
Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1309

STUDY OF CEP BASED ON DYNAMIC DATA
MANAGEMENT SYSTEM AND ALGORITHMIC TRADING

1KONG XIANGSHENG

1Department of Computer & Information, Xin Xiang University, Xin Xiang, China

E-mail: victor_kong@163.com

ABSTRACT

In recent years, dynamic data management systems and algorithmic trading systems have come to account
for a majority of volume traded at the major US, European and Asia-Pacific financial markets. Complex
event processing is a typical data processing technique which becomes the new spotlight of researches.
Complex Event Processing over dynamic data management systems and algorithmic trading systems poses
huge challenges with regard to efficient, scalable execution as well as expressive models and languages that
account for the dynamics in long-running queries. In this paper we discuss the characteristics that a data
event processing service should have in order to support in the best way the complex event pattern
detection functionality, and present an assessment of a number of technologies that can be used to dynamic
data. Especially we propose a corresponding event model and develop an algorithm that can efficiently
detect complex event over event stream.

Keywords: Dynamic Data Management System, Algorithmic Trading, Complex Event Processing, Volume
Weighted Average Price, Complex Event Detection

1. INTRODUCTION

Throughout the last years, the World Wide Web
has moved from an Internet of documents to an
Internet of services, and algorithmic trading (AT)
for e-markets is more complex than electronic
trading. AT for e-markets is the use of computer
programs to enter trading orders with the computer
algorithm deciding on characteristic of the order
such as the timing, price, or quantity of the order
and in many cases initiating the order without
human intervention. In AT orders are placed with
the algorithm which decides on various aspects of
the order such as order price, size, timing of
purchase etc [1]. Realizing AT for e-markets is a
challenging task. One of the biggest challenges is to
deal with a large amount of data produced in real-
time. This is because e-markets involve a large
number of users (possibly from all around the
world) and have been growing in size rapidly over
the last decade [2]. Other challenges include
developing software components that interface
effectively with the market feeds and handling the
different types of data formats used to encode e-
market transactions.

CEP provides flexibility in handling data in
different formats without a pre-processing step and
offers scalability in handling the increasing amount
of data being produced in e-markets [3]. The

conception of complex event that is typically
expressed by means of patterns that declaratively
specify the event sequences to be matched over a
given data set origins from the research rule
processing in active database.

An active DBMS could simulate a dynamic data
management system (DDMS) through triggers, but
is not optimized for such workloads, and even if
support for state-of-the-art incremental view
maintenance is present, performs very poorly. CEP
Systems associate a precise semantics to the
information items being processed: they are
notifications of events happened in the external
world and observed by sources. The CEP engine is
responsible for filtering and combining such
notifications to understand what is happening in
terms of higher-level events (sometimes also called
complex events or situations) to be notified to sinks
which receive output events resulting from the
queries running on CEP engines and act as event
consumers [4].

2. ARCHITECTURE OF CEP BASED ON
DDMS AND AT

2.1 AT & VWAP

There are various powerful algorithms being
used by various organizations like Volume
Weighted Average Price (VWAP), Time Weighted

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1310

Average Price (TWAP), Market On Close (MOC)
and Information shortfall. Of all these VWAP has
been the most popular model over the years [5].
The VWAP price as a quality of execution
measurement was first developed by Berkowitz,
Logue and Noser. They argue that 'a market impact
measurement system requires a benchmark price
that is an unbiased estimate of prices that could be
achieved in any relevant trading period by any
randomly selected trader' and then define VWAP as
an appropriate benchmark that satisfies this criteria.

For instance the VWAP of a stock can simply be
explained as the average price paid per share during
a specified time, usually a day. This means that the
price of each transaction in the market is weighted
by its volume. In VWAP-trading the goal is to buy
or sell a fixed number of shares at price that closely
tracks the VWAP. VWAP is especially common in
automatic trading algorithms, especially in optimal
trading execution strategies [6]. The formula for
calculating VWAP is as follows (1).

∑

∑
=

j j

j jj

VMAP Q

QP
P

*

 (1)

where:

PVWAP = Volume-Weighted Average Price

Pj = price of trade j

Qj = quantity of trade j

j = each individual trade that takes place over the
defined period of time, excluding cross trades and
basket cross trades.

