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ABSTRACT 

 
How to match two large graphs by maximizing the number of matched edges, which is known as maximum 
common subgraph matching and is NP-hard.  We give heuristics to select a small number of important 
anchors using a new similarity score, which measures how two nodes in two different graphs are similar to 
be matched by taking both global and local information of nodes into consideration. And then to refine a 
matching we focus on a subset of nodes to refine while giving every node in the graphs a chance to be 
refined. We show the optimality of our refinement. We also show how to randomly refine matching with 
different combinations. Our refinement can improve the matching quality with small overhead for both 
unlabeled and labeled graphs. The approach that can efficiently match two large graphs over thousands of 
nodes with high matching quality is proved in theorized. 
 

Keywords: Approximate Matching, Refinement Matching, Randomly Refinement 
 

1. INTRODUCTION  
 
Graph proliferates in a wide variety of 

applications, including social networks in psycho-
sociology, attributed graphs in image processing, 
food chains in ecology, electrical circuits in 
electricity, road networks in transport, protein 
interaction networks in biology, topological 
networks on the Web. Graph processing has 
attracted great attention from both research and 
industrial communities. Graph matching is an 
important type of graph processing, which aims at 
finding correspondences between the nodes/edges 
of two graphs to ensure that some substructures in 
one graph are mapped to similar substructures in 
the other. Graph matching plays an essential role in 
a large number of concrete applications. 

The graph matching literature is extensive, and 
many different types of approaches have been 
proposed, which mainly focus on approximations 
and heuristics for the quadratic assignment 
problem. An incomplete list includes spectral 
methods, relaxation labeling and probabilistic 
approaches, semi-definite relaxations, replication 
equations, tree search, graduated assignment, and 
RKHS methods [3]. A number of algorithms have 
been proposed for graph matching including exact 
matching [1] and approximate matching [17]. The 
exact approaches are able to find the optimal 
matching at the cost of exponential running time, 

while the approximate approaches are much more 
efficient but can get poor matching results. More 
importantly, most of them can only handle small 
graphs with tens to hundreds of nodes. As an 
indication, exactly matching two undirected graphs 
with 30 nodes may take time about 100,000s. It is 
important to note that real-world networks 
nowadays can be very large. The existing 
approaches cannot efficiently match graphs even 
with thousands of nodes with high quality.  

In this paper, we study the problem of matching 
two large graphs, which is formulated as follows. 
Given two graphs G1 and G2, we find a one-to-one 
matching between the nodes in G1 and G2 such that 
the number of the matched edges is maximized. The 
optimal solution to the problem corresponds to the 
maximum common subgraph (MCS) between G1 
and G2, which is an NP-hard problem, and has been 
studied in decades. It is known to be very difficult 
to find a high-quality approximate matching 
efficiently even for small graphs. In order to meet 
the needs of handling large graphs for graph 
matching and analysis, we propose a novel 
approximate solution with polynomial time 
complexity while still attaining high matching 
quality. The rest of the paper is organized as 
follows. Section 2 discusses some related work. 
Section 3 gives the problem statement. Section 4 
gives the approach and its prove. Section 5 
concludes this paper. 
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2. RELATED WORKS 
 
We discuss exact graph matching and 

approximate graph matching, according to whether 
(sub)graph isomorphism problem or maximum 
common subgraph problem is involved. For exact 
graph matching problems most of the algorithms 
use backtracking (refer to Ullmann’s algorithm for 
subgraph and graph isomorphism [1]). Existing 
solutions on finding the maximum common 
subgraph mainly focus on the maximum common 
node induced subgraph, and most techniques can 
hardly be used for the maximum common edge 
induced subgraph. Among them, [4] proposes a 
backtracking search method for finding the 
maximum common subgraph. An improved 
backtracking algorithm is given in [4] with time 
complexity O(mn+1·n), where n and m are the 
numbers of vertices of G1 and G2, respectively. [1] 
propose an algorithm that combines backtracking 
and vertex cover enumeration to solve the 
maximum common node induced subgraph 
problem. There are also some other studies to 
calculate the maximum common node induced 
subgraph by finding the maximum clique in the 
association graph [8,]. The complexity of the 
maximum clique approach is no better than 
backtracking.  For approximate graph matching, 
there are three categories: propagation-based 
method, spectral-based method, and optimization-
based method.  

The propagation-based method is mainly based 
on the intuition that two nodes are similar if their 
respective neighborhoods are similar. In [2], a 
similarity flooding approach is proposed, which 
starts from string-based comparison of the vertices 
labels to obtain an initial alignment between nodes 
of two graphs and refines it by an iterative fix-point 
computation. [8] construct a similarity measure 
between any two nodes in any two graphs based on 
Kleinberg’s hub and authority idea of HITS 
algorithm [6]. This procedure will, in general, 
converge to different even and odd limits which 
will depend upon the initial conditions. Recently, 
[18] extends the propagation-based method by 
adding the weight of propagation into the iteration 
process.  

