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ABSTRACT 
 
In this paper we present a new numbering system with an efficient application on Big-Integer 
multiplication. The paper starts with an introduction to a new redundant positional numbering system 
known as “Big-Digit Numbering System” (BDNS). With BDNS, a new non-redundant positional numbering 
system known as ZOT-Binary is proposed. ZOT-Binary has a low Hamming weight with an average of 
23.8% nonzero symbols, and therefore is highly suitable for Big-Integer calculation, especially for Big-
Integer multiplication. To harvest such benefit from the ZOT-Binary representation, a new Big-Integer 
multiplication algorithm, ZOT-CM, which is based on the Classical multiplication algorithm, is proposed. 
Our result shows that when compared with the Classical multiplication algorithm, ZOT-CM is about 12 
times faster for multiplying 128 bits numbers and at least 16 times faster for multiplying numbers that are 
bigger than 32,000 bits long. Our result also shows that ZOT-CM is about 20 to 3 times faster than 
Karatsuba multiplication algorithm, for multiplying numbers that are ranging from 128 bits to 32,000 bits 
long. From the findings, it is clear that ZOT-CM is a valuable addition to Big-Integer multiplication 
algorithm, and it is also believed that ZOT-Binary representation can benefit many other Big-Integer 
calculations. 
Keywords: Numbering system, Big-Integer multiplication, Cryptography, Hamming weight. 
 

1. INTRODUCTION 

Numbering system has always been important in 
the history of human civilization, and the increasing 
of number crunching applications signifies 
numbering system as a crucial necessity more than 
in the past. To improve arithmetic operations, 
researchers [1-4] have looked into alternative 
numbering systems. For example, by proposing 
signed-binary numbers [1, 3, 4] instead of the 
standard binary numbers has decreased the number 
of partial product in Classical multiplication 
algorithm [5] and therefore increased overall 
algorithm efficiency. Multi-base numbering 
systems [2, 6, 7]  are other similar examples.  

The main goal of this paper is to increase the 
efficiency of Big-Integer multiplication operation 
which has many important applications, such as 
cryptography and other scientific calculations. To 
achieve this goal, modification of known 
multiplication algorithm running on top of a new 
numbering system has been identified as the 
approach. The most popular algorithms for Big-
Integers multiplication are Classical, Karatsuba 

[8], Toom-Cook [9, 10] and Shonang-Strassen [11], 
in which the first two algorithms are more common 
than the others. Although the complexity of 
Classical multiplication algorithm, 𝑂(𝑛2), is higher 
than the complexity of other algorithms, Xianjin 
and Longshu [12] have shown that the Classical 
multiplication algorithm is efficient for multiplying 
numbers that are less than 255 digits long. On top 
of its efficiency, it has also been shown that 
Classical multiplication algorithm is efficient in 
memory utilization. Karatsuba multiplication 
algorithm has a better complexity, 𝑂(𝑛1.58), 
compared to Classical multiplication algorithm. 
However Karatsuba multiplication algorithm 
overhead in lower range numbers (less than 255 
digits) has caused implementers [12]  to combine 
both algorithms, Classical and Karatsuba, to 
achieve better overall algorithm efficiency. In this 
paper we propose a new numbering system that can 
help improve the efficiency of Classical 
multiplication algorithm and consequently increase 
the range of its functionality above the 255 digits 
threshold. 
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We review most of the related works on the 
positional numbering system of radix 2 in Section 
2.1. We describe the Classical multiplication 
algorithm in Section 2.2. Section 3 is dedicated to 
the proposed numbering systems, BDNS, and ZOT-
Binary. In Section 3.4 the proposed multiplication 
algorithms mbCM and ZOT-CM are described. We 
present the experimental results and comparison of 
the proposed multiplication algorithm with existing 
methods in Section 4, before concluding in Section 
5.    

2. NUMBERING SYSTEMS AND 
ARITHMETIC OPERATIONS 

Section 2.1 reviews positional numbering system 
since it has a significant role in arithmetic 
operations. Following that, Section 2.2 reviews the 
Classical multiplication algorithm which is 
fundamental to the work of this paper. 

2.1.   Positional Numbering System 
In positional numbering system, an integer in 

radix-r (or base r) can be written as: 

(𝑎𝑛 … 𝑎1𝑎0)𝑟 = 𝑎𝑛𝑟𝑛 + ⋯+ 𝑎1𝑟1 + 𝑎0          (1) 

If 0 ≤ 𝑎𝑖 < 𝑟, then this representation is unique. 
We call 𝑎𝑖 as digit, and its related set, such as 
{0,1, … , r − 1}, as digit set. Decimal numbers with 
r = 10 and 𝑎𝑖 ∈ {0,1, … ,9}, and binary numbers 
with r = 2 and 𝑎𝑖 ∈ {0,1}, are the two most known 
numbering systems. Ternary (r = 3), quaternary (r 
= 4), octal (r = 8) and hexadecimal (r = 16) are the 
other examples of fixed-radix positional numbering 
system [5]. 

