
Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

595

A FINANCIAL SERVICES CASE STUDY OF SOA
BASED ON CEP

1 XIANGSHENG KONG

1Department of Computer & Information, Xin Xiang University, Xin Xiang, P.R.China

E-mail: 1 fallsoft@163.com

ABSTRACT

With the growing amount of information in various domains, real-time retrieval and analysis is the most
frequently used operation. The integration of service-oriented architecture (SOA) and Event-Driven
Architecture (EDA) known as event-driven SOA (ED-SOA) has been widely adopted for developing
various kinds of real-time applications. We describe a generic approach with an ability to perform complex
event publishing, querying, analysis, processing and integration with SOA. Finally, a financial services case
of SOA based on complex event processing (CEP) is provided in this paper. Our study shows that it is
beneficial not only in reducing the development complexity, but also in coping with dynamic changes at all
abstraction levels.

Keywords: SOA; EDA; CEP; Sliding Windows; EPL

1. INTRODUCTION

SOA is a buzzword and topic for many
discussions in nearly every professional journal and
conference. SOA is used to describe how
distributed services can be reached by
middleware[1]. SOA is mainly used to deploy
business processes, but it is appropriate to connect
every kind of application at the data layer. In a SOA
architecture, there is no need to share the whole
databases of each company. Background data and
working logic are hidden from service requesters.
The SOA private layer secures each of the
companies' secret data, but makes it possible to
create collaborative business processes to extract
data from the enterprise application systems [2].

However, a SOA architecture doesn't address all
the capabilities needed to respond to the dynamics
of real-time business. As enterprises strive to cut
costs and improve their responsiveness to
customers, suppliers and the world at large, the
concept of event-driven design is becoming more
widely used. CEP is a relatively new technology for
processing and analyzing multiple events from
distributed sources, with the objective of extracting
useful information from them[3].

Imagine the situation where a real estate broker
shows her client a house for sale, matching the
preference profile provided by the potential buyer.
While the buyer likes the general location of the
house, he considers it is unacceptable due to the

unexpected traffic noise from a nearby street.
Instead of proceeding with the original plan to show
another house on the same street, an experienced
broker should adjust the plan in light of this
additional constraint. The broker connects to the
multiple listing service with her mobile device and
downloads a newly listed house within minutes of
the current location that better satisfies the clients’
requirements[4]. He may not be if his SOA
implementation doesn't support event processing.
Such a scenario can facilitate the introduction of
events into SOA.

There are two distinct interactions between SOA
and CEP. In the first interaction, the occurrence of
an event can trigger the invocation of one or many
services. Those services may perform simple
functions, or entire business processes. This
interaction between events and services is
commonly referred to as event-driven SOA. We
describe this as a style of SOA. In the second
interaction, a service may generate an event. The
event may signify a problem or an impending
problem, an opportunity, a threshold, or a deviation.
Upon generation, the event is immediately
disseminated to all interesting parties (human or
automated). The interesting parties evaluate the
event, and optionally take action[5]. The event-
driven action may include the invocation of a
service, the triggering of a business process, and/or
further information publication/syndication. In this
interaction, the service is purely one of many event
sources in a broader event-driven architecture.

http://www.jatit.org/
mailto:fallsoft@163.com

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

596

Currently, the integration of SOA and EDA is
known as event-driven SOA (ED-SOA) or SOA
2.0, an extension of SOA to respond to events that
occur as a result of business processes. SOA 2.0
will ensure that services do not only exchange
messages between them, but also publish events
and receive event notifications from others. For this
purpose, an Enterprise Service Bus (ESB) will be
necessary to process, enrich and route messages
between services of different applications[6]. Thus,
combining the use of CEP and SOA, we may detect
relevant events in complex and heterogeneous
systems, i.e., CEP will let us analyze and correlate
events in real time SOA 2.0.

2. CEP BACKGROUND

Events can be divided into two types: atomic
events and complex events. An atomic event which
is defined to be an instantaneous and atomic
(happens completely or not at all) occurrence of
interest at a point in time represents something that
occurs, happens or changes the current state of
affairs. For example, an event may signify a
problem or an impending problem, a threshold, an
opportunity, information becoming available, a
deviation etc. Events can be grouped into an event
type that give the metadata for events that belong to
the same class and include the attributes of these
events, and an event type is expressed by an event
expression. These attributes can carry information
which can be used when a complex event occurs (at
a later time) about the action that caused the event
to occur.

