current matching until the matching is
not improved in a certain iteration. In each iteration
(lines 2–6), we try X times to find a new random
minimal vertex cover C (line 4), generate the
matching M+(C) using the method introduced above
(line 5), and update the current matching if M+(C) is
a better matching (line 6). Here, X is a constant (≥ 1)
in order to avoid selecting a bad cover to terminate
the whole process. In our experiments, when X = 5
and X = 10 over 92 and 99% of the nodes have a
chance to be included to refine. We use X = 5. Note
that in line 3, we choose C to be a vertex cover of
either G1 or G2 with the same probability to
increase the randomness.

Algorithm 4 refine (G1, G2, M)
Require: two graphs G1 and G2, and the

matching M;
Ensure: a refined matching M;
1: while M is updated or it is the first iteration do
2: for i = 1 to X do
3: GF ←random selection between G1[P1] and

G2[P2];
4: F ←select-random-cover (GF);
5: compute M*(F);
6: if score(M*(F)) > score(M) then M ← M*(F);
7: return M;
Theorem 2 The time complexity of Algorithm 4

is O(m·n3), for m = min{|E(G1)|, |E(G2)|} and n =
max{|V(G1)|, |V(G2)|}.

Proof 4 Algorithm 4 is the main refinement. The
while loop in line 1 will repeat for at most m times
because the optimal solution can match at most m
edges and in each loop, the number of edges for the
latest solution will be increased for at least 1. In
each loop, the dominant part is finding the
maximum weight bipartite matching using the
Hungarian algorithm which can be done in O(n3).

Since X is a constant, the total time complexity for
Algorithm 4 is O(m · n3).

Theorem 2 shows an upper bound of the time
complexity for Algorithm 4. In practice, the
processing time for the algorithm is much smaller
than the upper bound because the initial matching
M has already matched a lot of edges. In the case
when m and n are large, Algorithm 4 can be very
slow. We discuss two approaches to make
Algorithm6 faster, with possible loss of matched
edges. The goal is the same as before to match as
many edges as possible. The first approach is to
stop the iteration when the algorithm converges
slowly, that is, no larger than δ new matched edges
are found in a certain iteration. In such away, them
part in the time complexity can be largely reduced.
The second approach is to enlarge the size of the
vertex cover, for example, adding some nodes with
the minimum number of unmatched edges into the
current vertex cover. The bipartite matching is only
conducted on the nodes that are not in the vertex
cover. If the size of the vertex cover increases, the
number of nodes used in the bipartite matching
decreases, thus the time used for matching nodes
decreases. In such a way, the n3 part in the time
complexity can be reduced.

4.4 Randomly Refinement Including C−F1

In this section, we show that M+(C) can be
further improved. Recall that in our previous
approach to compute M+(C), the nodes in C−F1 of
G1 are excluded to refine. In order to refine the
nodes in C−F1, we build a new weighted bipartite
graph *

bG as follows. On one side, *bG includes all

nodes in V(G1)−F1, and on the other side, *
bG

includes all nodes in V(G2)−F2. For any node v ∈
V(G1)−F1 and node u∈V(G2)−F2, there is an edge
(u,v)∈E *

bG) with weight defined in Eq. (6).
Suppose the maximum weighted bipartite matching
of *

bG is *
bM , the new matching M*(F1) is defined as

follows.
M*(F1)=(M∩(F1×F2))∪ *

bM (3)
We now define a matching space M*. For any

matching M’ between graphs G1 and G2, M’∈M*
if and only if it satisfies the following two
conditions.

(1) M’∩(F1×F2)=M∩(F1×F2)
(2)F1∪(V(G1)−P1−M’−1[V(G2)−P2]) is a vertex

cover of G1.
Theorem 3 M⊆M* and suppose M∗M is the

optimal solution among all matching in M∗, we
have score(M*(F1))≥score(M∗

M)≥score(M+(C)).

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

865

Proof 5 For ∀M’∈M, we have
M’∩(F1×F2)=M∩(F1×F2) and M’[C−F1]= ∅. The
first condition is the same as the first condition of
M*. Since M’[C− F1]= ∅,

we have (C−F1)∩M’ −1[V(G2) − P2]= ∅. We also
have (C ∪−F1) M’−1 [V(G2)−P2] ⊆ V(G1)−P1,
accordingly, C−F1⊆V(G1)−P1−M’−1[V(G2)−P2],
and thus C⊆F1∪(V(G1)−P1−M’−1 [V(G2)−P2]).
Since C is a vertex cover of G1,
F1∪(V(G1)−P1−M’−1[V(G2)−P2]) is a vertex cover
of G1, hence we have M’∈M*. Thus M⊆M* holds.

