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ABSTRACT 
 

For the problem that Genetic Algorithm （GA） suffers from large iteration times and low efficiency in 
test case generation, this paper proposes a Modified Genetic Algorithm （MGA）. The algorithm adopts 
real number coding and the principles of logic coverage, while the fitness function is to be improved. In 
addition, it adds genetic-oriented control. The algorithm is conducive to population diversity and avoids 
premature convergence phenomenon. Experimental result shows that MGA has faster convergence speed 
and higher test data generation efficiency compared with traditional genetic algorithm. 
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1. INTRODUCTION  
 

Software testing is an important means to 
guarantee the quality of software. In current 
software development process, the cost of testing 
covers a half of the total cost of software 
development. Test case is a commonly used tool to 
realize the effectiveness of software testing, and 
also a key to guarantee such effectiveness. The 
manual test case building of testers not only 
requires heavy workload and long testing period, 
but also can trigger testing omissions easily[2]. 
Therefore, automatic generation of test case has 
always been studied in an extensive range. 
Automatic generation of test case can reduce the 
cost of software development, substantially enhance 
software reliability and shorten the period of 
software development. 

Efficient methods of test case generation can 
produce highly quailed test cases in a small number, 
thus reducing the cost of software development. 
Therefore, studying an effective method of test case 
generation has its practical significance[1]. 
Automatic generation of test case refers to the 
process of seeking a group of test input data that 
can meet given testing standards within a data 
domain, and that’s why there are thoughts about 
transforming the generation of test case to path 
search in recent years. Under general situation, the 
undecidability of test case generation, as well as the 
scale and complexity of programs being tested 
greatly restricts general search algorithm. As a 

result, genetic algorithm has been applied to the 
generation of test case. In practical application, due 
to its own defects of genetic algorithm, premature 
convergence is a phenomenon in genetic algorithm 
that cannot be neglected, which is mainly reflected 
in that all individuals in the group are stuck in the 
same extreme value while those stopping evolution 
are the most approximate to optimal solution are 
always eliminated, namely, misconvergence occurs 
in the evolutionary process. In addition, if such 
questions as parameter coding scheme, the selection 
and control of operator, adjustment strategies of fit 
value, together with the control of group size and 
coverage of initial test case cannot be solved 
evenly, it is quite difficult for genetic algorithm to 
realize ideal effect. 

In order to avoid premature convergence and 
generate efficient and ideal test case, this 
dissertation aims at improving genetic algorithm by 
realizing branch coverage condition in programs 
through programs being tested, dynamically 
realizing path set of programs, and improving 
fitness evaluation function. Then this dissertation 
adds genetic orientation control, which can work as 
a guide in selecting genetic operation, and enable it 
to inherit toward multiple-path coverage direction. 

2.   TECHNIQUES OF  GENETIC 
ALGORITHM  IN SOFTWARE TEST CASE 
GENERATION 

 

Biological evolution is a wonderful optimization 
procedure, which generates fine species that can be 
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adapted to environmental changes through such 
rules as selective elimination, variation and genetic 
endowment.  

Genetic algorithm (Genetic Algorithm) is a 
global optimization algorithm inspired by the 
thoughts of biological evolution. The main feature 
of genetic algorithm lies in that it operates structure 
target directly without the restriction of derivation 
and function continuity, and that it has internal 
implicit parallelism and better capability in global 
optimization[3][5]. By adopting randomized 
optimizing method, optimized searching space can 
be acquired and guided automatically, and 
searching directions can be adjusted of its own 
accord without determining any rules. It is, in 
essence, a direct searching method that does not 
rely on specific questions. With strong robustness 
of the category of questions, this method has been 
extensively applied in many disciplines, such as 
function optimization, production dispatching, 
automatic control, image processing, pattern 
recognition, artificial life and machine learning. 

The operation target of genetic algorithm is 
chromosome, which consists of a string of numbers. 
In this numerical string, each number is called 
gene. A combination of a series of chromosomes 
constitutes a population. Each chromosome has a 
fitness, which is used to determine the possibility of 
the survival of its next generation. After the next 
generation appears, a part of chromosomes cross 
while a smaller part witness genetic variation. 

By coding parameters of programs being tested, 
which play the role as chromosome, we can 
introduce genetic algorithm to software test case 
generation field. The size of population decides the 
number of chromosomes, with each chromosome 
has its fitness[4]. In the genetic process, fitness of 
groups need to be evaluated, test data can be 
achieved by decoding populations that meet the 
termination conditions of heredity, and if there they 
fail to meet such termination conditions, 
populations require genetic operation (selection, 
cross and variation), so as to evolve to more 
optimized ones, thus offering more efficient test 
cases for us. The mathematical formula applying 
genetic algorithm to the generation of test case is 
shown below: 

0( , , , , , , , , )GATD C E P M S A V T PT=  
C presents coding method, E presents fitness 
function, M presents the population size, S presents 
the selection operator, A presents a crossover 
operator, P0 presents the mutation operator, T 

presents the termination condition, PT is the target 
path required to cover. 

