
Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

550

HARDWARE IMPLEMENTATION OF TASK MANAGEMENT IN
EMBEDDED REAL-TIME OPERATING SYSTEMS

1SHI-HAI ZHU
1Department of Computer and Information Engineering, Zhejiang Water Conservancy and Hydropower

College
Hangzhou, Zhejiang Province 310018, China

E-mail: yyzz98@163.com

ABSTRACT

Embedded Real-Time Operating System is widely used in more and more application fields, such as
aerospace, missile guidance, automobile electronics and construction of nuclear power plants. In order to
meet the needs of market, it is necessary to improve fundamentally the performance of embedded real-time
operating system. Logically speaking, hardware is equivalent to software. Any instruction can be executed
by either hardware or software. Along with the development of semiconductor technology and the trend of
hardening software, the boundaries between software and hardware have become more and more blurred; all
these have provided more convenience to implement embedded real-time operating system by hardware. As
is known to all, task management is one of the most basic functions of operating systems, therefore we take
real-time operating system μC/OS-II as an example to perform hardware design of task management in this
paper, and implement the hardware circuits to create, delete tasks and the logic circuit of ready list. The
simulation results show that the hardware realization of task management holds the correctness of system
calls besides reduces their execution time and the overhead of processors.

Keywords: ERTOS, Task Management, FPGA, Hardening Software, TCB.

1. INTRODUCTION

Embedded Real-Time Operating System (ERTOS)
is widely used in the strong real-time systems, such
as a new generation of fighter planes, aerospace
systems; The traditional embedded real-time
operating system compiles its kernel with
application programs together, and runs onto the
same microprocessor, but the kernel task generally
has the higher priority than application programs,
the latter can't effectively make use of
microprocessors and storage space, which reduces
the execution efficiency of application programs[1].
As a result of limitation of memory space and
processing ability, it is difficult for the low-end
embedded operating system to effectively support
tasks similar to having high complexity and large
number of concurrency. What we really need for
real-time operating system is that it takes up less
processor time and storage space, at the same time
with higher efficiency and stability, lower power
consumption.

Currently the main method to improve the
performance of embedded operating system is to
rely on using high frequency, long-digits

microprocessors or improved software algorithms.
There are a lot of researchers at home and abroad to
study these algorithms, for example, task scheduling,
interrupt control, and system security control. Their
purpose is to improve the processing power and
security of embedded operating systems; but these
improvements often lead to other problems, such as
high energy consumption, etc.; and because
programs are executed by the processor in
sequential order, the improving strength is always
limited; In addition, no matter how perfect a
software system is written, it always has loopholes.
As is well known that the parallel processing ability
of hardware circuits is enormous, many hackers
think it is nearly impossible to crack hardware,
therefore its security is beyond question. But if an
embedded operating system is implemented entirely
by hardware, then it will lack of appropriate
flexibility and reusability, and with high expense.

Now a better solution is to adopt mixed operating
system implemented by both software and hardware.
A part of functions of operating system is realized
by hardware, and the part not suitable for the
realization of hardware is still implemented by
software. With the continuous development of

http://www.jatit.org/
mailto:yyzz98@163.com

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

551

semiconductor technology, the cost of hardware
becomes more and more low; hardware method is
widely used to achieve those functions of original
software solution. Generally speaking, task
management is one of the most basic functions of
operating systems. This paper takes real-time
operating system μC/OS-II as an example to
perform hardware design of task management,
implements the hardware circuits to create and
delete tasks, and the logic circuit of ready list.

2. LITERATURE REVIEW

Jaehwan Lee et al. put forward the concept of
hardware real-time operating system (HRTOS) from
the 1980s, and proposed to use specific hardware
IP-kernel to realize RTOS scheduler after analysis
and comparison of RTOS scheduler based on
hardware and software implementation [2]. Task
scheduling is the key of RTOS, communications
among the tasks, external events processing and
interrupt handling are all dependent on task
scheduling. And with the improvement and
enhancement of system functions, the relationship
among tasks becomes more complex, and more
peripherals need to be dealt with, all these require
task scheduling continuously to participate in,
causing the system performance and real-time
response ability to decline sharply [3]. If task
scheduling is implemented partly by hardware, it is
no doubt that its performance can be improved
greatly, thus the performance of the whole RTOS is
improved accordingly [4].