We now prove that score(M*(F1)) ≥ score(M∗

M).
Suppose C*=F1∪(V(G1)−P1− M∗

M
-1[V(G2)− P2]),

we know C* is a vertex cover of G1. Since M∗

M
[V(G1)−P1] ⊆V(G2) − P2, we have:

M∗

M[C*−F1]=
M∗

M [V(G1)−P1−M∗

M
-1[V(G2)−P2]]= ∅.Thus, we

have M∗

M∈M using vertex cover C*, which implies
(see the proof of Theorem 4):

score(M∗

M) = score(M∩(F1×F2))+scoreb(Mb)
where Mb is the maximum weight bipartite
matching of Gb generated by C*. We also have
score(M*(F1)) ≥score(M ∩ (F1 × F2)) +
scoreb(*

bM). Since Gb⊆ *
bG , we have:

score(M*(F1))≥score(M∩(F1×F2)) + scoreb(*
bM)

≥score(M∩(F1×F2))+scoreb(Mb)= score(M∗

M).
We last prove score(M∗M)≥score(M+(C)). This

can be derived directly from M⊆M* since M∗

M is
optimal in M* and M+(C) is optimal in M.

Theorem 3 implies that the new space M* is
larger than the space M in refinement excluding
C−F1, and the new matching M*(F1) is no worse
than the optimal matching in M*. This implies that
score(M*(F1)) ≥ score(M+(C)), where M+(C) is the
optimal matching in M. It is worth noticing that the
cover C of G1 does not participate in the
construction of M*(F1) directly. The matching
M*(F1) can be computed as long as F1 is generated,
and F1 can be computed easily by the following
lemma.

Lemma 4 Suppose G1[P1] is the subgraph of G1
induced by P1. If C is a vertex cover of G1, then
C∩P1 is a vertex cover of G1[P1], and if CP1 is a
vertex cover of G1[P1], then there exists a vertex
cover C of G1 such that CP1⊆ C.

Proof 6 We first prove that if C is a vertex cover
of G1, then C∩P1 is a vertex cover of G1[P1].
Suppose C∩P1 is not a vertex cover of G1[P1],
then there exists an edge (u,v)∈E(G1[P1]) such that
u∉C∩P1 and v∉C∩P1. Note that C is a vertex
cover of G1,wehave u∈ ∈C or v C. Without loss of
generality, we suppose u∈C. Since u∉C∩P1, we

have u∈C−(C∩P1),which contradicts with
u∈V(G1[P1]). Thus, C∩P1 is a vertex cover of
G1[P1].

 We then prove that if CP1 is a vertex cover of
G1[P1], then there exists a vertex cover C of G1
such that CP1⊆C. We only need to prove that
C=CP1∪(V(G1)−P1) is a vertex cover of G1. For
any (u,v)∈ ∈ ∈E(G1), if u P1 and v P1, (u,v) is
covered by C because CP1 is a vertex cover of
G1[P1]. Otherwise, without loss of generality, we
suppose u∉P1, then u∈V(G1)−P1⊆C, so (u,v) is
also covered by C. As a result, all edged in E(G1)
can be covered by C, thus C is a vertex cover of G1.

Based on Lemma 1, we can derive that the vertex
cover of G(P1), F1, is enough to generate M*(F1).
Our new refinement algorithm is shown in
Algorithm 4 which is the refine used in Algorithm
2.We use X = 5. Comparing to Algorithm 3, there
are two major modifications. The first is about the
cover computing in lines 3–4, instead of computing
the cover of G1 (or G2 if we select G2 as the first
graph in line 3), we only compute the vertex cover
of G1[P1] (or G2[P2]). For the second modification,
instead of computing M+(C), we compute our new
matching M*(F).

5. CONCLUSION

The initial matching M is computed using the
heuristics that match the anchors first followed by
matching the nodes around the anchors in a top-
down fashion. The heuristics used cannot guarantee
that all the anchors are correctly matched. In this
paper, we propose a new approach to refine the
initial matching M. It is important to note that our
strategy is to refine the initial matching and is not to
find a completely new matching. By refinement, we
mean the following two things. First, we are not to
explore all possibilities without a goal when we
refine a matching. In other words, we refine a
matching M to a better one which is most likely to
exist and can be identified. Second, we consider the
efficiency when refining a matching. In our
approach, each time we focus on a subset of nodes
to refine by excluding a subset of nodes and
including a subset of nodes. The set of nodes to be
excluded from refinement at one time is neither
large nor small. Also, we give every node in the
graphs a chance to be refined.

In this paper, we propose a new approach to
refine the initial matching. The novelty of our
refinement is as follows. First, we refine a matching
M to a better one, which is most likely to exist and
can be identified. Second, we consider the
efficiency, and focus on a subset of nodes to refine
while giving every node in the graphs a chance to

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

866

be refined. We show the optimality of our
refinement. We also show how to randomly refine
matching with different combinations. Our
refinement can improve the matching quality with
small overhead for both unlabeled and labeled
graphs.