Spectral-based method aims to represent and 
distinguish structural properties of graphs using 
eigenvalues and eigenvectors of graph adjacency 
matrices. It is based on the observation that if two 
graphs are isomorphic, their adjacency matrices will 
have the same eigenvalues and eigenvectors. Since 
the computation of eigenvalues can be solved in 
polynomial time, it is used by a lot of works in 

graph matching [4]. Among these works, [18] uses 
the eigende composition of adjacency matrices of 
the graphs to derive a simple expression of the 
orthogonal matrix that optimizes the objective 
function. [15] propose a solution to the weighted 
isomorphism problem that combines the use of 
eigenvalues/eigenvectors with continuous 
optimization techniques. These two methods are 
only suitable for graphs with the same number of 
nodes. In [6], the authors solve the problem to 
handle graphs with different number of nodes, 
using the Laplacian eigenmaps scheme to perform a 
generalized eigende composition of the Laplacian 
matrix. [10] propose a method of projecting vertex 
into eigen-subspace for graph matching, which is 
used for inexact many-to-many graph matching 
other than one-to-onematching, and in [12] extend 
Umeyama’s work to match two graphs of different 
sizes by choosing the largest k-eigenvalues as the 
projection space. [17] improve the matching result 
by performing eigende composition on the 
Laplacian matrix since it is positive and 
semidefinite. [14] is used to embed the nodes of the 
graph into vector-space based on the graph-spectral 
method, and the correspondence matrix between the 
embedded points of two graphs is computed by a 
variant of the Scott and Longuet-Higgins algorithm. 

The optimization-based method aims to model 
graph matching as an optimization problem and 
solve it. The representative algorithms include 
PATH and GA [5]. In PATH, the graph matching 
problem is formulated as a convex-concave 
programming problem, and is approximately 
solved. It starts from the convex relaxation and then 
iteratively solves the convex-concave programming 
problem by gradually increasing the weight of the 
concave relaxation and following the path of 
solutions thus created. GA is a gradient method 
based approach, which starts from an initial 
solution and iteratively chooses a matching in the 
direction of a gradient objective function. 

Aside from the propagation-/spectral-based 
methods that compute the similarity score by 
iterations of random walks or spectral 
decomposition of adjacency matrix, [2] propose a 
vector-based node signature that can be computed 
straightforwardly from the adjacency matrix. Here, 
every node is associated with a vector containing its 
node degree and the incident edge weights. The 
similarity between two nodes is computed based on 
their signatures, and the graph matching problem is 
reduced to a bipartite graph matching problem. A 
survey can be found in [6]. 
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3. PROBLEM STATEMENT 
 
We first focus on undirected and unlabeled 

graphs, since the most difficult part for graph 
matching is the structural matching without any 
assistance of labels. We will discuss how to handle 
labeled graphs later in this paper. For a graph G(V, 
E), we use V(G) to denote the set of nodes and 
E(G) to denote the set of edges. 

Definition 1:  Graph/Subgraph Isomorphism. 
Graph G1 is isomorphic to graph G2, if and only 

if there exists a bijective function f: V(G1)→V(G2) 
such that for any two nodes u1∈V(G1) and u2∈
V(G1), (u1, u2)∈E(G1) if and only if (f (u1), f 
(u2))∈E(G2). G1 is subgraph isomorphic to G2, if 
and only if there exists a subgraph G’ of G2 such 
that G1 is isomorphic to G’. 

Definition 2:  Maximum Common Subgraph.  
A graph G is the maximum common subgraph 

(MCS) of two graphs G1 andG2, denoted as 
mcs(G1, G2), if G is a common subgraph of G1 and 
G2, and there is no other common subgraph G’, 
such that G’ is larger than G. 

The MCS of two graphs can be disconnected, and 
there are two kinds of MCSs, namely maximum 
common node induced subgraph (MCSv) and 
maximum common edge induced subgraph 
(MCSe). The former requires the MCS to be the 
node induced subgraph of both G1 and G2, and G’ 
is larger than G iff |V(G’)| > |V(G)|. The latter 
requires the MCS to be the edge induced subgraph 
of both G1 and G2, and G’is larger than G iff 
|E(G’)| >|E(G)|. Figure 1 shows the difference 
between MCSv and MCSe. Figure 1a shows the 
MCSv of G1 and G2, whereas Fig. 1b shows the 
MCSe of G1 and G2. 

  

 (a)                           (b) 
Figure 1 (A) Mcsv And (B) Mcse 

As can be seen from this example, MCSe can 
possibly get more common substructure for the 
given two graphs. In this paper, we adopt MCSe 
since it can possibly get more common substructure 
for the given two graphs, and we use MCS (mcs) to 
denote MCSe. Finding the MCS of two graphs is 
NP-hard. 

Definition 3:  Graph Matching.  
Given two graphs G1 and G2, a matching M 

between G1 and G2 is a set of vertex pairs M 
={(u,v)|u∈V(G1), v∈V(G2)}, such that for any 

two pairs (u1,v1) ∈ M and (u2,v2)∈M, u1≠u2 
and v1≠v2. The optimal matching M of two graphs 
is the one with the largest number of matched 
edges. Finding the optimal matching M is the same 
as finding the MCS. 

Problem Statement: We aim to compute the 
optimal matching M for two given graphs G1 and 
G2. For a given matching M, we evaluate its quality 
by computing score(M) as follows. 

score(M) = 1, 2 , 2( 1, 1) ( 2, 2)

2

u u vi vu v M u v M
e e

∈ ∈
×∑ ∑  (1) 

where eu,v = 1 if there is an edge between u and v, 
and eu,v = 0, otherwise. Obviously, finding the 
optimal matching M is actually to find a matching 
with the maximum score(M), and the maximum 
score(M) is |E(mcs(G1, G2))|. 