2.1.1. Fixed-radix numbering system 
Equation (1) represents the fixed-radix 

numbering system. The weight of each digit 
(𝑟𝑖  for 𝑎i) in the representation is obtained by 
multiplying a fixed value (r) by the previous digit’s 
weight (𝑟𝑖−1). In the following, our discussion 
focus on the radix-2 number systems with different 
digit set. We use S to represent the digit set. 

2.1.1.1. Binary number 
The birth of radix-2 arithmetic is usually 

attributed to G. W. Leibniz[13], while the binary 
notation has appeared in 1605 in some unpublished 
manuscripts of Thomas Harriot [5]. Digit set for the 
binary system is  𝑆 = {0,1} . 

 
2.1.1.2. Signed binary (SB) number 

In Signed Binary representation, which is 
sometimes known as Ternary Numbering System 
[14], the digit set is 𝑆 = {0, ±1}. The redundancy in 
the numbering system is the result of using 3 

symbols in radix-2. Booth [1], NAF [3]  and MOF 
[4] algorithms are the examples of SB numbering 
systems that take advantage from this redundancy 
to decrease the number of operations in the 
multiplication [1, 15-18], exponentiation [19, 20]  
and scalar multiplication [1, 3, 4, 17, 18]  
computations.  

Booth [1] in 1959 proposed an algorithm to 
speed up the Classical multiplication computation 
on computer. The main goal of the original Booth’s 
algorithm and in the higher radix Booth’s algorithm 
[15, 16], is to decrease the number of partial 
product in the algorithm by decreasing the number 
of nonzero digits in the binary representation 
through the use of the symbol “-1” in radix-2. 

NAF (Non-Adjacent-Form) [3] is another ternary 
numbering system that was introduced by 
Reitwiesner in 1960. NAF representation is 
obtained by scanning every 3 bits in a binary 
number (from right to left) and substituting  “𝑥11” 
with “101�” where “1�” denotes “−1” and 𝑥 
represents any digit. The immediate advantage of 
the NAF representation is a low Hamming weight, 
which is 1/3 [21]. The generalization of 
Reitwiesner’s NAF algorithm can be found in [22, 
23]. 

Another important SB representation is MOF 
(Mutual Opposite Form). MOF has a Hamming 
weight of 1/2 [4]. However MOF can perform its 
calculation in both directions (right-to-left and left-
to-right) and requires less memory compared to 
NAF.  

Note that, the SB representation is not always 
used for optimizing arithmetic operations. For 
example, in [24] the Highest-Weight Binary Form 
(HBF) of scalars and randomization are proposed to 
resist power analysis in Elliptic Curve 
Cryptography (ECC). There is another ternary 
numbering system, Balanced Ternary System [5, 
25], which is very similar to the SB numbering 
system. Balance Ternary System uses the same 
digits set as the SB numbering system but with a 
base of 3. 

2.1.1.3. Multi-Base numbering system (MBNS) 
The simplest system in MBNS category is the 

double-base numbering system (DBNS). This 
numbering system was first proposed by Dimitrov 
et al. [2] for computing the scalar multiplication in 
ECC. Numbers in DBNS are represented as 

∑ 𝑐𝑖2𝑎𝑖3𝑏𝑖𝑖  where  𝑐𝑖 ∈ {0, ±1}, and 𝑎𝑖 , 𝑏𝑖 ∈  𝑍+. 

If  𝑑𝑖 =  𝑐𝑖 × 3𝑏𝑖 , then this representation can be 
transformed to ∑ 𝑑𝑖2𝑎𝑖𝑖 . This shows DBNS 
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representation is a radix-2 numbering system, with 
an enlarged set of integers. Other MBNS [6, 7, 26]      
use radix-2 as one of the main bases, and similar to 
DBNS, it can be shown that they are all a radix-2 
numbering system with an enlarger digit set.  Multi-
base NAF (mbNAF)[7] is one of the latest 
numbering systems that falls under this category. 

2.1.1.4. Window sliding method 
A number 𝐴 = (𝑎𝑛 … 𝑎2𝑎1𝑎0)𝑏  where 𝑎𝑖 ∈

{0, … , 𝑏 − 1} can be represented by 

 𝐴 = �𝐴𝑝 …𝐴2𝐴1𝐴0�𝑟                                       (2) 

where 𝑟 = 𝑏𝑤,  𝐴𝑖 = ∑ (𝑎𝑗+𝑖𝑤𝑏𝑗𝑤−1
𝑗=0 ) and 

 𝑝 = 𝑛 𝑚𝑜𝑑 𝑟. 
 

The digit set for Equation (2) numbering system 
is {0,1, … , 𝑏𝑤 − 1}. In this way, we can represent 
numbers with fewer digits. The time complexity of 
algorithms (such as multiplication algorithm) 
utilizing this windowing method is related to the 
number of digits and the window size. In general, 
Window Sliding Method increases the arithmetic 
efficiency in an algorithm. Most popular bases of 
this group are in the form of  𝑟 = 2𝑤 .  

