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ABSTRACT

How to match two large graphs by maximizing the benof matched edges, which is known as maximum
common subgraph matching and is NP-hard. We giwistics to select a small number of important
anchors using a new similarity score, which meashoav two nodes in two different graphs are sintiar

be matched by taking both global and local infororabf nodes into consideration. And then to refine
matching we focus on a subset of nodes to refinewiiving every node in the graphs a chance to be
refined. We show the optimality of our refinemame also show how to randomly refine matching with
different combinations. Our refinement can imprtve matching quality with small overhead for both
unlabeled and labeled graphs. The approach thatftiaiently match two large graphs over thousaoids
nodes with high matching quality is proved in theed.
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while the approximate approaches are much more
efficient but can get poor matching results. More
importantly, most of them can only handle small

a Glgc?gtri]ongr?::ﬁlrj?jtiis slc?ciaTI ngg\;\clj:rksvaletg Cr?c]:graphs with tens to hundreds of nodes. As an
PP o 9 L psyct indication, exactly matching two undirected graphs
sociology, attributed graphs in image processin

. ) : rOCeSSINGith 30 nodes may take time about 100,000s. It is
food chains in ecology, electrical circuits in.

o . . important to note that real-world networks
electricity, road networks in transport, protein

. . : . . nowadays can be very large. The existing
interaction networks in biology, topological .
. aépproaches cannot efficiently match graphs even

networks on the Web. Graph processing ha ith th ds of nod ith hiah i
attracted great attention from both research arWilt thousands of nodes with high quality. .
industrial communities. Graph matching is a In this paper, we study the problem of matching
important tvoe of ara h rocgssin whicﬁ aims Ao large graphs, which is formulated as follows.

P yp graph p 9, iven two graphs G1 and G2, we find a one-to-one

finding correspondences between the nweyed%%tching between the nodes in G1 and G2 such that
of two graphs to ensure that some substructures

one araph are maoped to similar substructures tﬁe number of the matched edges is maximized. The
the o?he? Graph mg{)chin lavs an essential role bptimal solution to the problem corresponds to the
' P g play maximum common subgraph (MCS) between G1

a I$Lgee n#amﬁer;g{;ﬁzcreliiri?frlg:ailgogft.ensive an nd G2, which is an NP-hard problem, and has been
grap 9 ' tudied in decades. It is known to be very difficul

many different types of approaches have been . . . : .
. ; o find a high-quality approximate matching
proposed, which mainly focus on approximations,.. .
fficiently even for small graphs. In order to meet

and heuristics for the quadratic assignme :
. i e needs of handling large graphs for graph
problem. An incomplete list includes SpeCtramatching and analysis, we propose a novel

Ppro: ' , Tep o plexity while still attaining high matching
equations, tree search, graduated assignment,

. ac{]u lity. The rest of the paper is organized as
RKHS methods [3]. A number of algorithms haveT llows. Section 2 discusses some related work.

been proposed for graph matching including exa . : :
matching [1] and approximate matching [17]. The ection 3 gives the problem statement. Section 4

exact approaches are able to find the optimglIVeS the a_lpproach and its prove. Section 5
concludes this paper.

matching at the cost of exponential running time,

1. INTRODUCTION
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2. RELATED WORKS graph matching [4]. Among these works, [18] uses

the eigende composition of adjacency matrices of

We discuss exact graph matching andhe graphs to derive a simple expression of the
approximate graph matching, according to whetharthogonal matrix that optimizes the objective
(sub)graph isomorphism problem or maximunfunction. [15] propose a solution to the weighted
common subgraph problem is involved. For exadgsomorphism problem that combines the use of
graph matching problems most of the algorithmeigenvalues/eigenvectors with continuous
use backtracking (refer to Ullmann’s algorithm foroptimization techniques. These two methods are
subgraph and graph isomorphism [1]). Existingnly suitable for graphs with the same number of
solutions on finding the maximum commonnodes. In [6], the authors solve the problem to
subgraph mainly focus on the maximum commohandle graphs with different number of nodes,
node induced subgraph, and most techniques casing the Laplacian eigenmaps scheme to perform a
hardly be used for the maximum common edggeneralized eigende composition of the Laplacian
induced subgraph. Among them, [4] proposes matrix. [10] propose a method of projecting vertex
backtracking search method for finding thdanto eigen-subspace for graph matching, which is
maximum common subgraph. An improvedused for inexact many-to-many graph matching
backtracking algorithm is given in [4] with time other than one-to-onematching, and in [12] extend
complexity O(mMi™-n), where n and m are theUmeyama’s work to match two graphs of different
numbers of vertices of G1 and G2, respectively. [1dizes by choosing the largest k-eigenvalues as the
propose an algorithm that combines backtrackingrojection space. [17] improve the matching result
and vertex cover enumeration to solve théy performing eigende composition on the
maximum common node induced subgraphaplacian matrix since it is positive and
problem. There are also some other studies smmidefinite. [14] is used to embed the nodes ®f th
calculate the maximum common node inducedraph into vector-space based on the graph-spectral
subgraph by finding the maximum clique in themethod, and the correspondence matrix between the
association graph [8,]. The complexity of theembedded points of two graphs is computed by a
maximum cligue approach is no better thawariant of the Scott and Longuet-Higgins algorithm.
backtracking. For approximate graph matching, The optimization-based methodaims to model
there are three categories: propagation-basgdaph matching as an optimization problem and
method, spectral-based method, and optimizatioselve it. The representative algorithms include
based method. PATH and GA [5]. In PATH, the graph matching