It is known that the MCS problem is NP-hard, 
and it is also known that it is very difficult to obtain 
a tight, or even useful, approximation bound, 
because finding a maximum common subgraph of 
two graphs is equivalent to finding a maximum 
clique in their association graph, which cannot be 
approximated with ratio nεfor any constant ε> 0 
unless P=NP. For the quality of the MCS result, [16] 
give a bound of O(n2) based on the number of 
mismatched edges, where n is the size of the larger 
graph. This means that it may mismatch all the 
edges. [19] provide an upper bound for the size of 
the MCS, which is computed by sorting the degree 
sequences of two graphs separately followed by 
summarizing the corresponding smaller degrees. 
The bound is almost the smaller graph, without 
considering any structural information of the two 
graphs, which does not provide much information. 
For the time complexity, in [15], it is O(n6 L), 
where n is the size of the graph and L is the size of 
an LP model formulated for graph matching (at 
least n). It cannot handle graphs with more than 100 
nodes. 

4. REFINEMENT MATCHING APPROACH 
 
We propose a novel approach to solve the graph 

matching problem. We construct the initial 
matching M by identifying anchors of two graphs 
G1 and G2 followed by expanding from the anchors. 
We do so based on a new similarity between nodes 
in the two different graphs, which combines both 
global and local information of nodes. The 
framework of the algorithmis shown in Algorithm 
1. 
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Algorithm 1:  match(G1, G2) 
Require: two graphs, G1 and G2; 
Ensure: a graph matching between G1 and G2; 
1: A ←anchor-selection (G1, G2);  
2: M ←anchor-expansion (G1, G2, A);  
3: M ← refine(G1, G2, M);  
4: return M; 
In this paper, we propose a new approach to 

refine the initial matching. The novelty of our 
refinement is as follows. First, we refine a matching 
M to a better one, which is most likely to exist and 
can be identified. Second, we consider the 
efficiency, and focus on a subset of nodes to refine 
while giving every node in the graphs a chance to 
be refined. We show the optimality of our 
refinement. We also show how to randomly refine 
matching with different combinations. Our 
refinement can improve the matching quality with 
small overhead for both unlabeled and labeled 
graphs. We conducted extensive testing using real 
and synthetic datasets, and confirmed the quality 
and efficiency of our approach. The average ratio of 
our approximate matching to the exact matching is 
above 90%, while the computational cost is less 
than 1% of the state-of-the-art exact algorithms. 
This is a big step compared to all the approximate 
algorithms to match large graphs in the literature. 

The initial matching M is computed using the 
heuristics that match the anchors first followed by 
matching the nodes around the anchors in a top-
down fashion. The heuristics used cannot guarantee 
that all the anchors are correctly matched. In this 
section, we propose a new approach to refine the 
initial matching M. It is important to note that our 
strategy is to refine the initial matching and is not to 
find a completely new matching. By refinement, we 
mean the following two things. First, we are not to 
explore all possibilities without a goal when we 
refine a matching. In other words, we refine a 
matching M to a better one which is most likely to 
exist and can be identified. Second, we consider the 
efficiency when refining a matching. In our 
approach, each time we focus on a subset of nodes 
to refine by excluding a subset of nodes and 
including a subset of nodes. The set of nodes to be 
excluded from refinement at one time is neither 
large nor small. Also, we give every node in the 
graphs a chance to be refined. 

P1 F1 C

G1

    

P2 F2

G2

 

Figure 2 Vertex Cover Refinement 

4.1 Vertex Cover Based Refinement 
We use a vertex cover C to refine a matching M. 

A vertex cover C of a graph G is a subset of nodes 
in V(G), that is, C⊆V(G), such that for every edge 
(u,v)∈E(G),we have u∈C or v∈C. A minimum 
vertex cover of graph G is a vertex cover with the 
minimum number of nodes. 

A vertex cover C of G is a minimal vertex cover, 
if there does not exist a vertex cover C’ of G such 
that C’⊂C. 

A set of nodes C is a vertex cover of graph G if 
and only if its complement I =V(G)−C is an 
independent set of G. Here, an independent set I of 
G is a subset of nodes in V(G), that is, I⊆V(G), 
such that for any u∈I and v∈I,  (u,v)∉E(G). 

Below, we introduce some notations we use to 
refine a matching M based on vertex cover. 
Suppose we match two graphs G1 and G2, and M is 
a matching found. Let P1 and P2 be the matched 
nodes in G1 and G2, respectively, using the 
matching M. For any (u,v)∈M,wehave u∈P1 and 
v∈ P2. Given a cover C of G1, we use F1 to denote 
C∩P1. 

For any subset of nodes S⊆P1, we use M[S] to 
denote the corresponding matched part of S in P2 
using matching M. For any subset of nodes S⊆P2, 
we use M−1[S] to denote the matched part of S in 
P1 using matching M. Let F2=M[F1]. The 
relationships among G1,G2,P1,P2,F1,F2 and C are 
illustrated in Figure. 2 

The vertex cover structure plays an important 
role when wematch two graphs G1 and G2. It 
allows us to focus on one graphG1, with the 
assistance of its vertex cover. The intuition is as 
follows. By definition, a vertex cover of G1 is the 
set of nodes that covers all possible edges in G1. 
This implies that a node in the vertex cover can 
possibly have many edges to cover (or possibly 
have many matched edges with another graph G2). 
A vertex cover C of G1 divides V(G1) into three 
parts, F1= C∩ P1, C−F1 and V(G1)−C. The 
implications are given below. The nodes in F1 are 
most likely to lead to good matches, based on the 
definition of vertex cover. We exclude nodes in F1 
to refine. We include nodes in V(G1)−C to refine, 
because the complement of the vertex cover 
V(G1)−C is an independent set. Such a property 
makes it possible to apply some efficient 
polynomial algorithms for optimizing the matching. 
For C−F1, we will first discuss how to refine by 
excluding nodes in C−F1, and then discuss how to 
include nodes C−F1 to refine. 
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4.2 Refinement And Its Optimality 
Given two graphs G1 and G2, a matching M, and 

a vertex cover C of G1, we give a refinement M+(C) 
of M, and show its optimality below. 