Window Sliding Method can be combined with 
SB representation. wNAF [22, 23], wMOF [4], 
wmbNAF [7]  are the windowing method of NAF, 
MOF and  mbNAF, respectively. Mishra and et al. 
[27] presented in 2007 a new variant for the 
window version of DBNS.  The windowing method 
improves the efficiency of the original algorithms 
by having pre-calculated calculations saved in a 
lookup table (LUT) and uses pre-calculated values 
in computations. However, the size of the window 
depends on application and is limited to the 
available memory. For example if we want to store 
a multiplication LUT for w = 16 bits, we need 
216 × 216 × (2 × 16) = 128 Gbyte  of memory, 
which is not reasonable in most applications, even 
with today’s technology.  

2.1.2. Mixed-base numbering system 
Fixed-base numbering system was first 

generalized to a mixed-base numbering system by 
Georg Cantor in 1869 [5]. Prime number system 
and factorial number system [5]  are examples of 
mixed-base systems. Equation (3) shows the 
representation of integers in mixed-base numbering 
system. There are two sequences of numbers 
(𝑎𝑛 … , 𝑎2, 𝑎1, 𝑎0) and (𝑏𝑛 … , 𝑏2, 𝑏1, 𝑏0) where 𝑎𝑛’s 
are the digits and 𝑏𝑛’s are the bases. The weight of 
each digit is a multiple of the weight of previous 
digit. 

� 𝑑𝑖𝑔𝑖𝑡𝑠
𝑟𝑎𝑑𝑖𝑥𝑒𝑠

� = �
(𝑎𝑛 … , 𝑎1, 𝑎0)
(𝑏𝑛 … , 𝑏1, 𝑏0)� = 

𝑎𝑛(𝑏𝑛 … 𝑏0) + ⋯+ 𝑎1(𝑏1𝑏0) + 𝑎0𝑏0                  (3) 

2.2.  Classical Multiplication Algorithm 
Big-Integer multiplication algorithm is one of the 

fundamental algorithms for scientific computing, in 
which many mathematicians and computer 
scientists are continuously making improvements 
on the subject [10, 11, 28]. As mentioned earlier, 
among the multiplication algorithms, Classical 
multiplication algorithm is the most used. This is 
because of its efficiency in multiplying lower range 
numbers [12]. Classical multiplication algorithm is 
also being used in combination with the other 
multiplication algorithms to gain overall 
improvement. Better space complexity is another 
advantage of the Classical multiplication algorithm, 
resulted in the algorithm being used in memory 
constrained applications. 

The efficiency of the Classical multiplication 
algorithm is related to the numbering system used.  
The complexity of the Classical multiplication 
algorithm (see Algorithm 1 [5]) is 𝑂(𝑛2), where n 
is the size of the numbers being multiplied. 
Therefore, the number representation that has fewer 
digits is theoretically should run faster than the 
number representation that has more digits in its 
representation. In addition, the density of nonzero 
digits in the numbers influences the number of 
addition that has to be carried out in the Classical 
multiplication algorithm. Equation (4) describes the 
Classical multiplication equation in radix-r, in 
which the Algorithm 1 is based on. 

                𝐴 × 𝐵 =   ∑ ∑ 𝑎𝑖𝑏𝑗(𝑟𝑖+𝑗)𝑚
𝑗=0

𝑛
𝑖=0 .           (4) 

 
Algorithm 1: Classical Multiplication  CM (A,B) 
Input:    A = (an … a0)r   
               B = (bm … b0)r 
Output: C = (cm+n … , c1c0)r 
1. carry = 0; temp = 0   
2. for ( i = 0; i ≤ m + n; i++ )                              
3.        ci = 0            
4. for ( i = 0; i ≤ n; i++ )                                                                         
5.        for ( j = 0; j ≤ m; j++ )  
6.               temp = ci+j + �ai × bj � + carry 
7.               carry = ⌊temp/r⌋ 
8.               ci+j = temp − carry × r 
9. return  C 

In Algorithm 1, Steps 2 and 3 initialize the 
output array to zero. Multiplicand and multiplier 
digits are scanned in a row manner in Steps 4 and 5. 
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“temp” is a temporary memory used to keep the 
summation of the partial product, with the last 
result being saved in the output array and carry. In 
Steps 7 and 8, the value of the output and the new 
carry is calculated from temp. 

    
3. BIG-DIGIT NUMBERING SYSTEM 

(BDNS)  

In this section we first introduce a new digit set 
of radix-2, followed by a new numbering system 
based on the new proposed digit set. 

3.1.  Definitions 
Definition 1: Let 𝑂� = {𝑂1,𝑂2 … ,𝑂𝑛 , … } be a set, 

where 𝑂𝑛 is a sequence of n consecutive binary 
symbol “1”. We call 𝑂𝑛 as Big-One (BO) with 
length 𝑛 and 𝑂�  as the set of Big-Ones.  

Example: 𝑶𝟏 = 𝟏𝟐, 𝑶𝟓 = 𝟏𝟏𝟏𝟏𝟏𝟐 𝐚𝐧𝐝 
 𝑶� = {𝑶𝟏,𝑶𝟐,𝑶𝟑, … } = {𝟏𝟐,𝟏𝟏𝟐,𝟏𝟏𝟏𝟐, … }. 

Definition 2: Let 𝑇� = {𝑇1,𝑇3,𝑇5 … ,𝑇𝑛 , … }, 
where 𝑇𝑛 is a sequence of (𝑛−1

2
)  consecutive two 

binary symbols “10” with additional “1” at the 
rightmost of the sequence. We call 𝑇𝑛 as Big-Two 
(BT) with length n and 𝑇�  as the set of Big-Twos. 