Takumi Nakano[5] developed a kind of silicon
chip called STRON-I (Silicon OS) in the mid 1990s,
and put forward the concept of silicon OS, using
VLSI technology to implement operating system
(TRON) by a chip hardware, so that the operating
system can work harmoniously with microprocessor
chip in parallel way, further ensure high reliability
of real-time operating system. Silicon OS divided
traditional real-time operating system kernel
uITRON into three parts, that is, Micro Kernel,
Interface (Software Kernel) and Silicon TRON.
Hard kernel part adopted HDL language to
implement task management, interrupt management,
information exchange and communication, which
were usually implemented by software in usual real-
time operating system.

Professor Peter Waldeck at Queensland
University in Australia published a paper about
hardware and software partitioning at the beginning
of this century, in which he put forward the mature
conversion among hardware and software modules,

and the mutual communication method among those
modules [6].

Moonvin Song, Sang Hong, Yunmo Chung at
kyung Hee University in South Korea combined
configurable CPU with RTOS by using FPGA, and
obtained an efficient RTOS; in this design, in order
to reduce the power consumption of RTOS, they
implemented the context switch operations by
hardware among the most time-consuming task
switching process and also interrupt handling [7].
Next they made some experiments on the realized
operating system in the multi-channel speaker
system, with the result that performance improved
by 60% compared with the traditional software real-
time operating system.

The related research literature shows that high
reliability and real-time performance of real-time
operating system can be improved mainly from two
aspects of hardware and software. Event
management, time management, task scheduling and
switching among real-time task management in real-
time operating systems have caused a great deal of
overhead, which is difficult to reduce by software
technology, thus forming the performance
bottleneck of RTOS. In order to solve this problem,
we try to implement a part of functions of real-time
operating system by hardware, for example, task
manager can be implemented by hardware FPGA,
making it a hard-core chip to execute with CPU in
parallel way. Task manager by hardware
implementation will undoubtedly reduce the
overhead of CPU, so as to improve the task
schedulability of real-time operating systems.

3. DESIGN OF MIXED REAL-TIME
OPERATING SYSTEM

3.1 Reference Operating System

During the design of hardware and software
mixed real-time operating system, we need to
choose an open-source operating system as the
reference system, which needs to have such
characteristics as open-source, simple structure, easy
to use, high reliability and higher real-time
performance.

μC/OS-II is a strong real-time operating system
written by the embedded system expert Jean J.
Labrosse. It is written by C language, and its source
codes are open. It has many advantages, for example,
efficient, taking up less space, strong real-time
performance, extensible and so on. It has been
successfully transplanted to a lot of commonly used
embedded microprocessors because of these

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

552

advantages. In order to conduct application program
development, we only need to have C compiler,
assembly and link tools. In addition, it can manage
64 tasks and schedule them according to their
priority. It can also make the task to turn its state
from ready into executive only if it has the highest
priority. Each task in the system has its own
individual priority, that is, there are not two tasks
which have the same priority.

3.2 The Choice of Development Tools and
Construction of Platform

During the process of preparing the paper, we
have used the following software tools: Xilinx
Company’s ISE is used for hardware simulation to
obtain the hardware implementation data; EDK
tools are used to compile the target software to
generate executable codes, which are downloaded to
run on PowerPC, thus we can get software
realization data. EDK can be divided into two parts,
one is software development kit SDK and the other
is Xilinx platform studio XPS. The programmable
chip used by our experiments is XUP Virtex-II Pro
XC2VP30 produced by Xilinx Company [8].

4. HARDWARE IMPLEMENTATION OF
TASK MANAGEMENT

Task management is one of the most basic
functions of an operating system. First we perform
the hardware design of co/OS-II task management.
Its task management can be divided into the
following parts: The creation, deletion, suspension,
recovery, inquiry and scheduling of tasks, etc.

4.1 The Basic Operations of Task Management
The task of μC/OS-II is composed of three parts:

Task program code, task stack and TCB (Task
Control Block).

During the hardware implementation of task
management system calls, data structures such as
task code segment address, task priority, the
parameter pointer of task and the stack pointer
distributed to a task are all stored in TCB.