First, we show how to obtain a refinement M+(C) 
of M. We build a complete weighted bipartite graph 
Gb. On one side, Gb includes the nodes in 
V(G1)−C, and on the other side, Gb includes the 
nodes in V(G2)−F2. For any node u∈V(G1)−C and 
node v∈V(G2)−F2, we add an edge (u,v) in E(Gb), 
and the weight of the edge (u,v) is defined as 
follows. 

w(u,v) =|M[N(u)∩F1]∩(N(v)∩F2)|          (2)  
where N(u) and N(v) are the sets of immediate 

neighbors of u and v in graphs G1 and G2, 
respectively. Intuitively, w(u,v) is the contribution 
of the matched edges if we match u in graphG1 
with v in graph G2. Next, we find the maximum 
weighted bipartite matching Mb of Gb using the 
Hungarian algorithm, such that the total weight of 
edges in Mb is maximized. We obtain our new 
matching M+(C) as follows. 

M+(C) = (M∩(F1×F2))∪Mb     (3) 
where F1×F2 is the cartesian product of F1 and 

F2. It includes all pairs (u,v) such that u∈F1 and v
∈F2. 

Example 1 To make it simpler, let’s only 
consider part of the matching in the initial 
matching. Suppose the first graph in figure 3(a) is 
the partial graph induced by nodes {u6, u8, u11, 
u12, u13} in G1, and the second graph in figure 3(b) 
is the partial graph induced by nodes 
{v6,v8,v11,v12,v13} in G2. In the initial matching 
M generated in Example 4, only three edges are 
matched, which is showed as the bold edges in 
figure 3(a)(b). We have P1={u6, u8, u11, u12, u13} 
and P2={v6,v8,v11,v12,v13}. Suppose C={u6, u8, 
u12},we have F1=C ∩ P1={u6, u8, u12} and 
F2=M[F1]={v6,v8,v12}. In the bipartite graph Gb, 
the left part consists of the nodes in V(G1)−C, 
which is {u11, u13}, and the right part consists of 
the nodes in V(G2)−F2, which is {v11,v13}. The 
graph Gb is shown in figure 3(c). For the edge 
(u11,v11), its weight is 2 because if we match node 
u11 with node v11, 2 edges will be matched in the 
original graphs, that is, edge (u11, u8) is matched to 
edge (v11,v8), and edge (u11, u12) is matched to 
edge (v11,v12). The maximum weighted bipartite 
matching of Gb is Mb ={(u11,v11), (u13,v13)}. 
Modifying the result in Example 1 using the new 
matching, we can improve the number of matched 
edges from 18 to 20. Similarly, we can refine 
matching pairs {(u2,v7), (u7,v2)} to be {(u2,v2), 
(u7,v7)} such that it will improve the number of 

matched edges to 21, which is the optimal value in 
this example. 

u6

u11

u13u12

u8

 

              (a)                         (b) 

       

(c)                         (d) 
Figure 3 Vertex Cover Refinement Example. 

 (A) G1, (B) G2, (C) C ={U6, U8, U12}, 
 (D) C ={U11, U12, U13} 

Second, we give the optimality of M+(C) over a 
matching space M. The space M is a set of 
matching between nodes in G1 and G2, such that 
for any matching M’, M’∈M if and only if M’∩
(F1×F2)=M∩(F1×F2) and M’((C−F1)×V(G2)) =
∅ . For the matching M, a matching M’∈M, if and 
only if the matching for nodes in F1 is not changed 
and the matching for nodes in C−F1 is ∅ . The 
second condition can also be expressed as 
M’[C−F1]=∅ . 

Theorem 1 Suppose min = min{|V(G1)|−|C|, 
|V(G2)|−|F2|} and max = max{|V(G1)|−|C|, 
|V(G2)|−|F2|}, then we have: 

(1) |M|=
min

0

min! max!
 and 

! (min )! (max )!i i i i=

×
× − × −∑  

minmax!
| | (max 1)

(max-min)!
M≤ ≤ +  

(2) M ∈M 
(3) M+(C) ∈M and 
(4) M+(C) is optimal in M 
Proof 1 We prove it step by step. 
(1) To make things simple and without loss of 

generality, we assume |V(G1)|−|C|≤|V(G2)|−|F2|, 
then min =|V(G1)|−|C| and max =|V(G2)|−|F2|. 
Since V(G1)−C and V(G2)− F2 are the included 
parts of G1 and G2, respectively, we only consider 
the number of different matching between V(G1) − 
C and V(G2) − F2. Suppose in V(G1)−C, there are i 
nodes that participate in the matching in M, there 
are min

iC  different selections of the i nodes, and for 
each selection, there are max

iP  different matching 
between the i nodes and nodes in V(G2)−F2. There 
are totally min

iC  × max
iP  different matching for a 

certain i . Since i ∈[0, min], the total number of 
different matching is  
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|M|=
min

min max
0

i i

i

C P
=

×∑  
min

0

min! max!

! (min )! (max )!i i i i=

×=
× − × −∑  

When i= min, we have: 

min max

max!
| |

(max-min)!
i iM C P≥ × =  

If we remove the constraint that different nodes 
in V(G1)−C must match different nodes in 
V(G2)−F2, each node in V(G1)−C will have max + 
1 choices include max nodes in V(G2)−F2 and an 
empty match. The number of different relaxed 
matching is then changed to (max+1) min which is 
an upper bound of |M|. 