Here is an AT & VWAP example.

IF(

 MSFT's price moves outside 1% of MSFT-
15-minute-VWAP

 FOLLOWED-BY{

 CSCO' price moves up or down by 0.5%

 AND

 IBM' price moves up by 3%

 OR

 MSFT' price moves down by 1%

 }

)ALL WITHIN any 120 seconds time period

THEN{

 BUY MSFT;

 SELL IBM;

}

2.2 Complex Events and Event Operators
An event is defined to be an instantaneous,

atomic (happens completely or not at all)
occurrence of interest at a point in time. It is the
smallest, atomic occurrence in a system that may
require a response. By atomic, we mean that either
the event happens completely or it does not happen
at all. A set of attributes can be associated with
each primitive event. These attributes can carry
information which can be used when a complex
event occurs (at a later time) about the action that
caused the event to occur.

Similar events can be grouped into an event type
that gives the metadata for events that belong to the
same class and includes the attributes of these
events, and an event type is expressed by an event
expression. An event instance is a single occurrence
of an event of a particular type. This instance
instantiates the attributes of the event type. We
consider E1, E2, …, En as being primitive event
types and e1, e2, …, en some of their respective
instances.

Although an event is assumed to instantaneously
occur at a time point, the event might be initiated at
a prior time point, thus yielding a closed time
interval between the start and end points. That is
each event instance, whether primitive or complex,
has both a start and end timestamp. Two special
event types START and END are added internally
by Synoptic to keep track of initial and terminal
events in the traces [7]. A complex event is defined
by applying an event operator to constituent events
that are primitive or other complex events. In the
absence of event operators, several rules are
required to specify a complex event. Furthermore,
some control information needs to be made a part
of a rule specification .

An event E (either primitive or complex) is a
function from the time domain onto the Boolean
values, True and False. E : T → {True, False}
given by (2).

=
otherwise)(

point t at time

 occurs E typeofevent an if)(

)(

L

L

alseF

rueT

tE

 (2)

2.3 DDMS and AT
Trading algorithms often perform a considerable

amount of data crunching that could in principle be
implemented as SQL views. To understand the
need to maintain and query a large data state, note
that many stock exchanges provide a detailed view
of the market microstructure through complete bid

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1311

and ask limit order books. The bid order book is a
table of purchase offers with their prices and
volumes, and correspondingly the ask order book
indicates investors' selling orders. Exchanges
execute trades by matching bids and ask by price
and favoring earlier timestamps. Investors
continually add, modify or withdraw limit orders,
thus one may view order books as relational tables
subject to high update volumes. The availability of
order book data has provided substantial
opportunities for automatic algorithmic trading.

To illustrate this, we describe the Static Order Book
Imbalance (SOBI) trading strategy. SOBI computes
a VWAP over those orders whose volume makes
up a fixed upper k-fraction of the total stock
volume in both bid and ask order books. SOBI then
compares the two VWAPs and, based on this,
predicts a future price drift. For simplicity, we
present the VWAP for the bids only:

select avg(b2.price * b2.volume) as bid_vwap

from bids b2

where k * (select sum(volume) from bids)

> (select sum(volume) from bids b1

where b1.price > b2.price);

2.4 Architecture of CEP Based on DDMS and
AT

Fig.1 shows the architecture of CEP Based on
DDMS and AT. The core component of a DDMS is
its runtime engine. Unlike a traditional database
system where the same engine manages all database
instances, each individual DDMS execution
runtime is constructed around a specific set of
queries provided by the client program (e.g., via
SQL code embedded inline in the program), each
defining an agile view.

The AT rule definitions is done by the Analyzer
and the Constructor, well separated from the
runtime tasks， represented by the Complex Event
Detector, the Event Manager and the Executor. The
following briefly describes these components.