The propagation-based methods mainly based problem is formulated as a convex-concave
on the intuition that two nodes are similar if thei programming problem, and is approximately
respective neighborhoods are similar. In [2], &olved. It starts from the convex relaxation arehth
similarity flooding approach is proposed, whichiteratively solves the convex-concave programming
starts from string-based comparison of the verticgwoblem by gradually increasing the weight of the
labels to obtain an initial alignment between nodesoncave relaxation and following the path of
of two graphs and refines it by an iterative fixifgo solutions thus created. GA is a gradient method
computation. [8] construct a similarity measuréased approach, which starts from an initial
between any two nodes in any two graphs based salution and iteratively chooses a matching in the
Kleinberg’s hub and authority idea of HITSdirection of a gradient objective function.
algorithm [6]. This procedure will, in general, Aside from the propagation-/spectral-based
converge to different even and odd limits whichmethods that compute the similarity score by
will depend upon the initial conditions. Recently,terations of random walks or spectral
[18] extends the propagation-based method bjyecomposition of adjacency matrix, [2] propose a
adding the weight of propagation into the iteratiovector-based node signature that can be computed
process. straightforwardly from the adjacency matrix. Here,

Spectral-based method aims to represent amdery node is associated with a vector contairtsg i
distinguish structural properties of graphs usingode degree and the incident edge weights. The
eigenvalues and eigenvectors of graph adjacensimilarity between two nodes is computed based on
matrices. It is based on the observation that @ twtheir signatures, and the graph matching problem is
graphs are isomorphic, their adjacency matricek witeduced to a bipartite graph matching problem. A
have the same eigenvalues and eigenvectors. Sirstevey can be found in [6].
the computation of eigenvalues can be solved in
polynomial time, it is used by a lot of works in
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3. PROBLEM STATEMENT two pairs (ul,vl)e M and (u2,v2E M, ul*#u2

_ _ and vE£v2. The optimal matching M of two graphs
We first focus on undirected and unlabeleds the one with the largest number of matched

graphs, since the most difficult part for grapfedges. Finding the optimal matching M is the same
matching is the structural matching without anygs finding the MCS.

assistance of labels. We will discuss how to handle pyoplem Statement: We aim to compute the

labeled graphs later in this paper. For a graph,G(¥ptimal matching M for two given graphs G1 and
E), we use V(G) to denote the set of nodes an§2. For a given matching M, we evaluate its quality

E(G) to denote the set of edges. . by computing score(M) as follows.
Definition 1: Graph/Subgraph Isomorphism

Graph G1 is isomorphic to graph G2, if and only score(M) =Z(u1,vl)]M Z(uz,v 2M Cuuz ™ Giv2 (1)
if there exists a bijective function f: V(G2)V(G2) 2
such that for any two nodes @V(G1) and uz where g, =1 if there is an edge between u and v,
V(G1), (ul, u2EE(G1) if and only if (f (ul), f and_ gy = 0, _othervyise. Obviousl_y, finding the
(U2))EE(G2). G1 is subgraph isomorphic to G2, ifoptlmal matching M is actually to find a matching

; - . ith the maximum score(M), and the maximum
and only if there exists a subgraph G’ of G2 sch't .
that Gl)i/s isomorphic to G'. I score(M) is |[E(mes(G1, G2))|.

Definition 2: Maximum Common Subgraph It is known that the MCS problem is NP-hard,

A graph G is the maximum common subgrapﬁnd it is also known that it is very difficult tdo@in

(MCS) of two graphs G1 andG2, denoted a%etight, or even useful, approximation bound,

mcs(G1, G2), if G is a common subgraph of G1 an cause findjng a '.””aX‘m“m common S“bgr?‘ph of
G2, and there is no other common subgraph Gl‘.wo graphs is equivalent to finding a maximum

such that G’ is larger than G cligue in their association graph, which cannot be

The MCS of two graphs can be disconnected, argPProximated with ratio tfor any constante > 0
there are two kinds of MCSs, namely maximuntinless P=NP. For the quality of the MCS result] [16
common node induced subgraph (MCSv) ang@ive a bound of Of) based on the number of
maximum common edge induced subgrapmismatched edges, where n is the size of the larger
(MCSe). The former requires the MCS to be th@raph. This means that it may mismatch all the
node induced subgraph of both G1 and G2, and ®udges. [19] provide an upper bound for the size of
is larger than G iff [V(G)| > |V(G)|. The latter the MCS, which is computed by sorting the degree
requires the MCS to be the edge induced subgraggguences of two graphs separately followed by
of both G1 and G2, and G'is larger than G iffsummarizing the corresponding smaller degrees.
|[E(G")| >|E(G)|. Figure 1 shows the differencelhe bound is almost the smaller graph, without
between MCSv and MCSe. Figure la shows thgonsidering any structural information of the two
MCSv of G1 and G2, whereas Fig. 1b shows thgraphs, which does not provide much information.
MCSe of G1 and G2. For the time complexity, in [15], it is OfnL),

where n is the size of the graph and L is the sfze
an LP model formulated for graph matching (at
least n). It cannot handle graphs with more thah 10
nodes.
G1 G2 Gl G2
(@) (b)