3. IMPROVED ALGORITHM 
 

Studies on the introduction of tradition genetic 
algorithm in automatic generation of test case have 
important influence on the automation of software 
testing, the efficiency and quality of case 
generation is not quite satisfying though. This 
dissertation combines Delaunay triangulation 
network in program generation and improves 
genetic algorithm, so that it can inherit toward a 
more oriented and ideal direction in case generation 
in a shorter period of time, thus enhancing the 
efficiency and quality of case generation[9]. 

3.1 Coding Scheme 
The input parameters of Delaunay triangulation 

network generation program being tested are 
uncertain two-dimensional unorganized points. 
Different from common programs, this program has 
relatively high requirements in accuracy and a wide 
indicating range. Therefore, commonly used binary 
coding method cannot be adopted here in coding. 
Instead, real-number coding is suggested here, so 
that it is more convenient to realize genetic 
searching in a larger space, improve computing 
complexity of genetic algorithm and enhancing 
mathematical operation efficiency[10]. Real-
number coding uses true values of target variable, 
so it is also called truth-value coding method. For 
example, each individual of the program being 
tested has fifteen points, which can be presented 
with real-number coding as follows: 

20.356125 125.122345

350.251345 213.365421

.... ...

43.251456 167.854294

 
 
 
 
 
 

 

3.2 Fitness Function 
As an important evaluation function indicating 

advantages and disadvantages of populations, 
fitness function is a connector with practical 
questions[6]. As to branch coverage or path 
coverage, fitness value Fi of individuals in 
population can be considered as the ratio of a 
branch f (or path) of practical coverage of test case 
to total branches z (or paths) in program being 

tested, /iF f z= ,  it indicates individual branch 

coverage rate. However, in this way, fitness 
function is merely shown by numerical values, as to 
which branches are covered and which are not, as 
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well as the influence individual fitness has on that 
of the whole population are still unclear. That’s 
why a visible population fitness condition is 
required, so that it can be shown by matrix. Take 
branches of program being tested as the column and 
individuals in population as the row. For example, 
there are n branches in program being tested, 

1 2 3( , , ,... )np p p p  and individuals in population 

are(1,2,3,... )m   , then we can achieve a coverage 

matrix: 

11 12 1

21 22 2

1 2

...

...

...

...

n

n

m m mn

v v v

v v v

v v v

 
 
 
 
 
 

,  

When individual i passes branch j, vij item in D is 
1, otherwise 0. In this way, the coverage of each 
individual branch can be clearly seen. The bigger 
the number of 1 in each row gets, the bigger fitness 
this individual shows. When each column in the 
matrix has one or more 1, it means all branches are 
covered, and this population is an ideal one. We can 
then achieve population fitness:  1/Pf sm z= , in 

this formula z is the total number of branches in 
program being tested, and sm1 is the number of 

columns that can meet
1

1( 1,2,..., )
m

ij
i

v j n
=

≥ =∑  in 

matrix D. 

3.3 Path Coverage 

At present, there are mainly two ways to generate 
test data in accordance with paths: (1) black-box 
testing; (2) white-box testing. This dissertation 
adopts the second method, and combines improved 
genetic algorithm to generate test case. 

It is found out in the study process that the 
combination of all branches of program being 
tested contains all paths in the project. For example, 
there’s a program flow, as you can see in Figure 1. 
There are four branches b, c, e and f, the starting s 
and ending o should also be classified into branch, 
but s and o do not combine with other branches. 
After combination, we have 

{ }, , , , ,...sbeo sbfo sceo scfo sbcefo  

 There are four paths in total:  

, , ,sbeo sbfo sceo scfo  

It can be apparently seen that the combination of 
branches contain these four paths in the program. 
However, when evaluating path coverage, we 

cannot regard all combinations of branches as the 
target paths. If there are many branches, the paths 
of such combinations will be far more than the real 
number of target paths. In order to omit excessive 
branch combinations and at the same time, 
guarantee its integrity, path collection should 
guarantee to be dynamic. In 3.2, “1” with 
corresponding branch in each row of the branch 
coverage matrix D represents covered branch. 
Therefore, by recording all covered branches in the 
row, we can get a path, with which we can initialize 
path set PT. In testing process, if passed path 
cannot be found in path set PT, add this path to set 
PT. For example, when testing program of a 
population, we can get its branch coverage 

condition: [ ]1011011001v =  , and such row 

does not exist in the original D, so we convert this 

path  to { }0 0,2,3,5,6,9path =  and add it to set 

PT. 