A complex event often happens in a continuous
time interval, which is assigned by users (called
case 1) or abstract directly from atomic
events[7].For example, "Mary is getting coffee" can
be extracted from a series of atomic events "Mary is
in her office", "Mary is in coffee room", "Mary is in
her office", and so on. Complex events are
generated by composing atomic or other complex
events using a set of event detection operators.

An event stream is defined to be a linearly
ordered (often by time) sequence of events forms
Event Stream. An event cloud is defined to be a
partially ordered set of events form Event Cloud.

For example,seting of all stock trades for BIDU
within a 5 minute time window is an Event Stream.
While all Stocks sold in a business day is an Event
Cloud. Event Cloud enables users to search for
business events and patterns of business events
within a repository for historical events. We
consider this repository as a "cloud of events",

which is used for searching and analyzing purposes
(shown in Figure 1)[8].

Figure 1. Event Stream & Event Cloud

CEP uses relations between multiple events to
derive higher level information using event patterns
that are executed upon all available events (the
event cloud)[9]. The pattern matching can be seen
as inverted database queries: instead of performing
different queries on a static dataset CEP performs
static queries on dynamic data in order to perform
matching on new events as quickly as possible.

Event Stream Processing (ESP) focuses on
processing event objects that are ordered in time.
These event objects are received in a data stream
which can be of infinite size. Therefore specialized
techniques like data views that allow only a certain
length of the event stream to be subject to queries
(like time views and length views) have been
developed. Because these time-ordered data streams
are members of the whole event cloud, ESP can be
seen as a subset of CEP. An event processor is an
application that performs operations on event
objects, including creating, reading, transforming,
aggregating, correlating or removing them.

Esper is a component for CEP and ESP
applications. There are two implementations of
Esper, Esper for Java and NEsper for .NET. Both
supply an API to access the engine features, such as
deploying queries, sending events into the engine
and retrieving events out of the engine, in their
respective language. Esper and NEsper enable rapid
development of applications that process large
volumes of incoming messages or events. Esper
and NEsper filter and analyze events in various
ways, and respond to conditions of interest in real-
time. For Esper, events can be instances of

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

597

java.util.Map, org.w3c.dom.Node (Java
representations of XML documents), or other POJO.

3. A FINANCIAL SERVICES CASE STUDY
OF SOA BASED ON CEP

We consider a scenario from the financial

computing domain, in which Web services provide
live data about companies and stock prices. The
aim is to combine the information in an XML
document that is actively updated when the
underlying data change. Figure 2 illustrates, on a
high level, how data and events are received and
processed.

Figure 2. A Financial Services Case Study Of SOA Based

On CEP

(1) Sliding Windows
Stream of events that arrives to CEP engine is by

definition infinite. Performing any kind of group
operations on such data structure is impossible.
Sliding windows solve this problem by selecting a
limited subset of incoming events. The criteria by
which events are put into windows can be divided
into two categories (shown in Figure 3).

Time-based － events are selected by the time of
their creation (arrival to CEP engine). For example,
a window may contain only events from last 3
minutes. If at some point any event turns out to be
older than specified time period is removed.
Simultaneously, new events that have just arrived
are putting into window. Therefore, time window
"slides" through event steam with regard to time.

Size-based － windows that have limited event
capacity. If window is full and new event arrives,
the oldest of events is removed to make room for
the new one. Thus, a window slides with regard to
size.

Each window can be additionally filtered by
arbitrary condition. For example, one may want to
have only events from last 4 minutes that come
from producer with given name.

timestamp

arrival time’

e1 e2 e3 e4

e1 e3 e2 e4

 t2 t3 t4t1

Sliding window

e1 e2 e3 e4

arrival time

An out-of-order event stream
An ordered event stream

Figure 3. Sliding Windows Principal

(2) Esper Publishing Service
The Esper publishing service will receive an

asynchronous notification. Then, the publishing
service will register this type into the Esper runtime
engine and retrieve a sender for this type to be
used[10]. Analogously, whenever the Esper
publishing service receives an unregistered
notification from the registry, it will unregister the
type from the Esper runtime engine and remove the
sender for this type, so it cannot be used anymore
for publishing. Figure 4 shows a UML sequence
diagram for publishing events using Esper.
Whenever an event is published, the Esper
publishing service will first find a suitable sender
for the event's type. Then, the sender will be used to
send the event into the appropriate event stream.

