
Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

411

AUTOMATIC TEST CASE GENERATION BASED ON
GENETIC ALGORITHM

DAN LIU, XUEJUN WANG, JIANMIN WANG
School of Information Science and Technology,Shijiazhuang Tiedao University,

Shijiazhuang050043, China

E-mail: liudanld@126.com

ABSTRACT

For the problem that Genetic Algorithm （GA） suffers from large iteration times and low efficiency in
test case generation, this paper proposes a Modified Genetic Algorithm （MGA）. The algorithm adopts
real number coding and the principles of logic coverage, while the fitness function is to be improved. In
addition, it adds genetic-oriented control. The algorithm is conducive to population diversity and avoids
premature convergence phenomenon. Experimental result shows that MGA has faster convergence speed
and higher test data generation efficiency compared with traditional genetic algorithm.

Keywords: Genetic Algorithm, Test Case Generation, Logical Coverage

1. INTRODUCTION

Software testing is an important means to
guarantee the quality of software. In current
software development process, the cost of testing
covers a half of the total cost of software
development. Test case is a commonly used tool to
realize the effectiveness of software testing, and
also a key to guarantee such effectiveness. The
manual test case building of testers not only
requires heavy workload and long testing period,
but also can trigger testing omissions easily[2].
Therefore, automatic generation of test case has
always been studied in an extensive range.
Automatic generation of test case can reduce the
cost of software development, substantially enhance
software reliability and shorten the period of
software development.

Efficient methods of test case generation can
produce highly quailed test cases in a small number,
thus reducing the cost of software development.
Therefore, studying an effective method of test case
generation has its practical significance[1].
Automatic generation of test case refers to the
process of seeking a group of test input data that
can meet given testing standards within a data
domain, and that’s why there are thoughts about
transforming the generation of test case to path
search in recent years. Under general situation, the
undecidability of test case generation, as well as the
scale and complexity of programs being tested
greatly restricts general search algorithm. As a

result, genetic algorithm has been applied to the
generation of test case. In practical application, due
to its own defects of genetic algorithm, premature
convergence is a phenomenon in genetic algorithm
that cannot be neglected, which is mainly reflected
in that all individuals in the group are stuck in the
same extreme value while those stopping evolution
are the most approximate to optimal solution are
always eliminated, namely, misconvergence occurs
in the evolutionary process. In addition, if such
questions as parameter coding scheme, the selection
and control of operator, adjustment strategies of fit
value, together with the control of group size and
coverage of initial test case cannot be solved
evenly, it is quite difficult for genetic algorithm to
realize ideal effect.

In order to avoid premature convergence and
generate efficient and ideal test case, this
dissertation aims at improving genetic algorithm by
realizing branch coverage condition in programs
through programs being tested, dynamically
realizing path set of programs, and improving
fitness evaluation function. Then this dissertation
adds genetic orientation control, which can work as
a guide in selecting genetic operation, and enable it
to inherit toward multiple-path coverage direction.

2. TECHNIQUES OF GENETIC
ALGORITHM IN SOFTWARE TEST CASE
GENERATION

Biological evolution is a wonderful optimization
procedure, which generates fine species that can be

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

412

adapted to environmental changes through such
rules as selective elimination, variation and genetic
endowment.

Genetic algorithm (Genetic Algorithm) is a
global optimization algorithm inspired by the
thoughts of biological evolution. The main feature
of genetic algorithm lies in that it operates structure
target directly without the restriction of derivation
and function continuity, and that it has internal
implicit parallelism and better capability in global
optimization[3][5]. By adopting randomized
optimizing method, optimized searching space can
be acquired and guided automatically, and
searching directions can be adjusted of its own
accord without determining any rules. It is, in
essence, a direct searching method that does not
rely on specific questions. With strong robustness
of the category of questions, this method has been
extensively applied in many disciplines, such as
function optimization, production dispatching,
automatic control, image processing, pattern
recognition, artificial life and machine learning.