Transition engine

Transition compiler

Continuous optimizer

Storage
Manager

Complex Event
Processing

Engine

Stock
management

system

Algorithmic
trading rule
definition

Rules

Event Detector

Event Tree

MSFT Object

DowJones Object

Event ManagerExecutor

Trading data

Event + Operator

Sinks
+sellStock()
+buyStock()
+setPrice()

-price
Stock

Event
Analyzer

Event
Constructor

Map layouts

Indexes

Ad-hoc engine

Planner

Optimizer

Common

Catalogs

Parser

Agile
views

Transition
programs

Delta
materialization

Physical
adaptation

Delta query
framework

Structural
recursion

DDMS

Prim
itiv

e E
vent

Fig.1. Architecture of CEP based on DDMS and AT

The Analyzer principally analyzes a rule
definition and produces an intermediate
representation of the rule which is sent to the
constructor, and code corresponding to the
condition and action of the rule.

The Constructor creates a persistent
representation of rules and offers a low level
interface well adapted for software integrators and
developers who need basic reactive capabilities for
supporting some functions of the system they want
to implement.

The Event Executor is responsible for processing
rules taking into account coupling modes, rule
priorities. It realizes quite complex execution
semantics and this combined with the need for

runtime efficiency represents the main reasons for
having implemented the part.

The Event Detector is responsible for detecting
primitive events and for signaling them to the event
manager. The latter recognizes complex events
using a detection graph and signals both primitive
and complex events to the Event Executor.

The event manager has to represent the
information gained from the analysis of event
definitions, i.e., it is responsible for managing the
event base which consists of all defined events
patterns. If the event type is primitive the Event
Manger subscribes it to the CEP Engine. If the
event type is complex, the Event Manager
subscribes the primitive event types composing the

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1312

event type to the event detector and builds an event
tree representing the complex event type.

3. COMPLEX EVENT DETECTION

Events are detected on the server using an event
graph. An event graph which consists of nodes and
directed edges is a graph constructed to reflect the
primitive and complex events declared in an
application [8]. Each event is represented as an
event node in the graph, and the event nodes are
connected by their subscription relationships. An
internal node of the event graph represents a
complex event, and a leaf node represents a
primitive event. Thus the event detector generates
an event tree whose root node represents the
complex event.

An event tree is created for each complex event
and these trees are merged to form an event graph
for detecting a set of complex events. This will
avoid the detection of common sub-events multiple
times thereby reducing storage requirements. Each
node has a pointer to each of its subscribers. Thus
each subscriber of a global event becomes one of its
parent node that the event tree is built from. By
default a subscriber is inserted in the end-list if it
does not specify when to be notified. This
organization reduces the search which is based on
the class.

A event detector has a linked list whose nodes
hold one reactive class of an application. Each
node, in turn, has two linked lists, begin list and end
list. The lists have the subscribers to be notified at
the beginning or the end of these methods’
invocations. For example:

event begin (e1) int sellStock(int number);

The primitive event e1 is bound to a method
named sell stock and the method notifies its
occurrence at the beginning of its invocation.

The event detector detects primitive events
produced during an application processing. It
detects only events for which event type
subscription has been submitted and signals them
and their environments to the event manager. The
general principle for recognizing events is the
following: primitive events are injected at the
leaves of the event graph. Then these events flow
upwards, following edges through internal nodes
which represent component events [9]. When a
triggering node is reached, the recognized
triggering event is signaled and then taken into
account for rule execution.

Whenever a primitive event is detected, it will
propagate the event notification to its subscribers,
that is, its parent nodes. Event occurrences flow
upwards as in a data-flow computation. The parent
nodes maintain the occurrence of its constituent
events along with their parameter lists which are
stored separately for each context set to the node. If
the complex event occurs by the last notification, it
is detected and further propagates to its subscribers.
Each time an event is raised, it will check its "send
back" flag. If the "send back" flag is true, the server
will send this event notification to a specific
application according to this event "site" attribute
[10].Complex event detection algorithm is as
follows:

function
complexEventDetection(eventStream,time){

 createEventTrees;

 foreach(event e of eventStream){

 if(e instance of Ei) then

 foreach(parentNode VE of VEi)

 call activeOperatorNode(VE);

 if(is_signaled(rootNode)) then

 detect(complexEvent);