:Publisher :EsperPublishing :Sender

publish(event)

getSender(type)

send(event)

Figure 4. Esper Publishing Service Sequence Diagram

(3) Esper Event Programming Language (EPL)
EPL processing by executing continuous queries

on event streams is used to define complex events,
similar to the concepts known from active
databases[11]. These query languages execute
operations similar to SQL, including:

SELECT (Select event types, attributes of an
event in the event stream)

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

598

WHERE (Define conditions for the events that
should fulfill the query)

AGGREGATION (Min, Max and other
aggregations known from SQL are available)

JOIN (Similar to our definition of event
correlation, events can be joined via their attributes)

TIMEWINDOW (The queries are executed
against the events in a specific sliding time window)

For example:

select avg(price)

from StockTickEvent.win:time(300)

where StockTickEvent.symbol='IBM';

select symbol, avg(price) as averagePrice

from StockTickEvent.win:length(100)

group by symbol;

The first query returns the average price of all
IBM stock tick event within the last 300 seconds
(with a sliding time window). The second query
returns the average price per symbol for the last 100
stock ticks.

:Processor
Registry

:EsperPubl
ishing

:Notifier :EsperRunt
ime

:Processor :EPStatem
ent

registered(processor)

new(processor,action)

create(statement)

new

statement

setSubscriber(notifier)

update(event)

process(event,action)

events

events

Figure 5. Esper Processing Service Sequence Diagram

(4) Esper Processing Service

Esper Processing service intercepts events that
require processing from event streams and
delivering them to appropriate processor. Thus, it
will create an EPL SELECT statement to select
context events that require processing from event
streams[12]. Figure 5 shows a UML sequence
diagram for delivering events to processor using
EPL SELECT statements and notifies.

4. CONCLUSIONS

SOA and event processing are both required for
an optimized business and, when combined, can
create extreme value to business operations. SOA
and events need each other. SOA can profit from
events when it comes time to build an actual event-
driven application, large or small. In fact, SOA
services can be used in an event-driven application
at practically every functional step in the
architecture.CEP extracts and creates value by
identifying threats and opportunities from
distributed enterprise events.

REFRENCES:

[1] D. Schilberg, A. Gramatke, K. Henning.

"Semantic Interconnection of Distributed
Numerical Simulations Via SOA", Proceedings
World Congress on Engineering and Computer
Science 2008, vol. 5, pp. 894-897, 2008.

[2] Martinek P., Szikora B. "Detecting
semantically related concepts in a SOA
integration scenario", pp. 117-125, 2008.

[3] M. R. N. Mendes, P. Bizarro, and P. Marques.
"A framework for performance evaluation of
complex event processing systems", pp. 313-
316, 2008.

[4] H.Wang, X.; Gu, T.; Zhang, D. Q.; and Pung.
"Ontology based context modeling and
reasoning using owl", Proceedings of
Workshop on Context Modelling and
Reasoning(CoMoRea'04), pp. 18–22, 2004.

[5] B. Michelson, "Event-driven architecture
overview", Patricia Seybold Group, 2006.

[6] Juan Boubeta-Puig, Guadalupe Ortiz, and
Inmaculada Medina-Bulo. "An Approach of
Early Disease Detection using CEP and SOA",
SERVICE COMPUTATION 2011: The Third
International Conferences on Advanced
Service Computing, pp. 143-148, 2011.

[7] Chunjie Zhou and Xiaofeng Meng. "Complex
Event Detection in Pervasive Computing", The
Third SIGMOD PhD Workshop on Innovative
Database Research (IDAR2009), pp. 1-6, 2009.

[8] Szabolcs Rozsnyai, Roland Vecera, Josef
Schiefer and Alexander Schatten. "Event Cloud
- Searching for Correlated Business Events",
Proceedings of the 9th IEEE International
Conference on ECommerce Technology and
The 4th IEEE International Conference on
Enterprise Computing, E-Commerce and E-
Services (CEC-EEE 2007), pp. 409–420, 2007.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

599

[9] Thomas Everding and Johannes Echterhoff.
"Event Processing in Sensor Webs",
Proceedings of Geoinformatik 2009, vol. 35,
pp. 11–19, 2009.

[10] ChenWang, Martin de Groot, and Peter
Marendy. "A service-oriented system for
optimizing residential energy use", 7th
International Conference on Web Services, pp.
735–742, 2009.

[11] S. Rozsnyai. "Efficient indexing and searching
in correlated business event streams", Master's
thesis, Technical University Vienna, 2006.

[12] Jay Budzik and Kristian J. Hammond. "User
interactions with everyday applications as
context for just-in-time information access",
5th International Conference on Intelligent
User Interfaces, pp. 44–51, 2000.

http://www.jatit.org/

	1 XIANGSHENG KONG