The operation target of genetic algorithm is
chromosome, which consists of a string of numbers.
In this numerical string, each number is called
gene. A combination of a series of chromosomes
constitutes a population. Each chromosome has a
fitness, which is used to determine the possibility of
the survival of its next generation. After the next
generation appears, a part of chromosomes cross
while a smaller part witness genetic variation.

By coding parameters of programs being tested,
which play the role as chromosome, we can
introduce genetic algorithm to software test case
generation field. The size of population decides the
number of chromosomes, with each chromosome
has its fitness[4]. In the genetic process, fitness of
groups need to be evaluated, test data can be
achieved by decoding populations that meet the
termination conditions of heredity, and if there they
fail to meet such termination conditions,
populations require genetic operation (selection,
cross and variation), so as to evolve to more
optimized ones, thus offering more efficient test
cases for us. The mathematical formula applying
genetic algorithm to the generation of test case is
shown below:

0(, , , , , , , ,)GATD C E P M S A V T PT=
C presents coding method, E presents fitness
function, M presents the population size, S presents
the selection operator, A presents a crossover
operator, P0 presents the mutation operator, T

presents the termination condition, PT is the target
path required to cover.

3. IMPROVED ALGORITHM

Studies on the introduction of tradition genetic
algorithm in automatic generation of test case have
important influence on the automation of software
testing, the efficiency and quality of case
generation is not quite satisfying though. This
dissertation combines Delaunay triangulation
network in program generation and improves
genetic algorithm, so that it can inherit toward a
more oriented and ideal direction in case generation
in a shorter period of time, thus enhancing the
efficiency and quality of case generation[9].

3.1 Coding Scheme
The input parameters of Delaunay triangulation

network generation program being tested are
uncertain two-dimensional unorganized points.
Different from common programs, this program has
relatively high requirements in accuracy and a wide
indicating range. Therefore, commonly used binary
coding method cannot be adopted here in coding.
Instead, real-number coding is suggested here, so
that it is more convenient to realize genetic
searching in a larger space, improve computing
complexity of genetic algorithm and enhancing
mathematical operation efficiency[10]. Real-
number coding uses true values of target variable,
so it is also called truth-value coding method. For
example, each individual of the program being
tested has fifteen points, which can be presented
with real-number coding as follows:

20.356125 125.122345

350.251345 213.365421

.... ...

43.251456 167.854294

 
 
 
 
 
 

3.2 Fitness Function
As an important evaluation function indicating

advantages and disadvantages of populations,
fitness function is a connector with practical
questions[6]. As to branch coverage or path
coverage, fitness value Fi of individuals in
population can be considered as the ratio of a
branch f (or path) of practical coverage of test case
to total branches z (or paths) in program being

tested, /iF f z= , it indicates individual branch

coverage rate. However, in this way, fitness
function is merely shown by numerical values, as to
which branches are covered and which are not, as

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

413

Begin

A>1

A=2

X>1

X=5

End

X=X/A

X=X/2

s

T

F

F

T

b

e

x
f

c

o

well as the influence individual fitness has on that
of the whole population are still unclear. That’s
why a visible population fitness condition is
required, so that it can be shown by matrix. Take
branches of program being tested as the column and
individuals in population as the row. For example,
there are n branches in program being tested,

1 2 3(, , ,...)np p p p and individuals in population

are(1,2,3,...)m , then we can achieve a coverage

matrix:

11 12 1

21 22 2

1 2

...

...

...

...

n

n

m m mn

v v v

v v v

v v v

 
 
 
 
 
 

,

When individual i passes branch j, vij item in D is
1, otherwise 0. In this way, the coverage of each
individual branch can be clearly seen. The bigger
the number of 1 in each row gets, the bigger fitness
this individual shows. When each column in the
matrix has one or more 1, it means all branches are
covered, and this population is an ideal one. We can
then achieve population fitness: 1/Pf sm z= , in

this formula z is the total number of branches in
program being tested, and sm1 is the number of

columns that can meet
1

1(1,2,...,)
m

ij
i

v j n
=

≥ =∑ in

matrix D.