(2) We only need to prove that M satisfies the 
two conditions of M. For the first condition, 
obviously, M∩(F1×F2)=M∩(F1×F2). For the 
second condition, the part C−F1 is the nodes in C 
that are not matched in M, so M[C−F1] =∅. As a 
result, M∩((C−F1)×V(G2)) =∅. 

(3) We need show that M+(C) satisfies the two 
conditions of M. 

– For the first condition, we have: 
M+(C)∩(F1×F2) 
= ((M ∪∩(F1×F2)) Mb)∩(F1×F2) 
= (M ∪∩(F1×F2)) (Mb∩(F1×F2)) 
Since Mb only includes nodes in V(G1)−C and 

V(G2)−F2,wehave Mb∩(F1×F2) =∅.As a result, 
M+(C)∩(F1×F2)=M∩(F1×F2).  

– For the second condition, we have: 
M+(C)∩((C−F1)×V(G2)) 
= ((M∩(F1×F2))∪ Mb)∩((C−F1)×V(G2)) 
= 

((M∩(F1×F2))∩((C−F1)×V(G2)))∪(Mb∩((C−F1)×
V(G2))) 

Moreover, we have 
(M∩(F1×F2))∩((C−F1)×V(G2)) =∅, because 
M∩((C−F1)×V(G2)) =∅ is already proved in (2) 
and Mb∩((C−F1)×V(G2)) =∅ due to the fact that 
Mb does not contain any nodes in C−F1. Thus, we 
have M+(C)∩((C−F1)×V(G2)) =∅. 

(4) For any matching M’∈M, we define a 
matching '

bM  as '
bM =M’∩ 

((V(G1)−C)×(V(G2)−F2)). We use scoreb(Mb) to 
denote the total weight for the bipartite matching 
Mb of the bipartite graph Gb. We claim: (a) 'bM  is a 

bipartite matching of Gb; (b) score( '
bM ) = 

scoreb(
'
bM )+score(M∩(F1×F2)); (c) score(M+(C)) 

= scoreb(Mb)+score(M∩(F1×F2)). 
For (a), it is obvious because of two reasons. (1) 
'
bM only contains the nodes in V(G1)−C and 

V(G2)−F2, which is exactly the set of nodes in Gb. 
(2)Any edge in '

bM  is also an edge of Gb since Gb 
is a complete bipartite graph. 

For (b), we have:  
score(M’)= score(M’ ∪∩((C (V(G1)−C))×(F2∪ 

(V(G2)−F2))))= score((M’ ∪∩(C×F2)) (M’∩(C 
×(V(G2)−F2)))∪(M’∩((V(G1)−C)×F2))∪(M’∩((V
(G1)−C)×(V(G2) −F2)))). Since C×F2, 
C×(V(G2)−F2), (V(G1)−C)×F2 and (V(G1)−C) 
×(V(G2)−F2) are mutually exclusive with each 
other, we have:  

score(M’)= score(M’∩(C×F2))+score(M’∩(C 
×(V(G2)−F2)))+score(M’∩((V(G1)−C)× 
F2))+score(M’∩ ((V(G1)−C)×(V(G2)−F2))) 
Since M’[F1]=F2 and M’[C−F1]=∅, we have 

M’[C]=M’[F1] ∪M’[C−F1]=F2, and thus M’∩(C 
×(V(G2)−F2))=∅. Since M’−1[F2]=F1 and F1⊆C, 
we have M’∩((V(G1)−C)×F2) =∅. 

We also have:  
M’∩(C×F2)= M’∩(((C ∪−F1) F1)×F2) 
= (M’∩((C−F1)×F2))∪(M’∩(F1×F2)) 
= M’∩(F1×F2) 
The last equation is due to M’∩((C−F1)×F2) =∅ 

because M’[C−F1]= ∅. Since M’∩(F1×F2) 
=M∩(F1×F2), we can derive: 

score(M’) = score(M’∩(F1×F2)) +score(M’∩ 
((V(G1)−C)×(V(G2)−F2))) 

= score(M∩(F1×F2)) + score( '
bM ) 

We only need to prove score('bM ) = scoreb(
'
bM ). 

Since V(G1)−C is a independent set which only 
have edges with C and C is the excluded part of the 
matching M’ ,we can derive that 
score(M’∩((V(G1)−C)× (V(G2)−F2))) only 
consists of the contributions of the edges 
(u,v)∈E(G1) such that u∈ ∈C and v V(G1)−C. 
From the construction of Gb, the contribution for 
each v∈V(G1)−C in M’ is just the weight (v, M’[v]) 
in the bipartite graph Gb. 

This implies score( '
bM ) = scoreb(

'
bM ). 

For (c), it can be easily derived from (b) because 
M+(C) ∈Mand Mb = M+(C) ∩ ((V(G1)−C)×(V(G2) 
− F2)). 

Since Mb is the maximum weight bipartite 

matching of Gb, we have costb(Mb) ≥ costb( '
bM ). 

Hence, we have: 
score(M+(C)) =scoreb(Mb) +score(M∩(F1×F2)) 

≥scoreb(
'
bM )+score(M∩ (F1×F2))= score(M’) 

As a result, M+(C) is the optimal solution in M. 
The theorem holds.  