REFERENCES:

[1] T. Plantenga, “Inexact subgraph isomorphism in
MapReduce”, Journal of Parallel and
Distributed Computing, Vol. 73, No. 2, 2013,
pp. 164-175.

[2] F. Kuhn, and M. Mastrolilli, “Vertex cover in
graphs with locally few colors”, Information
and Computation, Vol. 222, No. 0, 2013, pp.
265-277.

[3] A. Egozi, Y. Keller, and H. Guterman, “A
Probabilistic Approach to Spectral Graph
Matching”, Pattern Analysis and Machine
Intelligence, IEEE Transactions on, Vol. 35,
No. 1, 2013, pp. 18-27.

[4] T. S. Caetano, J. J. McAuley, C. Li et al.,
“Learning Graph Matching”, Pattern Analysis
and Machine Intelligence, IEEE Transactions
on, Vol. 31, No. 6, 2009, pp. 1048-1058

[5] L. Zhi-Yong, Q. Hong, and X. Lei, “An
Extended Path Following Algorithm for Graph-
Matching Problem”, Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
Vol. 34, No. 7, 2012, pp. 1451-1456.

[6] H. Xiong, D. Xiong, Q. Zhu et al., “A
Structured Learning-Based Graph Matching
Method For Tracking Dynamic Multiple
Objects”, Circuits and Systems for Video
Technology, IEEE Transactions on, Vol. PP,
No. 99, 2012, pp. 1-1.

[7] P. Doshi, R. Kolli, and C. Thomas, “Inexact
matching of ontology graphs using expectation-
maximization”, Web Semantics: Science,
Services and Agents on the World Wide Web,
Vol. 7, No. 2, 2009, pp. 90-106.

[8] T. Ersal, H. K. Fathy, and J. L. Stein,
“Structural simplification of modular bond-
graph models based on junction inactivity”,
Simulation Modelling Practice and Theory, Vol.
17, No. 1, 2009, pp. 175-196.

[9] Z. Nutov, “Survivable network activation
problems”, Theoretical Computer Science, No.
0, 2012.

[10] S. Kpodjedo, P. Galinier, and G. Antoniol,
“Using local similarity measures to efficiently
address approximate graph matching”, Discrete
Applied Mathematics, No. 0, 2012.

[11] L. Sun, and T. Chen, “Comparing the Zagreb
indices for graphs with small difference
between the maximum and minimum degrees”,
Discrete Applied Mathematics, Vol. 157, No. 7,
2009, pp. 1650-1654.

[12] J.-K. Hao, and Q. Wu, “ Improving the
extraction and expansion method for large
graph coloring ” , Discrete Applied
Mathematics, Vol. 160, No. 16, 2012, pp. 2397-
2407.

[13] A. Bhattacharjee, and H. Jamil, “WSM: a novel
algorithm for subgraph matching in large
weighted graphs”, Journal of Intelligent
Information Systems, Vol. 38, No. 3, 2012, pp.
767-784.

[14] M. Zaslavskiy, F. Bach, and J. P. Vert, “A Path
Following Algorithm for the Graph Matching
Problem”, Pattern Analysis and Machine
Intelligence, IEEE Transactions on, Vol. 31,
No. 12, 2009, pp. 2227-2242.

[15] L. Zhu, W. Keong Ng, and J. Cheng, “Structure
and attribute index for approximate graph
matching in large graphs”, Information Systems,
Vol. 36, No. 6, 2011, pp. 958-972.

[16] T. Yamada, and T. Shoudai, “Efficient Pattern
Matching on Graph Patterns of Bounded
Treewidth”, Electronic Notes in Discrete
Mathematics, Vol. 37, No. 0, 2011, pp. 117-
122.

[17] J. Lebrun, P.-H. Gosselin, and S. Philipp-
Foliguet, “Inexact graph matching based on
kernels for object retrieval in image databases”,
Image and Vision Computing, Vol. 29, No. 11,
2011, pp. 716-729.

[18] C. Jiefeng, J. X. Yu, and P. S. Yu, “Graph
Pattern Matching: A Join/Semijoin Approach”,
Knowledge and Data Engineering, IEEE
Transactions on, Vol. 23, No. 7, 2011, pp.
1006-1021.

[19] R. Erman, M. Krnc et al., “Improved induced
matching in sparse graphs”, Discrete Applied
Mathematics, Vol. 158, No. 18, 2011, pp. 1994-
2003.

[20] D. Emms, R. C. Wilson, and E. R. Hancock,
"Graph matching using the interference of
discrete-time quantum walks," 7th IAPR-TC15
Workshop on Graph-based Representations
(GbR 2007), 2009, pp. 934-949.

[21] S. Kpodjedo, P. Galinier, and G. Antoniol, “On
the use of similarity metrics for approximate
graph matching”, Electronic Notes in Discrete
Mathematics, Vol. 36, No. 0, 2010, pp. 687-
694.