4. REFINEMENT MATCHING APPROACH

Figure 1 (A) Mcsv And (B) Mcse
i We propose a novel approach to solve the graph
As can be seen from this example, MCSe cafaiching problem. We construct the initial
ppssmly get more common substructure for thﬁ1atching M by identifying anchors of two graphs
given two graphs. In this paper, we adopt MCSg1 and G2 followed by expanding from the anchors.
since it can possibly get more common substructu{ge do so based on a new similarity between nodes
for the given two graphs, and we use MCS (mcs) §§ the two different graphs, which combines both
denote MCSe. Finding the MCS of two graphs i§jopal and local information of nodes. The

NP-he}r(_j._ i framework of the algorithmis shown in Algorithm
Definition 3: Graph Matching.

1.

Given two graphs G1 and G2, a matching M

between G1 and G2 is a set of vertex pairs M
={(u,v)[ue V(G1), ve V(G2)}, such that for any
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Algorithm 1: match(G1, G2) 4.1 Vertex Cover Based Refinement
Require: two graphs, G1 and G2; We use a vertex cové to refine a matching M.
Ensure: a graph matching between G1 and G2; A vertex coverC of a graph G is a subset of nodes
1: A <anchor-selection (G1, G2); in V(G), that is,C< V(G), such that for every edge
2: M <anchor-expansion (G1, G2, A); (uv)EE(G),we have &C or veC. A minimum
3: M < refine(G1, G2, M); vertex cover of graph G is a vertex cover with the
4: return M; minimum number of nodes.

In this paper, we propose a new approach to A vertex cover C of G is a minimal vertex cover,
refine the initial matching. The novelty of ourif there does not exist a vertex cower of G such
refinement is as follows. First, we refine a matchi thatC’'CC.

M to a better one, which is most likely to exisdan A set of nodes C is a vertex cover of graph G if
can be identified. Second, we consider thand only if its complement | =V(G)-C is an
efficiency, and focus on a subset of nodes to eefirindependent set of G. Here, an independent set | of
while giving every node in the graphs a chance G is a subset of nodes in V(G), that is; V(G),

be refined. We show the optimality of oursych that for any @l and vel, (u,v)JE(G).
refinement. We also show how to randomly refine gglow we introduce some notations we use to
matching with different combinations. Our(efine a matching M based on vertex cover.
refinement can improve the matching quality withsyppose we match two graphs G1 and G2, and M is
small overhead for both unlabeled and labeleg matching found. Let P1 and P2 be the matched
graphs. We conducted extensive testing using reghges in G1 and G2, respectively, using the
and synthetic datasets, and confirmed the qual'matching M. For any (u,¥} M,wehave & P1 and

and efficiency of our approach. The average rdtio e P2. Given a covet of G1. we use F1 to denote
our approximate matching to the exact matching i ﬂPl' ’

above 90%, while the computational cost is les
than 1% of the state-of-the-art exact algorithms, FOr any subset of nodes=31, we use M[S] to
This is a big step compared to all the approximat@enote the corresponding matched part of S in P2
algorithms to match large graphs in the literature. using matching M. For any subset of nodésR2,

The initial matching M is computed using thewe use M—-1[S] to denote the matched part of S in
heuristics that match the anchors first followed b¥1 using matching M. Let F2=M[F1]. The
matching the nodes around the anchors in a topelationships among G1,G2,P1,P2,F1,F2 @ndre
down fashion. The heuristics used cannot guarantéistrated in Figure. 2
that all the anchors are correctly matched. In this The vertex cover structure plays an important
section, we propose a new approach to refine ttiele when wematch two graphs G1 and G2. It
initial matching M. It is important to note thatrou allows us to focus on one graphG1, with the
strategy is to refine the initial matching andd to ~ assistance of its vertex cover. The intuition is as
find a completely new matching. By refinement, wdollows. By definition, a vertex cover of G1 is the
mean the following two things. First, we are not t¢et of nodes that covers all possible edges in G1.
explore all possibilities without a goal when weThis implies that a node in the vertex cover can
refine a matching. In other words, we refine @ossibly have many edges to cover (or possibly
matching M to a better one which is most likely tdiave many matched edges with another graph G2).
exist and can be identified. Second, we consider ti\ vertex cover C of G1 divides V(G1) into three
efficiency when refining a matching. In ourparts, F1= Cnh P1, C-F1 and V(G1)-C. The
approach, each time we focus on a subset of nodesplications are given below. The nodes in F1 are
to refine by excluding a subset of nodes andhost likely to lead to good matches, based on the
including a subset of nodes. The set of nodes to kefinition of vertex cover. We exclude nodes in F1
excluded from refinement at one time is neitheto refine. We include nodes in V(G1)-C to refine,
large nor small. Also, we give every node in théecause the complement of the vertex cover
graphs a chance to be refined. V(G1)-C is an independent set. Such a property

P, F, C P, F, makes it possible to apply some efficient

] " polynomial algorithms for optimizing the matching.