Theorem 1 shows that the size of M is 
exponentially large. Both M and M+(C) are 
elements in M, and M+(C) is the optimal matching 
for all matching in M. It implies that M+(C) is the 
best among a large number of matching in M and 
score(M+(C)) ≥ score(M). For two graphs with 
2,000 nodes each, the number of nodes in a vertex 
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cover can be assumed as 1,000 (50%) reasonably. 
M+(C) is the best among a factorial of 1,000 (1,000!) 
possible matching. 

 
4.3 Randomly Refinement Excluding C−F1  

If M itself is an optimal matching in M, or the 
selected vertex cover C includes most nodes in G1 
that are not well matched, it is possible that M+(C) 
cannot improve M. As an example, suppose C 
={u11, u12, u13}, in Example 1, then the new 
bipartite graph Gb is the one shown in Figure 3(d). 
In other words, using the maximum weighted 
bipartite matching of Gb, the matching M+(C) 
might be the same with M. The reason is that the 
mismatched nodes are excluded by the vertex cover 
C to refine. We give an approach based on two 
strategies to solve such a problem. (1) Making C 
smaller, such that more mismatched nodes can be 
included and thus can be used to refine. (2) 
Iteratively refining the current matching using 
different vertex covers, such that every mismatched 
node will have a chance to be included to refine. 
The first strategy is based on the following Lemma. 

Lemma 1 For any two vertex covers C1 and C2 
of G1, if C1 ⊆ C2, then score(M+(C1)) ≥ 
score(M+(C2)). 

Proof 2  Suppose M(C1) and M(C2) are the 
matching spaces generated by C1 and C2, 
respectively. We use F1(C1), F1(C2), F2(C1), and 
F2(C2) to denote F1 generated by C1, F1 generated 
by C2, F2 generated by C1, and F2 generated by 
C2, respectively. Since we have F1(C1) ⊆ F1(C2) 
and F2(C1) ⊆ F2(C2), we need show M(C2) ⊆ 
M(C1). For any M’∈M(C2), we have:  

M’∩(F1(C2)×F2(C2))=M∩(F1(C2)×F2(C2)), 
M’∩((C2−F1(C2))×V(G2))= ∅. Since 
F1(C1)×F2(C1)⊆F1(C2)×F2(C2), we derive: M’∩ 
(F1(C1)×F2(C1))=M∩(F1(C1)×F2(C1)). We also 
have C1−F1(C1)⊆C2−F1(C2), which yields: M’∩ 
((C1−F1(C))×V(G2))= ∅. Thus, we have M’∈ 
M(C1), that is, M(C2)⊆M(C1). Since M+(C1) and 
M+(C2) are the optimal solutions in M(C1) and 
M(C2) respectively, we have score(M+(C1))≥ 
score(M+(C2)). 

In order to make C small, a straight forward way 
is to find a minimum vertex cover of G1. This 
method is not practical for two reasons. (1) Finding 
a minimum vertex cover of a graph is NP-hard. (2) 
In a minimum vertex cover, the mismatched nodes 
do not have a chance to be included to refine. To 
avoid these, we use a minimal vertex cover instead, 
because (1) a minimal vertex cover is easy to be 
found and (2) the number of different minimal 
vertex covers for a graph is much larger than the 

number of different minimum vertex covers. Thus, 
a minimal vertex cover gives the mismatched nodes 
in a minimum vertex cover more chances to be 
refined. 

Algorithm 2  select-random-cover (G) 
Require: agraph G; 
Ensure: a randomly selected minimal cover of G; 
1: L ←shuffled nodes in V (G); C ←∅; 
2: for all u ∈ L do 
3: if ∃  (u,v)∈E(G), s.t. v∉C then C ∪←C {u}; 
4: for all u ∈ C do 
5: if C−{u} is a vertex cover of G then C←C 

−{u}; 
6: return C; 
The approach to randomly select a minimal 

vertex cover of graph G is shown in Algorithm5. 
First, in line1, we shuffle all nodes in the graph and 
put them into a list L, such that any permutation of 
V(G) has the same probability in L. In lines 2–3, we 
find a vertex cover of G by adding node in L one by 
one. For any node to be added, we add it into the 
vertex cover if and only if it contributes at least one 
edge to the currently covered edges (line 3). This 
operation can be implemented as follows. For every 
node in the graph, we maintain its number of 
uncovered edges, which is initially set to be the 
degree of the corresponding node. Every time 
before we add a new node into the cover, we first 
check its number of uncovered edges. If it is 0, we 
skip the node, and continue to add the next one in L. 
Otherwise, we add the node into the cover, and 
traverse its adjacent nodes in the graph. For each 
adjacent node, we decrease its number of uncovered 
edges by 1. In such a way, the total complexity for 
line 2–3 is O(|E(G)|), since every edge in G is 
visited at most once. Lines 4–5 make the current 
vertex cover minimal by removing those useless 
nodes, such that the removal of such nodes does not 
influence any edge currently covered. The 
following lemma shows that, for any minimal cover 
C of a graph G, there are considerable number of 
ways for Algorithm 2 to generate C. 

Lemma 2 For any minimal vertex cover C of 
graph G, there are at least |C|!×|V(G)−C|! 
permutations of V(G),such that Algorithm 2 
generates C. 

Proof 3 We construct the |C|!×|V(G)−C|! 
permutations as follows. For each permutation, we 
put C in the front in any order followed by V(G)−C 
in any order. The number of such permutations is 
|C|!×|V(G)−C|!. Now we prove for any such 
permutation, Algorithm 2 can generate C. Since C 
is minimal, in the first |C| loops of lines 2–3 of 
Algorithm5, the conditions in line 3 are all satisfied, 
and in the last |V(G)−C| loops of lines 2–3, the 
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conditions in line 3 are all unsatisfied because C is 
already a vertex cover of G. So after the loop in 
lines 2-3, C is generated. Since C is already 
minimal, the loop in lines 4–5 will eliminate no 
node. Thus, Algorithm 2 can generate C.  