(1)Task Creation

 First, ready task list is read to judge whether
the task to be created already has existed, if so then
a creation error will be returned, otherwise the task
priority will be written into the ready list. Next the
module state of the task creation is set to busy, the
data to create a task is written into stack, its relevant
TCB will be initialized, OS scheduler will be called
and the module state of the task creation is set to
free.

(2)Task Deletion

 Ready list and waiting list are inquired to
judge whether the current task priority already has
existed, if not then a deletion error will be returned,
otherwise the records will be deleted in the relevant
lists. Next the Hook module will be called to clean
up the task stack and TCB to return Derr. The state
of current module is commonly controlled by Cerr
and Derr, and the state of current module is set to
free 0 after a task creation or deletion is completed.

(3)Task Suspension and Recovery

 The current state of the task is changed, and
the values in the ready list and waiting list are
modified. During changing task states, we can find
the corresponding TCB according to its ID; modify
its state register value, the present value in the ready
list, and the data in the waiting list corresponding to
its resource application. A task scheduling will be
performed after all the above operations have been
completed.

 We give simplified logic in Fig. 1. In order to
save the hardware resources, we reuse each logic
component as much as possible. The whole figure
can be divided into three parts: task creation specific
part, task deletion specific part, and their public part.

Fig. 1 Task Creation And Deletion

4.2 Ready List
Ready list and waiting list are one of the most

frequently operated data structures in task
management part. We put forward a more superior
hardware implementation method in this paper and
logic diagram is shown as Fig. 2 below.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

553

The ready list adopts clock synchronization signal,
all the storage units are set 0 by using Clr signal
when it is initialized. The main operations of ready
list can be divided into two kinds of reading and
writing. Reading ready list can be divided into two
kinds: inquiring the current highest priority task and
inquiring if a task is in the ready state. In order to
inquire the current highest priority task, the control
circuit sends reading signal to all of the data storage
units, the system can get the highest priority task
according to the eight binary digits of the two
outputted to the data lines, and the priority is
outputted to Prior signal. On the other hand, in order
to inquire if a task is in the ready state, the priority
of current task is inputted as Sid signals, and is
compared with the output of the current data line. If
the current priority exists, then Ud signal is set high
output, otherwise low. In order to write the ready list,
the higher 3 bits of the priority are sent to Sid0 ~
Sid2, lower 3 bits to Sid3 ~ Sid5, the desired storage
unit is chosen after decoding, and can flip the stored
data according to writing signal.

Fig. 2 Logic Diagram Of Ready List

4.3 Task Scheduling
The task scheduling of μC/OS-II is commonly

called by other system functions with the result that
the highest priority task can obtain the
microprocessor resource. Any task state change will
cause a task scheduling, but not necessarily
produces switching.

Fig. 3 describes the simplified logical diagram of
task scheduler. We can set the Q-output of the
trigger to 0 by Set signal. If we determine the
current module state is free, and not in the interrupt
service state, then we can compare the task with the
highest priority in the waiting list and the one which

is running, if the former is lower than the latter, then
we will do nothing, otherwise we will call the switch
function.

Fig. 3 Logic Diagram Of Simplified Task Scheduler

4.4 Simulation and Experimental Results
The simulation result of hardware implementation

of task management is shown in Fig. 4.

(1) Create tasks

 During the simulation process, we create three
tasks in turn, whose priority in the system is decimal
7, 1 and 6 respectively. After we create the task
whose ID is decimal 7 we conduct task scheduling,
and obtain the highest priority task is decimal 7 in
the ready list, therefore Next_task_id is set to 7;
Next we create the task whose priority is decimal 1,
and conduct task scheduling again. Due to the
scheduling rule is that the higher priority task will
have the right of using CPU, so Next_task_id is set
to 1, and conduct task switching; Task scheduling is
performed for the third time after the task whose
priority is decimal 6 is created, but currently the
highest priority task is running, so we don’t conduct
task switching.

(2)Inquire Tasks

 We can complete the task information inquiry
by calling functions. If the processor inquires the
task whose priority is 0, then the output result
includes task priority and other TCB data.

