
Journal of Theoretical and Applied Information Technology 
 10th February 2013. Vol. 48 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
496 

 

EFFICIENT TRAINING OF RBF NETWORKS VIA THE 
KURTOSIS AND SKEWNESS MINIMIZATION LEARNING 

ALGORITHM 
 

1LIN WANG, 2JINWEN MA 
1 Department of Information Science, School of Mathematical 

Sciences and LAMA, Peking University 
2 Prof., Department of Information Science, School of Mathematical 

Sciences and LAMA, Peking University 

E-mail:  1wal@pku.edu.cn , 2 jwma@math.pku.edu.cn  
 
 

ABSTRACT 
 

Radical Basis Function (RBF) networks have been widely used in time series prediction because of their 
simplicity, robustness, good approximation and generalization ability. However, it is still rather difficult to 
select the number and locations of the hidden units of the RBF network appropriately for a specific time 
series prediction problem. In this paper, the Generalized RBF networks have been established with 
Gaussian density functions instead of Gaussian functions for the hidden units. Then, we utilize the kurtosis 
and skewness minimization criterion as well as the corresponding learning algorithm to select the 
appropriate number and initial parameters of the hidden units from an input data set automatically for the 
generalized RBF network on a time series prediction task. It has been demonstrated by the experiments that 
the generalized RBF network trained with the kurtosis and skewness minimization learning algorithm is 
feasible and efficient on typical chaos time series. 

Keywords: Radical Basis Function (RBF) Network, Time Series Prediction, Kurtosis and Skewness 
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1. INTRODUCTION  

 
The Radial Basis Function (RBF) networks [1]-

[2] are a typical class of forward neural networks 
widely used in the fields of pattern recognition and 
information processing. Actually, the RBF network 
is a two-layer forward neural network such that 
each hidden unit implements a radial basis function 
and the output units implement a weighted sum of 
hidden unit outputs. With such a structure, it can 
approximate any continuous function as long as the 
number of hidden units is large enough. Moreover, 
its structure is simple and the learning process is 
quite efficient with a good generalization. 
Therefore, the RBF network has been widely 
applied to various practical problems involved in 
speech recognition, clustering analysis, time series 
prediction, etc., and the most commonly used radial 
basis functions in the RBF networks are Gaussian 
activation functions. 

However, the training of the RBF network is still 
a rather difficult task. The key crucial problem is 
how to select the number and locations of the 
hidden units appropriately for a practical problem. 

Although there are many learning methods for 
training the RBF network, most of them utilize a 
test-and-growing or evolutionary mechanism to 
select the number of hidden units for practical 
applications (e.g., [3]-[5]). Clearly, such learning 
methods are time consuming and quite easy to be 
trapped in a local solution. Actually, a good 
selection of hidden units should appropriately 
match the structure of input data associated with a 
practical problem. 

Recently, some new learning methods have been 
proposed to determine the number of hidden units 
of the RBF network. With the development of 
competitive learning, the rival penalized 
competitive learning (RPCL) algorithm was 
proposed to determine the number of clusters or 
Gaussians in a dataset automatically [6]-[7]. Thus, 
it provided a new tool for selecting the number of 
Gaussians or units from the input data for the RBF 
network. Alternatively, based on the Bayesian 
Ying-Yang (BYY) harmony learning theory [8]-[9], 
a new kind of automated model selection (AMS) 
learning algorithms have been established for the 
Gaussian mixture modeling [10]-[12]. As a matter 
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of fact, this kind of BYY-AMS learning algorithms 
can automatically determine the number of 
Gaussians in a dataset during parameter learning, 
which can be utilized to select the number of 
Gaussians as being the hidden units in the RBF 
network with an input dataset. 

For time series prediction, the RBF network 
plays an important role and often leads to a better 
result (e.g., [13]-[14]). Since the input data 
associated with a time series prediction problem are 
generally subject to a Gaussian mixture model, it is 
better to generalize the RBF network by replacing 
the Gaussian kernel functions with Gaussian 
density functions. In this way, the training of the 
RBF network can be effectively implemented by an 
AMS learning algorithm for Gaussian mixtures 
[15]. In [16], a powerful kurtosis and skewness 
minimization criterion of model selection as well as 
the corresponding greedy EM algorithm was 
established for Gaussian mixture modeling with 
automated model selection. Moreover, the greedy 
EM algorithm was further improved in [17]. 
However, these greedy EM algorithms are time 
consuming and easy to be trapped in a local 
solution. 