" For C-F1, we will first discuss how to refine by

[«3 A excluding nodes in C-F1, and then discuss how to
include nodes C-F1 to refine.

G, G,
Figure 2 Vertex Cover Refinement
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4.2 Refinement And Its Optimality matched edges to 21, which is the optimal value in
Given two graphs G1 and G2, a matching M, anthis example.

a vertex coveC of G1, we give a refinement §C) U ug Uz oug

of M, and show its optimality below.
First, we show how to obtain a refinement(&) up Ui U Uy
of M. We build a complete weighted bipartite graph
Ue

Gb. On one side, Gb includes the nodes in Us
V(G1)-C, and on the other side, Gb includes the €) (b)
nodes in V(G2)-F2. For any node(G1)-C and U up, U s
node e V(G2)-F2, we add an edge (u,v) in E(Gb), l
and the weight of the edge (u,v) is defined as BN ! !
follows.
w(u,v) =[M[N(u)NF1]N(N(v) N F2)| ) u, L un T
where N(u) and N(v) are the sets of immediate °
neighbors of u and v in graphs G1 and G2, ) (©) i (d)
respectively. Intuitively, w(u,v) is the contribati F'gxreglveéteégoéer ge_f'njg‘eS%Eﬁrgple'
of the matched edges if we match u in graphG1 ) ’(E)))C=y{le)1, U_1{2 013}' h

with v in graph G2. Next, we find the maximum Second, we give the optimality of 'kC) over a
weighted bipartite matching Mb of Gb using thematching space M. The space M is a set of
Hungarian algorithm, such that the total weight OFnatching between nodes in G1 and G2, such that
edges in Mb is maximized. We obtain our new,. any matching M’, MEM if and only if M’ N

mmgg:%c% Zflfg"lf;")’fo Mb (@) (FLX F2)=MN (F1X F2) and M'((C-F1)xV(G2)) =
e For the matching M, a matching ®'M, if and

where F1xF2 is the cartesian product of F1 a only if the matching for nodes in F1 is not changed
F2. It includ Il pai , h thate&1 and . . .
includes all pairs (u,v) suc andv and the matching for nodes in C-Flds. The

EF2. L
L , second condition can also be expressed as
Example 1 To make it simpler, let's only M[C-F1]=2

consider part of the matching in the initial L

matching. Suppose the first graph in figure 3(a) i Eg)TiTgl}l Sal:]%posrﬁarln_— m;r:({{l?\//(((éll))ll—lrélf
the partial graph induced by nodes {u6, u8, ul V(G2 oh th h o '
u12, u13} in G1, and the second graph in figure 3(B/(G2)I-IF mli then we have:

is the partial graph induced by nodes (1 M=) - .m|n'!><max! :
{v6,v8,v11,v12,v13} in G2. In the initial matching = ix(min—i)!x(max-i)!

M generated in Example 4, only three edges are max! 0
matched, which is showed as the bold edges in MIS“\A s (maxt 1
figure 3(a)(b). We have P1={u6, u8, ull, ul2, ul3} - '
and P2={v6,v8,v11,v12,v13}. Suppo={u6, us, (:23) m+ CM M and

ul?},we have F1€ N P1={u6, u8, ul2?} and 24; M*EC; is ori?mal in M
F2=M[F1]={v6,v8,v12}. In the bipartite graph Gb, :

the left part consists of the nodes in V(GT)- Proof 1We prove it step by step,

L . : (1) To make things simple and without loss of
which is {ull, ul3}, and the right part consists of ;
the node{s in V(GZ})—FZ WhiChgiS ?vll v13}. Thegenerall'ty, we assume [V(G1)I<M(G2)|-F2],
graph Gb is shown in figure 3(c). For the ed(_:%en min =V(GL)I-C| and max =V(G2)|-]F2|

(u11,v11), its weight is 2 because if we match no ince V(G1)-C and V(G2)- F2 are the included

; . : arts of G1 and G2, respectively, we only consider
ull with node v11, 2 edges will be matched in th e number of different matching between V(G1) —

original graphs, that is, edge (ull, u8) is matdoed C and V(G2) - F2. Suppose in V(G1)-C, there are i

edge (v11,v8), and edge (ull, ul?) is matched ﬁoodes that participate in the matching in M, there

edge (v11,v12). The maximum weighted bipartit D . .
matching of Gb is Mb ={(u11,v11), (u13,v13)}.%recm'" different selections of the i nodes, and for