(3)Suspend tasks

We can suspend currently running task whose
priority is 1, which will automatically evoke
scheduling module and conduct task scheduling
again, then the task whose priority is 6 will obtain
CPU to run. The suspended task will keep waiting
state before it is recovered.

(4)Delete tasks

Suppose we have created tasks whose priority is
decimal 5, 2, 4 respectively as shown in Fig. 4. If we
delete task 2, then we can trigger a task scheduling.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

554

Because the highest priority task having the ready
state is 4 in the current system, task 4 will have the
right to use CPU to run.

(5)Recover tasks

If we recover the task whose priority is 1, then its
state will change and be written back to ready list,
thus a task scheduling will be triggered with the
result that task 1 will have the right to use CPU.

After task switching, the task whose priority is 1 will
be executed.

We know that the system will obtain higher
efficiency if task management is implemented by
hardware from Fig. 4. Task creation and deletion
will need three clock beats respectively; By contrast,
task suspension, recovery and inquiry will need only
one clock beat respectively.

Fig. 4 Diagram Of Simulation Results

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

555

5. CONCLUSIONS AND FUTURE WORK

In view of the problem that traditional real-time
operating system kernel occupies more system
resources, and affects greatly the real-time
performance of the whole system, we put forward
the solution to implement task management by
separate hardware circuits in this paper. It has been
emphasized that implementing the process of task
management of real-time operating system by FPGA.
The simulation results show that the hardware
realization of task management holds the correctness
of system calls, as well as reducing corresponding
execution time and the overhead of processors.
Therefore, we make beneficial explorations for the
realization of hardware RTOS.

At present, a significant trend is that computer
software and hardware combine together closely.
Softening hardware and hardening software have
become two kinds of parallel development
orientation of computer systems. With the
development of embedded systems, it is difficult for
the performance of traditional embedded real-time
operating system to meet the need of high-end
applications. At the same time, with the
development of SOC (System On Chip) technology,
hardening software has gained wide development
space. We have implemented part functions of
embedded real-time operating system by hardware
so far, next we will consider how to finish the
hardware-software partitioning of embedded real-
time operating system, how to design and realize a
hardware-software hybrid operating system. We
believe it will be a new, very influential project.

ACKNOWLEDGMENTS

We would like to thank the research foundation of
national natural science fund project of China for
contract 60972127, under which the present work
was made possible.

REFERENCES

[1] Adomat J, Furunas J, Indh L, et al. Real-Time
Kernel in Hardware RTU: A step towards
deterministic and high performance real-time
systems[C].In Proceedings of eighth Euromicro
Workshop on Real-Time Systems, 1996, pp.
683–688.

[2] V. Mooney III, J. Lee, A. Daleby, K. Ingstrom,
T. Klevin and L.Lindth. A comparison of the
RTU hardware RTOS with a hardware/software

RTOS[C], Design Automation Conference
(ASP-DAC’ 2003).

[3] Vincent J. Mooney III. Hardware/software
partitioning of operating systems[C], Design,
Automation and Test in Europe Conference
(DATE’ 2003), vol.2, pp. 338–339.

[4] Mooney V.J, III, Blough D.M.A Hardware-
Software real-time operating system framework
for SOCs [J].IEEE Design and Test of
Computers Magazine, 2002, 19(6):44-52.

[5] T.Nakano, U. Andy, M. Itabashi, A. Shiomi and
M.Imai. Hardware Implementation of a Real-
time Operating System [J]. Proceedings of the
Twelfth TRON Project International Symposium,
IEEE Computer Society Press, Nov, 1995. pp.
34-42.

[6] PETER WALDECK, NEIL BERGMANN.
Dynamic hardware-software partitioning on
reconfigurable system-on-chip [J].System-on-
Chip for Real-Time Applications, 2003,30:102-
105.

[7] MOONVIN SONG, SANG HONG,YUNMO
CHUNG. Reducing the overhead of real-time
operating system through reconfigurable
hardware [C]. Digital System Design
Architectures, Methods and Tools, DSD 2009:
311-314.

[8] So HK. BORPH: An operating system for
FPGA-based reconfigurable computers [D].
Berkeley: University of California, 2010.

http://www.jatit.org/