In the current paper, we propose a split-and-
merge EM algorithm based on the kurtosis and 
skewness minimization criterion. This new kurtosis 
and skewness minimization learning algorithm 
starts from an appropriate initial number of 
Gaussians and finally arrives at the correct number 
of Gaussians in the input dataset automatically and 
robustly. Moreover, we apply it to the training of 
the generalized RBF network for time series 
prediction. It is demonstrated by the experiments on 
two typical chaos time series datasets that the 
proposed kurtosis and skewness minimization 
learning algorithm is effective and efficient on the 
training of the generalized RBF network for time 
series prediction. 

In the sequel, the kurtosis and skewness 
minimization criterion as well as the kurtosis and 
skewness minimization learning algorithm are 
introduced in Section II. In Section III, we present 
the model of the generalized RBF network as well 
as the training method according to the kurtosis and 
skewness minimization learning algorithm. The 
time series prediction experimental results of the 
generalized RBF network with the kurtosis and 
skewness minimization learning algorithm are 
demonstrated in Section IV. We finally give a brief 
conclusion in Section V. 

2. KURTOSIS AND SKEWNESS 
MINIMIZATION LEARNING 
ALGORITHM  

 
2.1 The Kurtosis and Skewness Minimization 

Criterion 
We begin to introduce the kurtosis and skewness 

minimization or zeroing criterion suggested in [16] 
for model selection of the Gaussian mixture 
modeling on a given dataset. For a univariate 
Gaussian, both the sample kurtosis and skewness 
tends to be zero as the number of samples tends to 
infinity according to the theory of large samples. 
For a multivariate Gaussian, the samples projected 
onto any direction are also subject to a univariate 
Gaussian. Then, we can compute the sample 
kurtosis and sample skewness for the multivariate 
Gaussian along some projection directions. In this 
way, the sample kurtosis and skewness can be also 
used to measure how well the Gaussian distribution 
fits the sample data. For the Gaussian mixture 
modeling, as each component is expected to subject 
to a Gaussian distribution, we can compute its 
sample kurtosis and skewness with the samples it 
occupies and check whether it is small enough. 
Thus, the sample kurtosis and skewness can always 
offer us information to decide whether we have got 
the right number of Gaussians as well as the good 
estimation of other parameters in the Gaussian 
mixture model. 

To implement the kurtosis and skewness 
minimization criterion, we begin to make the 
singular value decomposition for the covariance 
matrix of each Gaussian and select the first F  
eigenvectors to be the projection directions. Here, 
F  should be selected such that the projected data 
of the samples on the F eigenvectors can contain 
the information of the high dimensional samples as 
much as possible and the noise within the samples 
as little as possible. For the mixture model of k  
Gaussians, we can classify the samples into 
k Gaussians (i.e., clusters) according to the 
maximum posterior ( | )ip l x , that is, ix  belongs to 

the l th−  Gaussian if  

1
arg max ( | ).i

j k
l p j x

≤ ≤
=                        (1) 

Let 1{ ,..., }l l l
mX x x= be the samples belonging to 

Gaussian l , 1 ,...,l l
Fv v are the first F eigenvectors 

of the covariance matrix lΣ . We can define the 

sample kurtosis of the Gaussian l  along the 
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direction l
fv , named l

fku , as follows: 

4

1

1 ( ) 3,
l lm
fi fl

f l
i f

y m
ku

m σ=

−
= −∑                         (2) 

where l
fiy  are the projected data of l

ix on the 

direction of l
fv , l

fm and l
fσ are the mean and 

standard deviation of the projected 
data 1{ ,..., }l l l

f f fmY y y= . 