Modifying the result in Example 1 using the newfach selectpn, there aré,. dlfferent matching
matching, we can improve the number of matcheefween the i nodes and nodes in V(G2)-F2. There
edges from 18 to 20. Similarly, we can refinédre totally C., x B, different matching for a
matching pairs {(u2,v7), (u7,v2)} to be {(u2,v2), certain i . Since i€0, min], the total number of
(u7,v7)} such that it will improve the number of different matching is
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M "C ‘" min'x max! For (b), we have:
IMI= z min * P = |'><(m|n i)x(max—i)! score(M’)=  score(MN((CU(V(G1)-C))x(FJ
When i= min, we have (V(G2)-F2))))= score((MN(CxF2))u (M'N(C
max! x(V(G2)-F2)))UM’ N((V(GL)-C)xF2))IM’ N((V
M B Cln X P = o i (GL)-C)x(V(G2)  -F2)))). Since  CxF2,

If we remove the constraint that different node§&*(V(G2)-F2), (V(G1)-C)xF2 and (V(G1)-C)
in V(G1)-C must match different nodes in*(V(G2)-F2) are mutually exclusive with each
V(G2)-F2, each node in V(G1)-C will have max +other, we have:

1 choices include max nodes in V(G2)-F2 and an score(M’)= score(M"(CxF2))+score(M"(C
empty match. The number of different relaxed *(V(G2)-F2)))+score(MN((V(G1)-C)x
matching is then changed to (max+1) min which is F2))+score(M ((V(G1)-C)x(V(G2)-F2)))

an upper bound of |M]. Since M’[F1]=F2 and M’[C-Fl]=, we have

(2) We only need to prove that M satisfies thé'[C]=M’[F1] UM’'[C-F1]=F2, and thus M"(C
two conditions of M. For the first condition, x(V(G2)-F2))=. Since M'-1[F2]=F1 and FLC,
obviously, MNY(F1xF2)=M1(F1xF2). For the we have MN((V(G1)-C)xF2) =
second condition, the pa@-F1 is the nodes in C e also have:
that are not matched in M, so M[C-F1}.=As a M’ N(CxF2)= M'N(((C-F1)UF1)xF2)

result, MI((C-F1)xV(G2)) =. = (M'N(C-FL)xF2))J(M' N(F1xF2))
(3) We need show that W) satisfies the two = M'N(F1xF2)

conditions of\M. The last equation is due to M((C-F1)xF2) =
— For the first condition, we have: because M’[C-Fl]= 2. Since MN(F1xF2)
M*(C)N(F1xF2) =MN(F1xF2), we can derive:
= ((MN(F1xF2))J Mby\(F1xF2) score(M’) = score(MN(F1xF2)) +score(M"
= (MN(F1xF2))U (M (F1xF2)) ((V(Gl) C)x(V(G2)-F2)))
Since Mb only includes nodes in V(G1)-C a = score(M(F1xF2)) + scorell, )

V(G2)-F2,wehave MD(F1xF2) =.As a result, .
M*(C)N(F1xF2)=M"(F1xF2). We only need to prove scomd() = scorg(M, ).
_ For the second condition. we have: Since V(G1)-C is a independent set which only
M*(C)N((C-F1)xV(G2)) ’ have edges with C and C is the excluded part of the

= ((MN(F1xF2))U Mb)N((C-F1)xV(G2)) matching M ,we can derive that
_ score(MN((V(G1)-C)x (V(G2)-F2))) only

(MN(F1xF2)N((C-F1)xV(G2)))J(MbN((C-F1)x consists of the contributions of the edges

V(G2))) (uv)€E(G1) such that & and = V(G1)-C.
Moreover, we From the construction of Gb, the contribution for

(MN(F1xF2)N((C-F1)xV(G2)) = because each \&V(G1)-C in M’ is just the weight (v, M’[V])

MN((C-FL)xV(G2)) = is already proved in (2) " the bipartite graph Gb. .
This implies scorelfl,)) = scorg(M,).

and M ((C-F1)xV(G2)) = due to the fact that ) ) )
For (c), it can be easily derived from (b) because

Mb does not contain any nodes in C-F1. Thus, we
have M(C)N((C- Fl)XV(éz)) = (2C))) eMand Mb = M(C) N ((V(G1)-C)x(V(G2)
. -F

(4) For any matching M=M, we define a Since Mb is the maximum weight bipartite

matching M, as M, =M'N . .
(V(G1)-C)x(V(G2)-F2)). We use scodlb) to matching of Gb, we have costb(l\/li_a)costb(l\/lb).

denote the total weight for the bipartite matchingdence, we have:
Mb of the bipartite graph Gb. We claim: (&), isa  Score(M(C)) =scorg(Mb) +score(M(F1xF2))
bipartite matching of Gb; (b) scordq, ) = =SCOrg(M,)+score(M1 (F1xF2))= score(M)

scorg( M, )+score(MI(F1xF2)); (c) score(MC)) As a result, M(C) is the optimal solution in M.