Algorithm 3  refine (G1, G2, M) 
Require: two graphs G1 and G2, and the 

matching M; 
Ensure: a refined matching M; 
1: while M is updated or it is the first iteration do 
2: for i = 1 to X do 
3: G ←random selection between G1 and G2; 
4: C ←select-random-cover (G); 
5: compute M+(C); 
6: if score(M+(C)) > score(M) then M ← M+(C); 
7: return M; 
The main refine approach is an iterative 

algorithm shown in Algorithm 3. We iteratively 
update the current matching until the matching is 
not improved in a certain iteration. In each iteration 
(lines 2–6), we try X times to find a new random 
minimal vertex cover C (line 4), generate the 
matching M+(C) using the method introduced above 
(line 5), and update the current matching if M+(C) is 
a better matching (line 6). Here, X is a constant (≥ 1) 
in order to avoid selecting a bad cover to terminate 
the whole process. In our experiments, when X = 5 
and X = 10 over 92 and 99% of the nodes have a 
chance to be included to refine. We use X = 5. Note 
that in line 3, we choose C to be a vertex cover of 
either G1 or G2 with the same probability to 
increase the randomness. 

Algorithm  4 refine (G1, G2, M) 
Require: two graphs G1 and G2, and the 

matching M; 
Ensure: a refined matching M; 
1: while M is updated or it is the first iteration do 
2: for i = 1 to X do 
3: GF ←random selection between G1[P1] and 

G2[P2]; 
4: F ←select-random-cover (GF ); 
5: compute M*(F); 
6: if score(M*(F)) > score(M) then M ← M*(F); 
7: return M; 
Theorem 2 The time complexity of Algorithm 4 

is O(m·n3), for m = min{|E(G1)|, |E(G2)|} and n = 
max{|V(G1)|, |V(G2)|}. 

Proof 4 Algorithm 4 is the main refinement. The 
while loop in line 1 will repeat for at most m times 
because the optimal solution can match at most m 
edges and in each loop, the number of edges for the 
latest solution will be increased for at least 1. In 
each loop, the dominant part is finding the 
maximum weight bipartite matching using the 
Hungarian algorithm which can be done in O(n3). 

Since X is a constant, the total time complexity for 
Algorithm 4 is O(m · n3).   

Theorem 2 shows an upper bound of the time 
complexity for Algorithm 4. In practice, the 
processing time for the algorithm is much smaller 
than the upper bound because the initial matching 
M has already matched a lot of edges. In the case 
when m and n are large, Algorithm 4 can be very 
slow. We discuss two approaches to make 
Algorithm6 faster, with possible loss of matched 
edges. The goal is the same as before to match as 
many edges as possible. The first approach is to 
stop the iteration when the algorithm converges 
slowly, that is, no larger than δ new matched edges 
are found in a certain iteration. In such away, them 
part in the time complexity can be largely reduced. 
The second approach is to enlarge the size of the 
vertex cover, for example, adding some nodes with 
the minimum number of unmatched edges into the 
current vertex cover. The bipartite matching is only 
conducted on the nodes that are not in the vertex 
cover. If the size of the vertex cover increases, the 
number of nodes used in the bipartite matching 
decreases, thus the time used for matching nodes 
decreases. In such a way, the n3 part in the time 
complexity can be reduced. 

 
4.4 Randomly Refinement Including C−F1 

In this section, we show that M+(C) can be 
further improved. Recall that in our previous 
approach to compute M+(C), the nodes in C−F1 of 
G1 are excluded to refine. In order to refine the 
nodes in C−F1, we build a new weighted bipartite 
graph *

bG  as follows. On one side, *bG  includes all 

nodes in V(G1)−F1, and on the other side, *
bG  

includes all nodes in V(G2)−F2. For any node v ∈ 
V(G1)−F1 and node u∈V(G2)−F2, there is an edge 
(u,v)∈E *

bG ) with weight defined in Eq. (6). 
Suppose the maximum weighted bipartite matching 
of *

bG is *
bM , the new matching M*(F1) is defined as 

follows. 
M*(F1)=(M∩(F1×F2))∪ *

bM          (3) 
We now define a matching space M*. For any 

matching M’ between graphs G1 and G2, M’∈M* 
if and only if it satisfies the following two 
conditions. 

(1) M’∩(F1×F2)=M∩(F1×F2) 
(2)F1∪(V(G1)−P1−M’−1[V(G2)−P2]) is a vertex 

cover of G1. 
Theorem 3 M⊆M*  and suppose M∗M is the 

optimal solution among all matching in M∗, we 
have score(M*(F1))≥score(M∗

M)≥score(M+(C)). 
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Proof 5 For ∀M’∈M, we have 
M’∩(F1×F2)=M∩(F1×F2) and M’[C−F1]= ∅. The 
first condition is the same as the first condition of 
M*. Since M’[C− F1]= ∅,  

we have (C−F1)∩M’ −1[V(G2) − P2]= ∅. We also 
have (C ∪−F1) M’−1 [V(G2)−P2] ⊆ V(G1)−P1, 
accordingly, C−F1⊆V(G1)−P1−M’−1[V(G2)−P2], 
and thus C⊆F1∪(V(G1)−P1−M’−1 [V(G2)−P2]). 
Since C is a vertex cover of G1, 
F1∪(V(G1)−P1−M’−1[V(G2)−P2]) is a vertex cover 
of G1, hence we have M’∈M*. Thus M⊆M* holds. 