}

function activeOperatorNode(VE){

 switch(VE){

 case "AND":

 if(is_signaled(childNode)) then

 if(!is_empty(the other's buffer queue))
then

 foreach(event ei of bufferQueue)

 create a pointer combines of e and ei;

 pass this pointer VE's buffer queue;

 clearBufferQueue();

 else

 append e to its own buffer queue;

 case "OR":

 if(is_signaled(childNode)) then

 pass pointer of e to the parent;

 case "sequence":

 if(is_signaled(leftChildNode)) then

Journal of Theoretical and Applied Information Technology
 20th February 2013. Vol. 48 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1313

 append e to its own buffer queue;

 if(is_signaled(rightChildNode)) then

 if(!is_empty(left child's buffer queue))
then

 foreach(event ei of bufferQueue)

 create a pointer combines of e and ei;

 pass this pointer VE's buffer queue;

 clear left child's buffer queue;

}

4. CONCLUSIONS

In this paper, we have investigated how events
are defined, detected and managed and presented an
expressive event specification language that
supports DDMS and AT. We have illustrated the
detection of complex events and proposed the
architecture for its implementation based on DDMS
and AT. Our approach clearly substantiates existing
event-driven systems with declarative semantics.
All the event detection algorithms we have
developed extend readily when the identification of
the object is allowed as an explicit parameter of a
primitive event.

REFRENCES:

[1] Archit Bansal, Kaushik Mishra, and Anshul

Pachouri, “Algorithmic Trading (AT)-
Framework for Futuristic Intelligent Human
Interaction with Small Investors,” International
Journal of Computer Applications, vol. 1, 2010,
pp.1-5.

[2] Piyanath Mangkorntong, and Fethi A. Rabhi,
“DETECTING EVENT PATTERNS IN E-
MARKETS:A CASE STUDY IN FINANCIAL
MARKET SURVEILLANCE,” IADIS
International Conference e-Commerce, 2009,
pp.69-86.

[3] Alan Demers, Johannes Gehrke, and Biswanath
P, “Cayuga: A general purpose event
monitoring system,” in Proc. of the Conf. on
Innovative Data Systems Research(CIDR),
2007, pp. 412–422.

[4] GIANPAOLO CUGOLA, and ALESSANDRO
MARGARA, “Processing Flows of
Information: From Data Stream to Complex
Event Processing,” in Proceedings of the 5th
ACM international conference on Distributed
event-based system, vol. 5, 2011, pp.1-69.

[5] Nihal Dindar, Peter M. Fischer, Merve Soner,
and Nesime Tatbul, “Efficiently Correlating
Complex Events over Live and Archived Data
Streams,” in Proceedings of the 5th ACM
international conference on Distributed event-
based system, 2011.

[6] Erik Eiesland, "Simulating The Order Book:A
Tool To Discover Trading Strategies," Master
Thesis, Department of Computer Science, stfold
University College, 2011, pp.1-124.

[7] Sharma Chakravarthy, V. Krishnaprasad, Eman
Anwar, and S.-K. Kim, "Composite Events for
Active Databases: Semantics, Contexts and
Detection," in Proceedings of the 20th
International Conference on Very Large Data
Bases, 1994, pp. 606-617,.

[8] Marcelo R. N. Mendes, Pedro Bizarro, and
Paulo Marques, "A Framework for Performance
Evaluation of Complex Event Processing
Systems," in DEBS ’08: Proceedings of the
second international conference on Distributed
event-based systems, 2008, pp. 313–316.

[9] R. BALDONI, S. BONOMI, G. LODI, M.
PLATANIA, and L. QUERZONI, "Data
Dissemination Supporting Complex Event
Pattern Detection," in 1st International
Workshop on Data Dissemination for Large
scale Complex Critical Infrastructures, 2010,
pp.1-25.

[10] Ivan Beschastnikh, Yuriy Brun, Sigurd
Schneider, Michael Sloan, and Michael D.
Ernst, “Leveraging Existing Instrumentation to
Automatically Infer Invariant-Constrained
Models,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European
conference on Foundations of software
engineering, 2011.