 Example: 𝑇1 = 12, 𝑇5 = 101012 and 
𝑇� = {𝑇1,𝑇3,𝑇5, … } = {12, 1012, 101012, … }. 

Definition 3: Big-Digits set (𝐷�) is defined as 
𝐷� = 𝑂�  ∪  𝑇 �  ∪  {0}. Each element of 𝐷 � is a Big-
Digit (BD). (Note: to prevent redundancy, we 
remove 𝑇1and use 𝑂1in  𝐷� to represent “12”) 

Based on these Definitions (1-3), there are three 
new possible numbering systems of base 2. 

1. System 1: 𝑂�  ∪ {0} as the digit set.  
2. System 2: 𝑇 �  ∪ {0} as the digit set.  
3. System 3: 𝐷� as the digit set. 
 

Given a positive integer A, if we represent A by 
using System 1, the number of 𝑂1in the number will 
increase because the existence of pattern “010”. 
Similarly, if we represent A by using System 2, the 
number of 𝑇1in the number will increase because 
the existence of pattern “11”. System 3 which is a 
hybrid of both previous systems produces the best 
result. The following examples describe the 
phenomenon. Let 𝐴 =  111010101011112 and 
consists of 10 non-zero digits. 
 
 
 

• Based on System 1: 
 
    𝐴 = (111)2 × 211 + (1)2 × 29 + (1)2 × 27 +

          (1)2 × 25 + (1111)2 × 20    
        = 𝑂30𝑂10𝑂10𝑂10000𝑂4���������������

5 𝑛𝑜𝑛−𝑧𝑒𝑟𝑜 𝑑𝑖𝑔𝑖𝑡𝑠

     

 
• Based on System 2: 

 
𝐴 =  (1)2 × 213 + (1)2 × 212 + 

             (101010101)2 × 23 + (1)2 × 22 + 
              (1)2 × 21 + (1)2 × 20    
        = 𝑇1𝑇100000000𝑇9𝑇1𝑇1𝑇1���������������

6 non−zero digits

        

 
• Based on System 3: 
 
    A = (11)2 × 212 + (101010101)2 × 23 +

        (111)2 × 20    
        = 𝑂200000000𝑇900𝑂3�������������

3 non−zero digits

                  

 
Therefore, to reduce the number of nonzero in 

Big-Digits, System 3 is preferred. Our experiment 
with 10,000 random bits (see Table 1) shows that 
System 3A yields the best result.   

Table 1. Number of nonzero in different Big-Digit 
numbering systems, based on 10,000 random bits 

System 1 System 2 System 3A System 3B 
2,492 3,789 2,186 2,346 

 
As shown in Table 1 there are two versions of 

System 3. In converting a binary number to Big-
Digit representation, priority can be given to 
convert Big-Ones first followed by Big-Twos, or 
vice-versa. For example, given a number, 
11101112, System 3 can produce either 𝑂3000𝑂3 
(priority on Big-Ones) or 𝑂200𝑇30𝑂2 (priority on 
Big-Twos). Note that, the first representation has 
less nonzero Big-Digits. Similar finding is observed 
from Table 1, where System 3A which supports Big-
One priority out-performed System 3B which 
supports Big-Two priority in terms of producing 
fewer digits. From the examples above, it is clear 
that when converting from binary to Big-Digit, the 
priority must be given in converting Big-Ones, 
followed by Big-Twos. With this information, we 
can define a unique Big-Digit representation that 
supports the minimum nonzero Big-Digits.     

Definition 4: A sequence of Big-Digits is called 
Big-Digits representation of A if and only if  

𝐴 = (𝑎𝑛, … , 𝑎1, 𝑎0)2 = 𝑎𝑛2𝑛 + ⋯+ 𝑎0               (5) 

where 𝑎𝑖 ∈ D� .                                                      

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th February 2013. Vol. 48 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
33 

 

This numbering system is called Big-Digit 
numbering system (BDNS).  

3.2.  ZOT-Binary: A canonic Big-Digits 
numbering system  

Definition 5: A sequence of Big-Digits 
(𝑥𝑘 … , 𝑥1, 𝑥0)2 is known as ZOT-Binary 
representation if and only if for every two 
“neighboring” nonzero Big-Digits  𝑥𝑞  and 𝑥𝑝<𝑞, 
where length of  𝑥𝑝 is n: 

1. 𝑞 ≥ 𝑝 + 𝑛 + 2, when 𝑥𝑝 and 𝑥𝑞  are both 
either Big-Two or 𝑂1 . 

2. 𝑞 ≥ 𝑝 + 𝑛 + 1, for other cases. 
Big-Digit 𝐴 = 𝑂10000𝑇20000𝑂5 is not a ZOT-

Binary representation since 𝑥0 = 𝑂5  (𝑝 = 0,𝑛 =
5) and 𝑥5 = 𝑇2 (q = 5) and therefore (𝑞 = 5) <
(𝑝 + 𝑛 + 1 = 6) which does not satisfy Condition 
2 of Definition 5.  