 

Figure 1.  The  Program  Flow 

 

3.4 Genetic Orientation Control 
In the link of genetic operation, if it is proceeded 

merely with given probability, the fine population 
after genetic operation cannot be guaranteed. In 
other words, the whole link has its probability and 
randomness[8]. In order to accelerate the efficiency 
of generating satisfying populations, genetic 
operation should be controlled. 
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Take branch coverage as an example, branch 
coverage condition of individual i is 

 [ ]1001110111iv = , And that of another 

individual l is [ ]1000010011lv =  . 

It can thus be seen that branch set l passes is a 
subset of what i passes, the coverage of vl is 
incomplete when comparing with that of vi, and its 
debugging capability is lower than vi. Such 
individuals can receive variation or other genetic 
operation in accordance with specific conditions 
and preset parameter values. 

It is assumed that the pre-set value copying to 
new population by selection is se and the crossed 
value is cr. It is found out in practical questions, 
due to the fact that individuals of program being 
tested are multi-dimensional data, and the size of 
individuals is very big, but the probability of 
attaining new or fine individuals through crossing is 
not always big[7]. Therefore, we can enhance the 
probability of variation, reinforce random search 
ability of algorithm, and at the same time, adjust 
crossover probability, selective probability and the 
size of population. In this way, population 
treatment can better guide genetic direction, and 
avoid population premature to certain extent. 
Improved algorithm flow can be seen in Figure 2. 

As to path coverage, its principles and thoughts 
are similar to branch coverage. Fitness function, 
which is used to evaluate advantages and 
disadvantages of individuals, needs to take branch 
coverage of this path into consideration, namely, 
the ratio of the number of branches to the total 
number of branches, as well as whether this path is 
also covered by other individuals in the population. 
The evaluation of population fitness should rely on 
the overall path coverage condition of the 
population. 

This way of processing population will guarantee 
its diversity. At the same time, as path coverage and 
branch coverage combines to function, it is a 
further guarantee of debugging capability of 
generated case. 

 

 

Figure 2.  The  Program  Flow 

4.  EXPERIMENT RESULT 
 

Take the program generated by Delaunay 
triangulation network as an example. Firstly, realize 
automatic plug-in of program being tested. In other 

words, plug in probe to each branch sentence. 
When inputting data and the operating program 

being tested, the probes can record branch coverage 
Table 1. Parameter Settings Without  

Improved Algorithm 

Population Size 15 

Individual points 150 

Maximum  Generation 30 

crossover probability 0.8 

Mutation probability 0.4 

Point Range  1~300 

Begin 

Initial Population 

Evaluate the fitness 

End？ 

f/z>=se

? 

Exist set include U 
or be included? 

Copy 

f/z>=cr
? 

Save in U 
set 

Crossover 

New population 

End 

Mutation
r 

Y 

Y 

Y 

Y 

N 

N 

N 

N 
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condition. Plug-in sentences should be 
guaranteed to be free of the influence of program 
itself. Input parameters and begin to generate cases. 
Parameter settings without improved algorithm can 
be seen in Table 1. Parameter settings with 
improved algorithm can be seen in Table 2. 

Table 2.   Parameter Settings With 
Improved Algorithm 

 

The result of experiment adopting branch 
coverage can be seen in Table3. 

Table 3.   The Result Of Experiment 
(Branch Coverage) 

Algorithm 
Without 
Improvement 

With 
Improvement 

Parameter Table 1 Table 2 

Total Number of 
Branches/branch 

34 34 

Total Number of 
Coverage/branch 

26 29 

Time /s 4.5 6.8 
Coverage Rate/% 76.7 84.9 

Adopt path coverage and set parameters of 
improved algorithm to parameter data shown in 
Table 1, and the experiment result can be seen in 
Table 4. 

Table 4.   The Result Of Experiment (Path Coverage) 

It is shown by the experiment result that 
improved genetic algorithm improves branch 
coverage rate and path coverage rate, but takes a 
long time in heredity. How to better improve the 
algorithm, so that it can cover program branches to 
a larger extent, and shorten the time heredity costs 
still requires further studies. 

5. CONCLUSION 
 

Branch coverage to a larger extent or automatic 
generation of path test case is a critical technology 
to software test automation. The writer of this 
dissertation puts forward improved algorithm, 
which improves branch coverage rate and path 
coverage path, which have been demonstrated 
through experiment. However, such improved 
algorithm is not quite ideal in time efficiency and 
the generation of special test case. Therefore, 
further studies are also needed in this field. 
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