In this way, the sample kurtosis of Gaussian l  
can be defined by  

1

( ).
F

l
l f

f
ku abs ku

=

= ∑                           (3) 

In a similar way, we can define the sample 
skewness of the Gaussian l along the direction l

fv , 

named l
fsk , as follows: 

3

1

1 ( ) ,
l lm
fi fl

f l
i f

y m
sk

m σ=

−
= ∑                       (4) 

and the sample skewnes of Gaussian l by: 

1

( ).
F

l
l f

f
sk abs sk

=

= ∑                            (5) 

Combining the sample kurtosis and skewness of 
the l th−  Gaussian together, we have 

.l l ls ku sk= +                                   (6) 

If Gaussian l  fits the sample data in its vicinity, 
the sample kurtosis and skewness sum ls  of the 

l th−  Gaussian should be approximately zero as 
the number of samples is large enough. In order to 
test how well the Gaussian mixture model fits all 
the samples of k  Gaussians, we can compute the 
weighted average of these individual sample 
kurtosis and skewnesses: 

1
.

k

T l l
l

S sπ
=

=∑                             (7)  

According to the above definitions, it is clear that 
the total sample kurtosis and skewness sum TS  can 
be regarded as a measure on how well a Gaussian 
mixture fits the sample data. Since a small value of 

TS  indicates that every Gaussian in the mixture fits 
the samples well in its vicinity, that is, the Gaussian 
mixture is a good approximation of the latent 
mixture distribution. Otherwise, if the value of TS  

is large, the samples belonging to certain Gaussians 
do not really come from a Gaussian distribution so 
that we should adjust the number of Gaussians or 
the parameters of the Gaussians. In any way, the 
true Gaussian mixture model of the sample data 
leads to the minimization or zeroing of the sample 
kurtosis and skewness sum, which can serve as a 
kurtosis and skewness minimization criterion for 
model selection of the Gaussian mixture modeling. 

2.2 The Kurtosis and Skewness Minimization 
Learning Algorithm 

Based on the kurtosis and skewness 
minimization criterion, we can construct the split-
and-merge EM algorithm for the Gaussian mixture 
modeling with automated model selection. For 
short, we refer to it as the kurtosis and skewness 
minimization learning algorithm. Actually, it 
implements the usual or conventional EM 
algorithm for parameter estimation and adjusts the 
number of Gaussians by splitting or merging some 
unsuitable Gaussians being checked by the kurtosis 
and skewness measure. The main idea of the 
proposed algorithm is that, in each iteration, we try 
to maximize the likelihood by the usual EM 
algorithm for parameter learning, and to minimize 
the total sample kurtosis and skewness sum for 
model selection with the split-and-merge 
mechanism.  

We firstly initialize k  with a suitable value 
which can be a predicted value of the number of 
actual Gaussians in the dataset. The parameters of 
k  Gaussians in the mixture can be initialized with 
the k -means algorithm. We then perform the usual 
EM algorithm until convergence. Furthermore, we 
select certain most likely unsuitable Gaussians to 
split or merge. With the new Gaussians, we 
perform the usual EM algorithm again and again 
until the sample kurtosis and skewness sum arrives 
at the minimum value. 

1. The Merging Mechanism. For any two 
Gaussians with mean iµ , jµ , covariance iΣ ,

jΣ , we 
define the degree of  separation between them  as 
follows (refer to [18]): 

, max{ ( ), ( )}.i j i j i jc trace traceµ µ= − Σ Σ   (8) 

Since ,i jc  denotes the degree of separation of the 

two Gaussians, the lower value of ,i jc  reflects the 
higher degree of overlap between the two 
Gaussians. We can choose the two Gaussians with 
the two lowest values of ,i jc  to be merged, and set 
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the parameters of the new merged Gaussian r  by 
the following rules: 

;r i jπ π π= +                                    (9) 

( ) / ;r i i j j rµ π µ π µ π= +                  (10) 
( ) / .r i i j j rπ π πΣ = Σ + Σ                  (11) 

2. The Split Mechanism. In order to decrease the 
sample kurtosis and skewness sum, the Gaussian 
which contributes most significantly to the high 
value of the sum, that is, the Gaussian with the 
maximum value of ( )l l lku skπ + , should be split. 
Actually, we can divide such a Gaussian into two 
Gaussians i′  and j′  with their parameters 
designed as follows (refer to [19]). 