 
Big-Digit 𝐵 = 𝑂10𝑂100000𝑇3 is not a ZOT-

Binary representation since 𝑥6 = 𝑂1 (𝑝 = 6,𝑛 =
1) and 𝑥8 = 𝑂1  (𝑞 = 8) and therefore (𝑞 = 8) <
(𝑝 + 𝑛 + 2 = 9) which does not satisfy Condition 
1 of Definition 5.  
 

Definition 5 introduces the ZOT-Binary 
representation. The representation is named ZOT-
Binary to highlight the base, which is base two, and 
the digits used in the representation, which are 
Zero, Big-One and Big-Two. 

Theorem 1. Every non-negative integer A has a 
unique representation in ZOT-Binary. 

Proof. Assume a ZOT-Binary representation of 
integer 𝐴 = (𝑎𝑚, … , 𝑎𝑝, … , 𝑎1, 𝑎0)2 is not unique, 
and therefore let 

𝐵 = (𝑏𝑚, … , 𝑏𝑝, … , 𝑏1, 𝑏0)2  and 
𝐶 = �𝑐𝑚 , … , 𝑐𝑝, … , 𝑐1, 𝑐0�2  
 

be the two different ZOT-Binary representations of 
integer A. Compare B and C by scanning from right 
to left, Big-Digit by Big-Digit, to find the first Big-
Digit which is not the same in B and C. Let the 
position of the first non-similar Big-digit denoted 
by p. Subsequently, we can represent B and C as 
follow: 

𝐵 = ∑ 𝑏𝑖 × 2𝑖𝑚
𝑖=0 = ∑ 𝑏𝑖 × 2𝑖𝑚

𝑖=𝑝
���������

𝐵𝐿

+ ∑ 𝑏𝑖 × 2𝑖𝑝−1
𝑖=0

���������
𝐵𝑅

 (6) 
 

𝐶 = ∑ 𝑐𝑖 × 2𝑖𝑚
𝑖=0 = ∑ 𝑐𝑖 × 2𝑖𝑚

𝑖=𝑝
�������

𝐶𝐿

+ ∑ 𝑐𝑖 × 2𝑖𝑝−1
𝑖=0

���������
𝐶𝑅

  (7) 
 

As mentioned above, ∀𝑖 ∈ {0, 𝑝 − 1}, 𝑏𝑖 = 𝑐𝑖. 
Therefore from (6) and (7) we can conclude that 

𝐵𝑅 = 𝐶𝑅 and  𝐵𝐿 = (𝐵 − 𝐵𝑅) = (𝐶 − 𝐶𝐿) = 𝐶𝑅. 
 

Therefore 
 

∑ 𝑏𝑖 × 2𝑖𝑚
𝑖=𝑝 = ∑ 𝑐𝑖 × 2𝑖𝑚

𝑖=𝑝   where    𝑐𝑝 ≠ 𝑏𝑝.     (8) 
 

In Table 2, we listed all valid cases of 𝑐𝑝 and 𝑏𝑝 
(symmetrical cases have been ignored) and we 
showed that for each case, there is a contradiction. 
Therefore, by contradiction, the ZOT-Binary 
represents non-negative integers uniquely. 

Table 2. Summary Of Contradictions For Two Different ZOT-Binary Representations

𝑏𝑝 𝑐𝑝 Conditions Contradictions 

o 𝑂𝑚 or 𝑇𝑚  
𝑎𝑝 = 0               𝑖𝑛   𝐵𝐿  
𝑎𝑝 = 1                𝑖𝑛   𝐶𝐿 

𝑂𝑚 𝑂𝑛  
𝑎𝑝+𝑚 = 0          𝑖𝑛   𝐵𝐿  
𝑎𝑝+𝑚 = 1          𝑖𝑛   𝐶𝐿 

𝑂𝑚 𝑇𝑛 
𝑚 = 1 

𝑧 = 1 
𝑎𝑝+3 = 1            𝑖𝑛   𝐵𝐿  
𝑎𝑝+3 = 0            𝑖𝑛   𝐶𝐿 

𝑧 > 2 
𝑎𝑝+2 = 1            𝑖𝑛   𝐵𝐿  
𝑎𝑝+2 = 0            𝑖𝑛   𝐶𝐿 

𝑚 ≥ 2 
𝑎𝑝+1 = 1            𝑖𝑛   𝐵𝐿  
𝑎𝑝+1 = 0            𝑖𝑛   𝐶𝐿 

𝑇𝑚 𝑇𝑛  
𝑧 = 𝑚 + 1 

𝑎𝑝+𝑚+2 = 1       𝑖𝑛   𝐵𝐿  
𝑎𝑝+𝑚+2 = 0       𝑖𝑛   𝐶𝐿 

𝑧 > 𝑚 + 1 
𝑎𝑝+𝑚+1 = 0       𝑖𝑛   𝐵𝐿  
𝑎𝑝+𝑚+1 = 1       𝑖𝑛   𝐶𝐿 

-  z denotes the number of zeros on the left of Big-Digits in the first column. 
- p, q, m and n are positive integers and m<n. 
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3.3.   ZOT-Binary Conversion Algorithm 
Based on Definition 5, suppose 𝑚 = 𝑞 − (𝑝 +

𝑛), which indicates that m is the amount of zeros 
between xp and xq in the binary representation. 
Therefore we can conclude that two nonzero 
neighboring Big-Digits in binary representation 
satisfy the conditions of ZOT-Binary representation 
if  the number of zeros between them is at least 
two, in which either one or both of them are Big-
Twos or 𝑂1. The ZOT-Binary conversion algorithm 
(see Algorithm 2) described below, is using this 
property to convert a binary number to ZOT-Binary 
representation. 