The theorem holds.
= scorg(Mb)+score(M1(F1xF2)). Theorem 1 shows that the size of M is

For (a), it is obvious because of two reasons. (:Ie&ponennally large. Both M and NC) are
M, only contains the nodes in V(G1)-C andglements in M, and KC) is the optimal matching
V(GZ) F2, which is exactly the set of nodes in Gbfor all matching in M. It implies that MC) is the
(2)Any edge inM, is also an edge of Gb since Gbbest among a large number of matching in M and
is a complete bipartite graph. score(M(C)) > score(M). For two graphs with
2,000 nodes each, the number of nodes in a vertex
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cover can be assumed as 1,000 (50%) reasonabtyumber of different minimum vertex covers. Thus,
M*(C) is the best among a factorial of 1,000 (1,000) minimal vertex cover gives the mismatched nodes

possible matching. in a minimum vertex cover more chances to be
refined.
4.3 Randomly Refinement Excluding C-F1 Algorithm 2 select-random-cover (G)

If M itself is an optimal matching in M, or the Require: agraph G;
selected vertex cover C includes most nodes in ¢ Ensure: a randomly selected minimal cover of G;
that are not well matched, it is possible tha{®) 1: L «shufied nodes in V (G); C «2;
cannot improve M. As an example, suppose  2:foralluel do
={ull, ul2, ul3}, in Example 1, then the new 3:if [](u,v)€E(G), s.t. \IC then C—C U{u};
bipartite graph Gb is the one shown in Figure 3(d 4: for all u€ C do
In other words, using the maximum weightec s5: jf C—{u} is a vertex cover of G then <C
bipartite matching of Gb, the matching *(@) —{u};
might be the same with M. The reason is that tt g return C:;
mismatched nodes are excluded by the vertex coverThe approach to randomly select a minimal

C to refine. We give an approach based on twgertex cover of graph G is shown in Algorithm5.
strategies to solve such a problem. (1) Making irst, in linel, we shuffle all nodes in the gramtd
smaller, such that more mismatched nodes can Bt them into a list L, such that any permutatién o
included and thus can be used to refine. (3)(G) has the same probability in L. In lines 2-2 w
Iteratively refining the current matching usingfing a vertex cover of G by adding node in L one by
different vertex covers, such that every mismatcheghe. For any node to be added, we add it into the
node will have a chance to be included to refingertex cover if and only if it contributes at leaste
The first strategy is based on the following Lemmaedge to the currently covered edges (line 3). This
Lemma 1 For any two vertex covers C1 and CZyperation can be implemented as follows. For every
of G1, if Cl1< C2, then score(MCl)) > node in the graph, we maintain its number of
score(M(C2)). uncovered edges, which is initially set to be the
Proof 2 SupposeM(C1) and M(C2) are the degree of the corresponding node. Every time
matching spaces generated by C1 and CBefore we add a new node into the cover, we first
respectively. We use F1(C1), F1(C2), F2(C1), angheck its number of uncovered edges. If it is 0, we
F2(C2) to denote F1 generated by C1, F1 generatekip the node, and continue to add the next ore in
by C2, F2 generated by C1, and F2 generated Iptherwise, we add the node into the cover, and
C2, respectively. Since we have F1(CG1)F1(C2) traverse its adjacent nodes in the graph. For each
and F2(C1)S F2(C2), we need shom(C2) < adjacent node, we decrease its number of uncovered

M(C1). For any MEM(C2), we have: edges by 1. In such a way, the total complexity for
M’ N(F1(C2)xF2(C2))=M(F1(C2)xF2(C2)), line 2-3 is O(|E(G)|), since every edge in G is
M’ N((C2-F1(C2))xV(G2))= . Since Visited at most once. Lines 4-5 make the current

F1(C1)xF2(CLE F1(C2)xF2(C2), we derive: M vertex cover minimal by removing those useless
(Fl(Cl)XFZ(Cl)):I\m(Fl(Cl)XFé(Cl)) We. also Nodes, such that the removal of such nodes does not

have C1-F1(C1¥ C2-F1(C2), which yields: M) influence any edge currently covered. The
ollowing lemma shows that, for any minimal cover
((C1-F1(C))xV(G2))= 2 ThL;s we have. MeE following | n hat, f inimal

: ) C of a graph G, there are considerable number of
M(C1), that is,M(C2)=M(C1). Since M(C1) and \yays for Algorithm 2 to generate C.

M*(C2) are the optimal solutions iM(C1) and | emma 2 For any minimal vertex cover C of
M(C2) respectively, we have score{(@1l)> graph G, there are at least |C|'x|V(G)-C|!

score(M(C2)). permutations of V(G),such that Algorithm 2
In order to make C small, a straight forward wayenerates C.

is to find a minimum vertex cover of G1. This proof 3 We construct the |C|!x|V(G)-C|!

method is not practical for two reasons. (1) Figdinpermutations as follows. For each permutation, we
a minimum vertex cover of a graph is NP-hard. (2)ut C in the front in any order followed by V(G)-C
In a minimum vertex cover, the mismatched nodeg any order. The number of such permutations is
do not have a chance to be included to refine. Te'x|V(G)-C|l. Now we prove for any such
avoid these, we use a minimal vertex cover inSteaﬁermutation, Algorithm 2 can generate C. Since C
because (1) a minimal vertex cover is easy t0 §€ minimal, in the first |C| loops of lines 2-3 of
found and (2) the number of different minimalajgorithms, the conditions in line 3 are all saitisf.
vertex covers for a graph is much larger than thgnd in the last [V(G)-C| loops of lines 2-3, the
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conditions in line 3 are all unsatisfied becausis C Since X is a constant, the total time complexity fo
already a vertex cover of G. So after the loop islgorithm 4 is O(m - §).