For convenience, we decompose the covariance 
matrix kΣ  by T

k USVΣ = , where 

1 2[ , ,..., ]dS diag s s s= is a diagonal matrix with 
nonnegative diagonal elements in a descent order, 
U and V are two (standard) orthogonal matrices. 
We then set 

1 2[ , ,..., ]dA U S Udiag s s s= = and 

get the first column 1A  of A . In this way, the 
parameters for the two split Gaussians can be given 
as follows, whereγ ,µ , β  are all set to be 0.5. 

, (1 )i k j kπ γπ π γ π′ ′= = − ;                     (12) 
1 2

1( )i k j i Aµ µ π π µ′ ′ ′= − ;                 (13) 
1 2

1( )j k i j Aµ µ π π µ′ ′ ′= +  ;              (14) 
2

1 1( ) (( 1)( ) 1) T
i j i k k i A Aπ π β βµ π π′ ′ ′ ′Σ = Σ + − − + ;   

(15)     
2 2

1 1( ) (( )( ) 1) T
j i j k k j A Aπ π βµ β µ π π′ ′ ′ ′Σ = Σ + − − +

(16) 

3. The Procedure of the Proposed Algorithm. In 
each iteration, if k  is too large, there may be two 
Gaussians overlapped strongly so that it is likely to 
fit the samples of one Gaussian in its vicinity with 
two estimated Gaussians. So, we need to merge 
these two estimated Gaussians into one. Actually, if 
the value of ,i jc  of two Gaussians is less than a 
threshold value, we just merge the two Gaussians 
and accept the merge result. As for the spilt 
operation, if the value of ,i jc of the two new 
Gaussians is less than the threshold value, we will 
cancel this split operation and find out the next 
candidate Gaussian to be split. 

The number F  of project directions is generally 

set to be slightly greater than half of the sample 
dimensionality. The termination condition of the 
algorithm is that either the merge or split operation 
do not decrease the sample kurtosis and skewness 
sum any more. 

With the preparations all above, we can present 
the procedure of the kurtosis and skewness 
minimization learning algorithm (as a split-and-
merge EM algorithm with the kurtosis and 
skewness minimization criterion) as follows: 

Step 1. Initialization: set the initial number of k as 
a reasonable prediction value, and then set the 
initial parameters kΘ  of the Gaussian mixture via 

the k -means algorithm. 
Step 2. Implement the usual EM algorithm until 
convergence and compute TS . 
Step 3. Merging Operation: 
 (a) Merge the two Gaussians i and j with the least 

,i jc into one Gaussian according to Eqs. (9) - (11). 
 (b) Implement the usual EM algorithm to obtain 
the updated parameters mergeΘ . 

 (c) If ,i j thresholdc c< , set 1k k= − , 
k mergeΘ = Θ , return 

to Step 3(a); otherwise,  compute merge
TS . 

Step 4. Split Operation: 
 (a)  Set split

TS a large enough number. 

 (b) Sort these ( )l l lku skπ + in the descending order, 
and set 1p = . 

 (c) Split the Gaussian with the p th− largest value 

of ( )l l lku skπ + into two new 

Gaussians i′ , j′ according to Eqs. (12) - (16). 
 (d) Implement the usual EM algorithm to obtain 
the updated parameters splitΘ . 

 (e)   If ', ' >i j thresholdc c , compute split
TS , otherwise, 

refuse the split result and set 1p p= + , if p k≤ , 
return to Step  4(c) otherwise go to step 5;  
Step 5. Compare the three values of TS , merge

TS  

and split
TS : 

 (i). If min( , , )split merge split
T T T TS S S S= , we accept the 

result of the split operation and 
set 1k k= + , k splitΘ = Θ , go to Step 2; 

 (ii). If min( , , )merge merge split
T T T TS S S S= , we accept 

the result of the merge operation and 
set 1k k= − , k mergeΘ = Θ , go to Step 2; 
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 (iii). If min( , , )merge split
T T T TS S S S= , we stop the 

algorithm with the current kΘ as the final result of 
the algorithm. 
3. TRAINING OF THE GENERALIZED RBF 

NETWORK 
 
3.1 The Generalized RBF Network 

We begin to introduce the structure of RBF 
network. The RBF network is a two-layer forward 
neural network and its outputs are given by 

1
( ) ( ),    1,..., ,

k

l jl j
j

y x R x l mω
=

= =∑            (17) 

where k  is the number of hidden units or RBF's, 

jlω  is the weight on the connection from the 

j th−  hidden unit to the l th−  output unit.  