Let 𝐴 = (𝑎𝑛 … , 𝑎2, 𝑎1, 𝑎0)2 be a binary number 
and let the ZOT-Binary representation of A be 
(𝑐𝑛 … , 𝑐2, 𝑐1, 𝑐0)2, where 𝑐𝑖 = (𝑐𝑖𝑡 , 𝑐𝑖𝑙)  represents 
the i-th Big-Digit in A. 𝑐𝑖𝑡 denotes the type of 𝑐𝑖 and 
𝑐𝑖𝑙  denotes the length of 𝑐𝑖. Following are the steps   
to convert a binary number to its ZOT-Binary 
representation.  

Algorithm 2:  ZOT-Binary Conversion Algorithm 
(right-to-left) 
Input:   A = (an … , a1, a0)2   is a binary number 
Output:C =  (cn … , c1, c0)2 where , ci = (cit, cil) 
is the ZOT-Binary representation of A  
1. an+1 = 0; 
2. 𝐟𝐨𝐫 (i = 0 to n + 1; i + +)   
3.        𝐢𝐟 ai = 1   𝐭𝐡𝐞𝐧 
4.                cit = (ai+1 + 1); P = i; 
5.                𝐢𝐟 (cPt = 2 ) 𝐭𝐡𝐞𝐧 
6.                         𝐰𝐡𝐢𝐥𝐞 (ai = 1) 
7.                                     i + +; cPl + +; cit = 0; 
8.                𝐞𝐥𝐬𝐞 
9.                         𝐰𝐡𝐢𝐥𝐞 (ai+1ai = 01) 
10.                                     I+= 2; cPl+= 2; 
                                           cit = 0; c(i−1)t = 0; 
                                           i--;  cPl--; 
11. 𝐢𝐟 (cPl = 1)  then 
12.           cPt = 2; 
13. return   C 

 
Step 1: Initializing: Set all 𝑐𝑖𝑡 to zero. 

Step 2: Identifying the position of nonzero in 
BD: Scan the binary number from right to left to 
identify the first nonzero bit 𝑎𝑖 . This indicates the 
beginning of a new nonzero in BD.   

Step 3: Identifying the type of the BD:  The Big-
Digit, 𝑎𝑖+1, can identify the type for 𝑎𝑖. If 𝑎𝑖+1 = 0 
then the type is BT (𝑐𝑖𝑡 = 1), otherwise the type is 
BO (𝑐𝑖𝑡 = 2). 

Step 4: Identifying the length of the BD: If the 
type of 𝑎𝑖  is BO then we count all of 1’s before the 

first zero. However, if the type of 𝑎𝑖 is BT then we 
count the number of adjacent ‘01’. The length of 
BT is double of this number minus one. For 
consistency, we replace all occurrence of 𝑇1  with 
its equivalent 𝑂1 . 

Step 5: Completing the conversion: Repeating 
Steps 2-4 until the last bit. 

We can also represent a ZOT-Binary number in a 
mixed-base number representation. Such 
representation is very useful for some calculations 
such as multiplication, since we can have a more 
compact representation of ZOT-Binary by removing 
all the zeros. The following describes the 
conversion of ZOT-Binary to its mixed-base form.  

A = (101010001110001111)2�����������������
binary

 

    = (T500000O3000000O4)2�����������������
𝑍𝑂𝑇−𝑏𝑖𝑛𝑎𝑟𝑦

 

    = �
(T5, O3, O4)
(26, 27, 20)�
���������

mixed−based 𝑍𝑂𝑇−𝑏𝑖𝑛𝑎𝑟𝑦

 

 
Algorithm 3, a modified version of Algorithm2, 

describes the conversion process of converting a 
binary number to a mixed-base ZOT-Binary 
representation. These changes are mainly related to 
the relative position calculation of two neighboring 
nonzero BD. In this algorithm, 𝑃𝑘 indicates the 
relative position of 𝑐𝑘 and  𝑐𝑘−1.  