3.3 Path Coverage

At present, there are mainly two ways to generate
test data in accordance with paths: (1) black-box
testing; (2) white-box testing. This dissertation
adopts the second method, and combines improved
genetic algorithm to generate test case.

It is found out in the study process that the
combination of all branches of program being
tested contains all paths in the project. For example,
there’s a program flow, as you can see in Figure 1.
There are four branches b, c, e and f, the starting s
and ending o should also be classified into branch,
but s and o do not combine with other branches.
After combination, we have

{ }, , , , ,...sbeo sbfo sceo scfo sbcefo

 There are four paths in total:

, , ,sbeo sbfo sceo scfo

It can be apparently seen that the combination of
branches contain these four paths in the program.
However, when evaluating path coverage, we

cannot regard all combinations of branches as the
target paths. If there are many branches, the paths
of such combinations will be far more than the real
number of target paths. In order to omit excessive
branch combinations and at the same time,
guarantee its integrity, path collection should
guarantee to be dynamic. In 3.2, “1” with
corresponding branch in each row of the branch
coverage matrix D represents covered branch.
Therefore, by recording all covered branches in the
row, we can get a path, with which we can initialize
path set PT. In testing process, if passed path
cannot be found in path set PT, add this path to set
PT. For example, when testing program of a
population, we can get its branch coverage

condition: []1011011001v = , and such row

does not exist in the original D, so we convert this

path to { }0 0,2,3,5,6,9path = and add it to set

PT.

Figure 1. The Program Flow

3.4 Genetic Orientation Control
In the link of genetic operation, if it is proceeded

merely with given probability, the fine population
after genetic operation cannot be guaranteed. In
other words, the whole link has its probability and
randomness[8]. In order to accelerate the efficiency
of generating satisfying populations, genetic
operation should be controlled.

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

414

Take branch coverage as an example, branch
coverage condition of individual i is

 []1001110111iv = , And that of another

individual l is []1000010011lv = .

It can thus be seen that branch set l passes is a
subset of what i passes, the coverage of vl is
incomplete when comparing with that of vi, and its
debugging capability is lower than vi. Such
individuals can receive variation or other genetic
operation in accordance with specific conditions
and preset parameter values.

It is assumed that the pre-set value copying to
new population by selection is se and the crossed
value is cr. It is found out in practical questions,
due to the fact that individuals of program being
tested are multi-dimensional data, and the size of
individuals is very big, but the probability of
attaining new or fine individuals through crossing is
not always big[7]. Therefore, we can enhance the
probability of variation, reinforce random search
ability of algorithm, and at the same time, adjust
crossover probability, selective probability and the
size of population. In this way, population
treatment can better guide genetic direction, and
avoid population premature to certain extent.
Improved algorithm flow can be seen in Figure 2.

As to path coverage, its principles and thoughts
are similar to branch coverage. Fitness function,
which is used to evaluate advantages and
disadvantages of individuals, needs to take branch
coverage of this path into consideration, namely,
the ratio of the number of branches to the total
number of branches, as well as whether this path is
also covered by other individuals in the population.
The evaluation of population fitness should rely on
the overall path coverage condition of the
population.

This way of processing population will guarantee
its diversity. At the same time, as path coverage and
branch coverage combines to function, it is a
further guarantee of debugging capability of
generated case.

Figure 2. The Program Flow

4. EXPERIMENT RESULT

Take the program generated by Delaunay
triangulation network as an example. Firstly, realize
automatic plug-in of program being tested. In other

words, plug in probe to each branch sentence.
When inputting data and the operating program

being tested, the probes can record branch coverage
Table 1. Parameter Settings Without

Improved Algorithm

Population Size 15

Individual points 150

Maximum Generation 30

crossover probability 0.8

Mutation probability 0.4

Point Range 1~300

Begin

Initial Population

Evaluate the fitness

End？

f/z>=se

?

Exist set include U
or be included?

Copy

f/z>=cr
?