( )jR x  is the j th−  Radial Basis Function (RBF) 

of the input x  serving as the output of the j th−  
hidden unit. When the RBF network has only one 
single output unit, the output function of the RBF 
network becomes the following simple version:  

1
( ) ( ).

k

j j
j

y x R xω
=

=∑                      (18) 

Here, we just use this simple structure of the RBF 
network for time series prediction. 

Actually, the most commonly used radial basis 
function is Gaussian kernel function given by: 

2

2

|| ||
( ) (|| ||) exp{ },

2
j

j j
j

x
R x x

µ
φ µ

σ
−

= − = −    (19) 

where jµ , jσ  are the center and scale of the 

Gaussian RBF ( )jR x , respectively. 

For the generalized RBF network, the Gaussian 
density function is adopted as the radial basis 
function, instead of Gaussian kernel function. In 
fact, the Gaussian density function is given by 

1
1

2 2

1 1( ) exp{ ( ) ( )},
2(2 ) | |

T
j j j jd

j

R x x xµ µ
π

−= − − Σ −
Σ

(20) 

where jµ , jΣ  are the mean and covariance matrix 
of the Gaussian distribution. 

The generalized RBF network can make better 
use of the statistic properties of the input data 
which may be or approximately be distributed as a 
Gaussian mixture. So, it has more extensive 
adaptability. Therefore, we can directly utilize the 

kurtosis and skewness minimization learning 
algorithm on the input data to determine the 
number of hidden units and to set the initial mean 
and covariance matrix of each Gaussian density 
function. 

3.2 The Least Mean Square (LMS) Algorithm 
After determining the number of the hidden units 

and setting the initial value of the parameters of the 
generalized RBF network, we can implement the 
Least Mean Square (LMS) algorithm to learn the 
parameters of the generalized RBF network jω , jµ  

jΣ  for 1, 2,...,j k= .  

In fact, the mean square error of the generalized 
RBF network on a sample data set 

1{( , )}N
t t tS x y == 

can be given as follows: 

2 2

1 1 1

1 1ˆ ˆ( ) ( ( )) ,
2 2

N N k

t t t j j t
t t j

E y y y R xω
= = =

= − = −∑ ∑ ∑    (21) 

where ty  is the output of the network with input tx . 

Then, we have the derivatives of E  with respect 
to jω , jµ  and jΣ respectively, as follows: 

1

ˆ( ) ( );
N

t t j t
tj

E y y R x
ω =

∂
= −

∂ ∑                (22) 

1

( )
ˆ( ) ;

N
j t

t t j
tj j

R xE y y ω
µ µ=

∂∂
= −

∂ ∂∑              (23) 

1

( )1 ˆ( ) .
2

N
j t

t t j
tj j

R xE y y ω
=

∂∂
= −

∂Σ ∂Σ∑            (24) 

According to the above derivatives as well as the 
further derivatives on ( )jR x  and using the 
gradient descent method, we have the LMS 
learning rules on the parameters jω , jµ  of the 
generalized RBF network as follows: 

1

ˆ( ) ( );
N

j t t j t
t

y y R xω η
=

∆ = −∑                 (25) 

and 

1

1

ˆ( ) ( ) ( ),
N

j t t j j t j t j
t

y y R x xµ η ω µ−

=

∆ = − Σ −∑        (26) 

where 0η >  is the learning rate. 