 

Algorithm 3: Mixed-Base ZOT-Binary 
Conversion Algorithm (right-to-left) 
Input:     A = (an … , a1, a0)2 

Output:  C= �
(ck … , c1, c0)

(2pk … , 2p1 , , 2p0)�  where  

                ci = (cit, cil) and  pi is position of ci 
1. an+1 = 0; k=0; iold=0; 
2. 𝐟𝐨𝐫 (i = 0 to n + 1; i + +)   
3.         𝐢𝐟 ai = 1   𝐭𝐡𝐞𝐧 
4.              Ckt = (ai+1 + 1); 

                     pk = i −   iold;  iold = i; 
5.              𝐢𝐟 (ckt = 2 ) then 
6.                    𝐰𝐡𝐢𝐥𝐞 (ai = 1) 
7.                          i + +; ckl + +; 
8.              𝐞𝐥𝐬𝐞 
9.                    𝐰𝐡𝐢𝐥𝐞 (ai+1ai = 01) 
10.                                i+= 2; ckl+= 2; 
11.                    i--;  ckl--; 
12.                    𝐢𝐟 (ckl = 1)  then 
13.                            ckt = 2; 
14. return   C 
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The reverse conversion, converting ZOT-Binary 
representation to binary is relatively simple. The 
conversion can be done by applying these 
replacements: 

 

0 … 0���
𝑛−1

𝑂𝑛 → 1 … 1���
𝑛

   and    0 … 0���
𝑛−1

𝑇𝑛 → 101 … 101�������
𝑛

 (9) 

 

Therefore the procedure for converting a mixed-
base ZOT-Binary representation A to its binary 
equivalent can be described as follows: 
 

 A = �
(ak … , a1, a0)

(2pk … , 2p1 , , 2p0)�  

     = �ak … ai 0 … 0���
pi

ai−1 … a0 0 … 0���
p0

�                (10) 

where all 𝑎𝑖  in Equation (10) are replaced with 
their equivalent binary values as shown in Equation 
(9). For example:  
 

A = �
(O3, T3, O5)
(25, 27, , 24)� 

    = �O3 00000�����
5

T3 0000000�������
7

O5 0000���
4

� 

    = (1110010100111110000)2. 

3.4.  Multiplication On BDNS 
This subsection explains the process of 

performing multiplication in BDNS. Classical 
multiplication algorithm that runs on ZOT-Binary is 
also described in this subsection. 

3.4.1. Big-Digits multiplication 
In many multi-digits multiplication 

implementations, multiplication time tables are 
used. These tables are a pre-computed lookup-table 
(LUT) that saves the information on digit by digit 
multiplications. Window-based numbering systems 
as describe earlier uses LUT in its calculations. LUT 
is also being used to improve calculation speed as 
documented in [29-31]. In the same way, we 
propose three multiplications LUT-based on Big-
Digits, they are: Big-One-Big-One multiplication 
LUT (BOBO-MLUT), Big-Two-Big-Two 
multiplication LUT (BTBT-MLUT), and Big-One-
Big-Two multiplication LUT (BOBT-MLUT). 

 Tables 3, 4 and 5 show the corresponding 
multiplication tables, which we call them as Big-
Digits multiplication LUT (BD-MLUT).  

 
Table 3. Big-One-Big-One MLUT (BOBO-MLUT) 

× 1 11 111 ... 
1 1 11 111 ... 

11 11 1001 10101 ... 
111 111 10101 110001 … 

… … … … … 
 

Table 4. Big-Two-Big-Two MLUT (BTBT-MLUT) 

× 1 101 ... 
101 101 11001 ... 

10101 10101 1101001 ... 
1010101 1010101 1101100001 … 

… … … … 
 

Table 5. Big-One-Big-Two MLUT (BOBT-MLUT) 

× 1 11 ... 
101 101 1001 ... 

10101 10101 111111 ... 
1010101 1010101 11111111 … 

… … … … 
 

In general, rows and columns in Tables 3-5 are 
unlimited and therefore tables size do not limit to a 
certain value. One advantage of BD-MLUT is that it 
grows relatively slower compared to decimal or 
binary multiplication time-tables, which suggest 
that storing BD-MLUT requires notably less 
memory comparing to storing decimal or binary 
multiplication tables. Nevertheless storing big size 
tables will put a constraint on a computer memory. 
To solve this problem, many implementation such 
as in [30, 31] divide the numbers into smaller parts 
so that smaller LUTs are used.  

For Big-Digits, we had analyzed 10,000 random 
bits representing random integers and found that the 
following five Big-Digits, 1, 11, 111, 1111 and 101 
occurs 90.3% of the time (see Figure. 1).  

This finding has a big implication in determining 
the size of BD-MLUT that we need to use 
effectively for our multiplication algorithm. A 
small size of BD-MLUT of 5 rows by 5 columns is 
enough to capture almost 90.3% of random Big-
Digits. For the rest of the 9.7% cases, we need to 
run the following conversion which will break the 
Big-Digits into the identified five Big-Digits 
mentioned above. 
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Figure 1: Nonzero Big-Digits distribution in ZOT-Binary representation based on 10,000 random bits 
 

In general, suppose the length of a Big-Digit is n 
and BD-MLUT support only Big-Digits less than 
m, then the following conversions can be applied. 

 Let  𝑝 = 𝑛 𝑚𝑜𝑑 𝑚 and 𝑛 = 𝑘 × 𝑚 − 𝑝, then 

0 … 0���
𝑛−1

𝑂𝑛 = 0 … 0���
𝑝−1

𝑂𝑝 0 … 0���
𝑚−1

𝑂𝑚 … 0 … 0���
𝑚−1

𝑂𝑚�������������
𝑘

  . 