Save in U
set

Crossover

New population

End

Mutation
r

Y

Y

Y

Y

N

N

N

N

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

415

condition. Plug-in sentences should be
guaranteed to be free of the influence of program
itself. Input parameters and begin to generate cases.
Parameter settings without improved algorithm can
be seen in Table 1. Parameter settings with
improved algorithm can be seen in Table 2.

Table 2. Parameter Settings With
Improved Algorithm

The result of experiment adopting branch
coverage can be seen in Table3.

Table 3. The Result Of Experiment
(Branch Coverage)

Algorithm
Without
Improvement

With
Improvement

Parameter Table 1 Table 2

Total Number of
Branches/branch

34 34

Total Number of
Coverage/branch

26 29

Time /s 4.5 6.8
Coverage Rate/% 76.7 84.9

Adopt path coverage and set parameters of
improved algorithm to parameter data shown in
Table 1, and the experiment result can be seen in
Table 4.

Table 4. The Result Of Experiment (Path Coverage)

It is shown by the experiment result that
improved genetic algorithm improves branch
coverage rate and path coverage rate, but takes a
long time in heredity. How to better improve the
algorithm, so that it can cover program branches to
a larger extent, and shorten the time heredity costs
still requires further studies.

5. CONCLUSION

Branch coverage to a larger extent or automatic
generation of path test case is a critical technology
to software test automation. The writer of this
dissertation puts forward improved algorithm,
which improves branch coverage rate and path
coverage path, which have been demonstrated
through experiment. However, such improved
algorithm is not quite ideal in time efficiency and
the generation of special test case. Therefore,
further studies are also needed in this field.

6. ACKNOWLEDGEMENT

The authors are extremely grateful to the
anonymous reviewers for their constructive and
valuable comments, which have contributed a lot to
the improved presentation of this paper. The work
was partially supported by scientific research
project of Hebei education
department(no.Z2012151).

REFRENCES:

[1] Sthamer H H, Wegener J, Baresel A, 2002
“Using evolutionary testing to improve
efficiency and quality in software testing”,
Proceedings of the second Asia Pacific
conference on software testing analysis and
review，pp 22-24.

[2] Moataz A, Ahmed, Irman Hermadi, 2007 “GA-
basedmultiple paths test data generator”,
Computer Operation Research, pp 3110-3311.

[3] Amit Paradkar, Kuo Chung Tai, “Test
Generation for Boolean Expressions”, In
Proceedings of International Symposium On
Software Reliability Engineering, pp. 106-115,
1995.

[4] Jin Cheng Lin, Pu Lin Yeh, 2001“Automatic
Test Data Generation for Path Testing Using
GAs”, An International Journal, pp. 47-64.

[5] D.E.Goldberg, 1989“Genetic Algorithm in
Search”, Opimization and Machine Learning
Addsion Wesley.

[6] D.E.Goldberg, K.Deb, 1991“A Comparative
Analysis of Selection Schemes Used in Genetic
Algorithms”, Foundations of Genetic
Algorithms, pp. 69-93.

[7] M. Srinivas, L. M. Patnaik, 1994 “Adaptive
Probabilities of Crossover and Mutation in
Genetic Algorithms”, IEEE Trans. On System,
Man and Cybernetics, pp. 656-667.

Population Size 15

Individual points 150

Maximum Generation 30

crossover probability 0.8

Mutation probability 0.4

Point Range 1~500

Algorithm
Without
Improvement

With
Improvement

Parameter Table 1 Table 1

Total Number of
Coverage/branch

26 29

Time /s 4.5 6.8

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

416

 [8] Kennedy J, Eberhart R.C, 1995“Particle Swarm
Optimization”,International Conf on Neural
Networks,IV, Perth: IEEE Press, pp. 1942-
1948．

[9] Shi Y, Eberhart R.C, 1998 “A Modified Particle
Swarm Optimizer”, International Conference
on Evolutionary Computation, NJ: IEEE Press,
pp. 69-73．

[10] Van den Berg F., Engelbrecht A, 2002“A new
locally Convergent Particle Swarm Optimizer”,
International Conference on System, Man and
Cybernetics.