As for the covariance matrix jΣ , since it is 
constrained to be positive definitiveness, we can 
decompose it by 
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,T
j j jB BΣ =                          (27) 

and then the LMS learning rule of jB  can be given 
by 

1

1 1 1

( )
ˆvec[ ] ( ) ( )

2

                      vec[ ( )( ) ]

TN
j j

j t t j j t
t j

T
j t j t j j j

B B
B y y R x

B

x x

η ω

µ µ
=

− − −

∂
∆ = −

∂

⋅ Σ − − Σ −Σ

∑ (28) 

where vec[ ]A  denotes the connect column vectors 
in order, that is, if 

11 1

1

,
d

d dd

a a
A

a a

 
 =  
 
 



  



                     (29) 

we have 

11 1 1vec[ ] ( ,..., ,..., ,..., ) .T
d d ddA a a a a=         (30) 

And 

2 2

T
T T

d d d d d d d dd d

BB I B E B I
B × × × ××

∂
= ⊗ + ⋅ ⊗

∂
       

(31) 
where⊗ denotes the Kronecker product, and 

2 2 2 2

11 12 1

21 22 2

1 2

( )

                    

T

ijd d d d

d

d

d d dd

BE
B× ×

∂
= = Γ
∂

Γ Γ Γ 
 Γ Γ Γ =
 
 
Γ Γ Γ 





   



       (32) 

where ijΓ is a matrix of d d× , where the ( , )thj i is 
1, others are 0. 

Summing up Equations (25), (26), (27) and (28) 
together, we have the LMS learning rules of the 
parameters jω , jµ and jΣ . Actually, we will 
implement it to learn the final parameters of the 
generalized RBF network for time series prediction 
in next section. 

4. EXPERIMENTAL RESULTS 
 

In this section, we implement the kurtosis and 
skewness minimization learning algorithm as well 
as the LMS algorithm on the training of the 
generalized RBF network for nonlinear time series 
prediction. Actually, two famous chaos time series, 
Mackey-Glass time series and Rossler time series, 
are used for test. For comparison, we also use the 
BP network and the conventional RBF network for 

the same prediction problem on the two time series. 
Here, we use the root mean square error (RMSE) as 
the index of the prediction accuracy. 

2

1

1 [ ( )]
N

i i
i

RMSE y f x
N =

= −∑                (33) 

where iy  is the expected output, and ( )if x  the 

actual output of the network, for input ix . 

4.1 On the Mackey-Glass Time Series Prediction 
We firstly train the generalized RBF network 

with the kurtosis and skewness minimization 
learning algorithm and the LMS algorithm for the 
Mackey-Glass time series prediction. As shown in 
Fig. 1, a piece of the Mackey-Glass time series is 
generated via the delay differential equation: 

( ) ( ),
1 ( )c

ax tx bx t
x t

τ
τ

−
= −

+ −
                 (34) 

where 0.2a = , 0.1b = , 17τ = . Particularly, 
1000 sample data are generated to form pieces of 
time series as 
{ ( 18), ( 12), ( 6), ( ), ( 6)},x t x t x t x t x t− − − +  
118 1117t≤ ≤ , where the first four data of each 
sample are considered as an input data of the 
generalized RBF network, while the last one is 
considered as the expected output of the 
generalized RBF network. Mathematically, the 
expected output ( 6)iy x t= +

, the input sample 

{ ( 18), ( 12), ( 6), ( )}ix x t x t x t x t= − − − . In the 
experiment, we divide these 1000 sample data into 
two sets: the training and test sets with the 
preceding and remaining 500 sample data, 
respectively. 

We implement the kurtosis and skewness 
minimization learning algorithm to design the 
generalized RBF network and set the initial 
parameters for the prediction of the Mackey-Glass 
time series. Actually, the number of hidden units is 
determined to be 8. The LMS algorithm is further 
implemented to obtain the final parameters of the 
network and the prediction result on the test data is 
given in Fig. 2, with the prediction mean square 
error 0.0044, which is the lowest prediction error 
among the four neural networks on the Mackey-
Glass time series (see Table I for details). 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th February 2013. Vol. 48 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
502 

 

Fig. 1  The Sketch Of The Mackey-Glass Time Series. 