lines 2-3, C is generated. Since C is already Theorem 2 shows an upper bound of the time
minimal, the loop in lines 4-5 will eliminate nocomplexity for Algorithm 4. In practice, the

node. Thus, Algorithm 2 can generate C. processing time for the algorithm is much smaller
Algorithm 3 refine (G1, G2, M) than the upper bound because the initial matching
Require: two graphs G1 and G2, and th# has already matched a lot of edges. In the case
matching M; when m and n are large, Algorithm 4 can be very
Ensure: a refined matching M; slow. We discuss two approaches to make
1: while M is updated or it is the first iteratidoe  Algorithm6 faster, with possible loss of matched
2:fori=1to X do edges. The goal is the same as before to match as
3: G «random selection between G1 and G2; many edges as possible. The first approach is to
4: C«select-random-cover (G); stop the iteration when the algorithm converges
5: compute M(C); slowly, that is, no larger thahnew matched edges
6: if score(M(C)) > score(M) then M— M*(C); are found in a certain iteration. In such awayjrhe
7: return M; part in the time complexity can be largely reduced.

The main refine approach is an iterativeThe second approach is to enlarge the size of the
algorithm shown in Algorithm 3. We iteratively vertex cover, for example, adding some nodes with
update the current matching until the matching ithe minimum number of unmatched edges into the
not improved in a certain iteration. In each itenat current vertex cover. The bipartite matching isyonl
(lines 2-6), we try X times to find a new randontonducted on the nodes that are not in the vertex
minimal vertex cover C (line 4), generate theover. If the size of the vertex cover increashs, t
matching M(C) using the method introduced abovenumber of nodes used in the bipartite matching
(line 5), and update the current matching if(®) is decreases, thus the time used for matching nodes
a better matching (line 6). Here, X is a constant) decreases. In such a way, the n3 part in the time
in order to avoid selecting a bad cover to tern@natcomplexity can be reduced.
the whole process. In our experiments, when X =5
and X = 10 over 92 and 99% of the nodes have 44 Randomly Refinement Including C-F1
chance to be included to refine. We use X = 5. Note In this section, we show that fC) can be
that in line 3, we choose C to be a vertex cover dfirther improved. Recall that in our previous
either G1 or G2 with the same probability toapproach to compute ¥C), the nodes in C-F1 of
increase the randomness. G1 are excluded to refine. In order to refine the

Algorithm 4 refine (G1, G2, M) nodes in C-F1, we build a new weighted bipartite

Require: two graphs G1 and G2, and thgraphG, as follows. On one sidés, includes all

matching M; nodes in V(G1)-F1, and on the other sid,

Ensure: a refined matching M; includes all nodes in V(G2)-F2. For any nodesv

1: while M is updated or it is the first iteratioio .
P = A Xpdo V(G1)-F1 and node &V(G2)-F2, there is an edge

3: G —random selection between G1[P1] and!V)SE G, ) with weight defined in Eq. (6).

G2[P2]; Suppose the maximum weighted bipartite matching
4: F «<select-random-cover (3; of G is M;, the new matching M*(F1) is defined as
5: compute M*(F); follows.

6: if score(M*(F)) > score(M) then M-~ M*(F); M*(F1)=(MN(F1xF2))UM; (3)
7: return M;

We now define a matching spat#*. For any
. S * matching M’ between graphs G1 and G2,<1*
is O(m-r), for m = min{|E(G1)|, [E(G2)[} and n = if and only if it satisfies the following two
maX{|V(Gl)|, |V(GZ)|} conditions.

Proof 4 Algorithm 4 is the main refinement. The (1) M'N(FLxF2)=M(F1xF2)

while loop in line 1 will repeat for at most m tisie (2)FLU(V(G1)-P1-M™{V(G2)-P2]) is a vertex
because the optimal solution can match at most ver of G1

edges and in each loop, the number of edges for t ®rheorem 3 MC M* and suppose N is the

latest solution will be increased for at least . | . . ) .
optimal solution among all matching in M we

each loop, the dominant part is finding th .
maximum weight bipartite matching using th:fna“/e score(M*(F1))score(My)>score(M(C)).