We now prove that score(M*(F1)) ≥ score(M∗

M). 
Suppose C*=F1∪(V(G1)−P1− M∗

M
-1[V(G2)− P2]), 

we know C* is a vertex cover of G1. Since M∗

M 
[V(G1)−P1] ⊆V(G2) − P2, we have: 

M∗

M[C*−F1]=  
M∗

M [V(G1)−P1−M∗

M
-1[V(G2)−P2]]= ∅.Thus, we 

have M∗

M∈M using vertex cover C*, which implies 
(see the proof of Theorem 4): 

score(M∗

M) = score(M∩(F1×F2))+scoreb(Mb) 
where Mb is the maximum weight bipartite 
matching of Gb generated by C*. We also have 
score(M*(F1)) ≥score(M ∩ (F1 × F2)) + 
scoreb( *

bM ). Since Gb⊆ *
bG , we have: 

score(M*(F1))≥score(M∩(F1×F2)) + scoreb( *
bM ) 

≥score(M∩(F1×F2))+scoreb(Mb)= score(M∗

M). 
We last prove score(M∗M)≥score(M+(C)). This 

can be derived directly from M⊆M* since M∗

M is 
optimal in M* and M+(C) is optimal in M.  

Theorem 3 implies that the new space M* is 
larger than the space M in refinement excluding 
C−F1, and the new matching M*(F1) is no worse 
than the optimal matching in M*. This implies that 
score(M*(F1)) ≥ score(M+(C)), where M+(C) is the 
optimal matching in M. It is worth noticing that the 
cover C of G1 does not participate in the 
construction of M*(F1) directly. The matching 
M*(F1) can be computed as long as F1 is generated, 
and F1 can be computed easily by the following 
lemma. 

Lemma 4 Suppose G1[P1] is the subgraph of G1 
induced by P1. If C is a vertex cover of G1, then 
C∩P1 is a vertex cover of G1[P1], and if CP1 is a 
vertex cover of G1[P1], then there exists a vertex 
cover C of G1 such that CP1⊆ C. 

Proof 6 We first prove that if C is a vertex cover 
of G1, then C∩P1 is a vertex cover of G1[P1]. 
Suppose C∩P1 is not a vertex cover of G1[P1], 
then there exists an edge (u,v)∈E(G1[P1]) such that 
u∉C∩P1 and v∉C∩P1. Note that C is a vertex 
cover of G1,wehave u∈ ∈C or v C. Without loss of 
generality, we suppose u∈C. Since u∉C∩P1, we 

have u∈C−(C∩P1),which contradicts with 
u∈V(G1[P1]). Thus, C∩P1 is a vertex cover of 
G1[P1]. 

 We then prove that if CP1 is a vertex cover of 
G1[P1], then there exists a vertex cover C of G1 
such that CP1⊆C. We only need to prove that 
C=CP1∪(V(G1)−P1) is a vertex cover of G1. For 
any (u,v)∈ ∈ ∈E(G1), if u P1 and v P1, (u,v) is 
covered by C because CP1 is a vertex cover of 
G1[P1]. Otherwise, without loss of generality, we 
suppose u∉P1, then u∈V(G1)−P1⊆C, so (u,v) is 
also covered by C. As a result, all edged in E(G1) 
can be covered by C, thus C is a vertex cover of G1.  

Based on Lemma 1, we can derive that the vertex 
cover of G(P1), F1, is enough to generate M*(F1). 
Our new refinement algorithm is shown in 
Algorithm 4 which is the refine used in Algorithm 
2.We use X = 5. Comparing to Algorithm 3, there 
are two major modifications. The first is about the 
cover computing in lines 3–4, instead of computing 
the cover of G1 (or G2 if we select G2 as the first 
graph in line 3), we only compute the vertex cover 
of G1[P1] (or G2[P2]). For the second modification, 
instead of computing M+(C), we compute our new 
matching M*(F). 

 

5.  CONCLUSION 
 

The initial matching M is computed using the 
heuristics that match the anchors first followed by 
matching the nodes around the anchors in a top-
down fashion. The heuristics used cannot guarantee 
that all the anchors are correctly matched. In this 
paper, we propose a new approach to refine the 
initial matching M. It is important to note that our 
strategy is to refine the initial matching and is not to 
find a completely new matching. By refinement, we 
mean the following two things. First, we are not to 
explore all possibilities without a goal when we 
refine a matching. In other words, we refine a 
matching M to a better one which is most likely to 
exist and can be identified. Second, we consider the 
efficiency when refining a matching. In our 
approach, each time we focus on a subset of nodes 
to refine by excluding a subset of nodes and 
including a subset of nodes. The set of nodes to be 
excluded from refinement at one time is neither 
large nor small. Also, we give every node in the 
graphs a chance to be refined. 

In this paper, we propose a new approach to 
refine the initial matching. The novelty of our 
refinement is as follows. First, we refine a matching 
M to a better one, which is most likely to exist and 
can be identified. Second, we consider the 
efficiency, and focus on a subset of nodes to refine 
while giving every node in the graphs a chance to 
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be refined. We show the optimality of our 
refinement. We also show how to randomly refine 
matching with different combinations. Our 
refinement can improve the matching quality with 
small overhead for both unlabeled and labeled 
graphs. 
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