 
Fig. 2  The Prediction Result Of The Generalized RBF 

Network With The Kurtosis And Skewness Minimization 
Learning Algorithm And The LMS Algorithm For The 
Mackey-Glass Time Series, Where+  Represents The 

Sample Datum, While×Represents The Prediction 
Datum. 

4.2 On the Rossler Time Series 
We further train the generalized RBF network 

with the kurtosis and skewness minimization 
learning algorithm and the LMS algorithm for the 
Rossler time series prediction. As shown in Fig. 3, 
a piece of the Rossler time series is generated via 
the differential equations:  

( )

x y z
y x ay

z b z x c

= − −
 = +
 = + −







                          (35) 

where 0.2a = , 0.1b = , 5.7c = . Particularly, 
1000 sample data are generated to form pieces of 
time series as 
{ ( 18), ( 12), ( 6), ( ), ( 6)}x t x t x t x t x t− − − + , 
318 1317t≤ ≤ , where the first four data of each 

sample are considered as an input data of the 
generalized RBF network, while the last one is 
considered as the expected output of the 
generalized RBF network. Mathematically, the 
expected output ( 6)iy x t= + , the input sample 

{ ( 18), ( 12), ( 6), ( )}ix x t x t x t x t= − − − . In the 
experiment, we divide these 1000 sample data into 
two sets: the training and test sets with the 
preceding and remaining 500 sample data, 
respectively. For convenience, we can preprocess 
these Rossler time series data so that the value 
scope of ( )x t  is [0,1.6]  according to the 
transformation:  

( ) ( ( ) 10) 15x t x t′ = +                       (36) 

Table I The Prediction Accuracies Of Four Neural 
Networks On The Mackey-Glass Time Series. 
The Neural Network RMSE 
The BP network 0.0109 
The RBF (with 10 hidden units) 0.0198 
The RBF (with 23 hidden units) 0.0107 
The Generalized RBF 0.0044 

Table II The Prediction Accuracies Of Four Neural 
Networks On The Rossler Time Series. 

The Neural Network RMSE 
The BP network 0.0049 
The RBF (with 10 hidden units) 0.0568 
The RBF (with 23 hidden units) 0.0146 
The Generalized RBF 0.0040 

Fig. 3  The sketch of the Rossler time series. 
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Fig. 4  The Prediction Result Of The Generalized RBF 

Network With The Kurtosis And Skewness Minimization 
Learning Algorithm And The LMS Algorithm For The 
Rossler Time Series, Where+  Represents The Ample 

Datum, ×Represents The Prediction Datum. 

In the same way, we implement the kurtosis and 
skewness minimization learning algorithm to 
design the generalized RBF network and set the 
initial parameters for the prediction of the Rossler 
time series. Actually, the number of hidden units is 
determined to be 9. We further implement the LMS 
algorithm to obtain the final parameters of the 
network. The prediction result of the generalized 
RBF network on the test data is given in Fig. 4, 
with the prediction mean square error 0.0040, 
which is the lowest prediction error among the four 
neural networks on the Rossler time series (see 
Table II for details). 

Based on the experimental results on two typical 
chaos time series, we have found that the 
generalized RBF network with the kurtosis and 
skewness minimization learning algorithm really 
improves the prediction accuracy in comparison 
with the BP network and the conventional RBF 
networks. 

5. CONCLUSIONS 
 

We have investigated the training of the RBF 
network from the input dataset and proposed the 
kurtosis and skewness minimization learning 
algorithm for determining the number of hidden 
units and setting the initial values of the parameters 
in the generalized RBF network. Actually, the 
proposed kurtosis and skewness minimization 
learning algorithm is based on the newly 
established kurtosis and skewness minimization 
criterion and operates in a way of the split-and 
merge EM algorithm. When the structure and initial 
parameters of the generalized RBF network are 
obtained, the least mean square algorithm can be 

implemented to get the final parameters. It is 
demonstrated by the experiments on the two typical 
chaos time series that the generalized RBF network 
with the kurtosis and skewness minimization 
learning algorithm really improves the prediction 
accuracy and outperforms the BP network and the 
conventional RBF networks. 
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