Hungarian algorithm which can be done in (n

Theorem 2 The time complexity of Algorithm 4
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Proof 5 For VM eM, we have have EC—-(CNP1),which contradicts  with
M’ N(F1xF2)=M1(F1xF2) and M’[C-F1]=2. The UEV(G1[P1]). Thus, CIP1 is a vertex cover of

first condition is the same as the first conditimh G1[P1]. -
M*. Since M’[C- F1]=2, We then prove that if & is a vertex cover of

we have (C-FT)M' {V(G2) - P2]=2. We also G1[P1], then there exists a vertex cover C of G1

have (GF1)UM™ [V(G2)-P2] < V(G1)-P1, su_ch that ¢, < C. We only need to prove that
. 1 C=CP1U(V(G1)-P1) is a vertex cover of G1. For

accordingly, C-FLE V(G1)-P1-M"V(G2)-P2], any (UVEE(GL), if UEP1 and & P1, (uv) is
and thus C FlU(V(Gl)—Pl—M”l [V(G2)-P2]).  covered by C because CP1 is a vertex cover of
Since C is a vertex cover of G1,G1[P1]. Otherwise, without loss of generality, we
F1U(V(G1)-P1-M"YV(G2)-P2]) is a vertex cover suppose WP1, then &V(G1)-PI=C, so (u,v) is
of G1, hence we have MM*. Thus MEM* holds. 5150 covered by C. As a result, all edged in E(G1)

We now prove that score(M*(F1)) score(My). can be covered by C, thus C is a vertex cover of G1
Suppose C*=FU(V(G1)-P1- My [V(G2)- P2]), Based on Lemma 1, we can derive that the vertex
we know C* is a vertex cover of G1. Since’M cover of G(P1), F1, is enough to generate M*(F1).
[V(G1)-P1] S V(G2) - P2, we have: Our new refinement algorithm is shown in

M, [C*-F1]= Algorithm 4 which is the r_efine used !n Algorithm

M, [V(G1)-P1-M,, [V(G2)-P2]]=2.Thus, we 2.We use X = 5. Comparing to Algorithm 3, there

h M. €M usi c* which impli are two major modifications. The first is about the
ave My using vertex cover C*, which implies ¢ computing in lines 3—4, instead of computing
(see the proof of Theorem 4):

the cover of G1 (or G2 if we select G2 as the first
score(My) = score(MI(F1xF2))+scoreb(Mb) graph in line 3), we only compute the vertex cover
where Mb is the maximum weight bipartiteof G1[P1] (or G2[P2]). For the second modification,
matching of Gb generated by C*. We also havgstead of computing KC), we compute our new
score(M*(F1)) >score(M N (F1 x F2)) + matching M*(F).
scoreb{,). Since GIt G, , we have:
score(M*(F1)pscore(M(F1xF2)) + scorel,)
>score(M1(F1xF2))+scorgMb)= score(My). The initial matching M is computed using the
We last prove score(ly)>score(M(C)). This heuristics that match the anchors first followed by
can be derived directly from MM* since M, is Mmatching the nodes around the anchors in a top-
optimal in M* and M(C) is optimal in M. down fashion. The heuristics used cannot guarant_ee
Theorem 3 implies that the new space M* idhat all the anchors are correctly matched. In this

larger than the space M in refinement excludin§@Per, We propose a new approach to refine the
C-F1, and the new matching M*(F1) is no worsdnitial matching M. It is important to note thatrou
than the optimal matching in M*. This implies thatStrategy is to refine the initial matching and & to
score(M*(F1))> score(M(C)), where M(C) is the find a completely new matphmg. By refinement, we
optimal matching in M. It is worth noticing thateth Mean the following two things. First, we are not to
cover C of Gl does not participate in theeXplore all possibilities without a goal when we
construction of M*(F1) directly. The matching 'éfiné @ maiching. In other words, we refine a
M*(F1) can be computed as long as F1 is generat&@2iching M to a better one which is most likely to
and F1 can be computed easily by the followin§XISt and can be identified. Second, we consider th
lemma. efficiency when refining a matching. In our
Lemma 4 Suppose G1[P1] is the subgraph of Gpproach, each time we focus on a subset of nodes
induced by P1. If C is a vertex cover of G1, thef refine by excluding a subset of nodes and
CNP1 is a vertex cover of G1[P1], and if CP1 is dncluding a subset of nodes. The set of nodes to be
vertex cover of G1[P1], then there exists a vertegXCluded from refinement at one time is neither
cover C of G1 such that.g= C. large nor small. Also, we give every node in the
Proof 6 We first prove that if C is a vertex Covergraphs a chance to be refined.
of G1, then CP1 is a vertex cover of G1[p1]. N this paper, we propose a new approach to
Suppoyse OP1 is not a vertex cover of G1[P1] refine the initial matching. The novelty of our
then there exists an edge (\&H(G1[P1]) such that refinement is as f°”°W_S- First, we _reflne a m?‘“ﬁh'
uldCNP1 and VICNP1. Note that C is a vertex Mto a bet_ter one, which is most likely to gmstjan
cover of G1,wehave @C or v&C. Without loss of & be identified. -Second, we consider the

generality, we supposea€. Since (LJCNP1, we eff|_(:|en(_:y, and focus on a subset of nodes to eefin
while giving every node in the graphs a chance to

5. CONCLUSION
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be

refined. We show the optimality of oufll]

refinement. We also show how to randomly refine

matching with different

combinations. Our

refinement can improve the matching quality with
small overhead for both unlabeled and labeled

graphs.
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