Or let  𝑝 = 𝑛 𝑚𝑜𝑑 (𝑚 + 1) and 𝑛 = 𝑘 × (𝑚 +
1) − 𝑝, then 
 

0 … 0���
𝑛−1

𝑇𝑛 = 0 … 0���
𝑝−1

𝑇𝑝 0 … 0���
𝑚

𝑇𝑚 … 0 … 0���
𝑚

𝑇𝑚�������������
𝑘

  . 

The memory requirement to store the MLUT for 
ZOT-CM is only 25 byte as shown below:  

Size of 𝑀𝐿𝑈𝑇 = � 5⏟
rows

× 5⏟
columns

×  8� = 25 byte. 

Table 6 shows another perspective of the Big-
Digits distribution in range of 128 bits to 32 kbits 
random integer. It indicates that ZOT-Binary 
representation reduce the percentage of nonzero 
symbols to 21.86%, while the average of Hamming 
weight for MOF and NAF is 50% [4] and 33% [21] 
respectively.  

 
Table 6. Distribution of nonzero Big-Digits in ZOT-Binary representation in range of 128 bits to 32 kbits  

Length 128 
bits 

256 
bits 

512 
bits 

1 
kbits 

2 
kbits 

4 
kbits 

8 
kbits 

16 
kbits 

32 
kbits Average 

 (𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝐵𝐷
𝐿𝑒𝑛𝑔𝑡ℎ

) % 21.1 22.7 21.9 21.2 21.7 22.0 21.6 21.8 22.0 21.8 
 

3.4.2. mb-CM: A modified mixed-base 
Classical multiplication algorithm 

Let    𝐴 = �
(𝑎𝑛 … , 𝑎2, 𝑎1, 𝑎0)

(𝑟𝑝𝑛 … , 𝑟𝑝2 , 𝑟𝑝1 , 𝑟𝑝0)�   and 

         𝐵 = �
(𝑏𝑚 … , 𝑏2, 𝑏1, 𝑏0)

(𝑟𝑞𝑚 … , 𝑟𝑞2 , 𝑟𝑞1 , 𝑟𝑞0)� 
 

be the two mixed-base integer multiplicands such 
that 𝑝𝑖 ,𝑞𝑖 ,𝑚,𝑛 and 𝑟 are integers. Integer A and B 
can be written as series, as shown by Equations 

(11) and (12), respectively. 
 
   𝐴 = ∑ 𝑎𝑖(𝑟𝑝𝑖 × … 𝑟𝑝1 × 𝑟𝑝0)𝑛

𝑖=0  
    = ∑ 𝑎𝑖(𝑟

∑ 𝑝𝑗
𝑖
𝑗=0 )𝑛

𝑖=0                                          (11) 
 
𝐵 = ∑ 𝑏𝑘(𝑟𝑞𝑘 × … 𝑟𝑞1 × 𝑟𝑞0)𝑚

𝑘=0   
    = ∑ 𝑏𝑘(𝑟∑ 𝑞𝑙

𝑘
𝑙=0 )𝑚

𝑘=0                                          (12) 
 
Multiplying A and B, we have:  

 

1 2 3 4 5 6 7 8 9 10
Big-Two 0.0% 0.0% 7.4% 0.0% 2.2% 0.0% 0.4% 0.0% 0.1% 0.0%
Big-One 32.0% 29.2% 14.2% 7.5% 3.8% 1.5% 1.0% 0.3% 0.2% 0.2%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Big-Two

Big-One
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𝐴 × 𝐵 = ��𝑎𝑖 �𝑟
∑ 𝑝𝑗
𝑖
𝑗=0 �

𝑛

𝑖=0

�  × 

                  ��𝑏𝑘(𝑟∑ 𝑞𝑙
𝑘
𝑙=0 )

𝑚

𝑘=0

� 

Then 
𝐴 × 𝐵 =  (∑ 𝑎𝑖(𝑟𝑃𝑖)𝑛

𝑖=0 )  ×  (∑ 𝑏𝑘(𝑟𝑄𝑘)𝑚
𝑘=0 )   

 

Where  𝑃𝑖 = ∑ 𝑝𝑗𝑖
𝑗=0  and  𝑄𝑘 = ∑ 𝑞𝑙𝑘

𝑙=0 .  
 

Then  
 

 𝐴 × 𝐵 =  ∑ ∑ 𝑎𝑖(𝑟𝑃𝑖) × 𝑏𝑘(𝑟𝑄𝑘)𝑚
𝑘=0

𝑛
𝑖=0    

 

             =  ∑ ∑ 𝑎𝑖𝑏𝑘𝑟(𝑃𝑖+𝑄𝑘)𝑚
𝑘=0

𝑛
𝑖=0                       (13) 

 

Series in Equation (13) has a similar structure to 
the series in Equation (4). Therefore, Algorithm 1 
can be generalized to Algorithm 4 to support the 
mixed-base Classical multiplication and result is 
saved in radix-r. 

 

Algorithm 4: Mixed-Base Classical 
Multiplication  mbCM(A(rpi) , B(rqi)) 

Input:    A = �
(an … , a2, a1, a0)

(rpn … , rp2 , rp1 , rp0)�   is a 

mixed-base number in terms of (rpi) 

               B = �
(bm … , b2, b1, b0)

(rqm … , rq2 , rq1 , rq0)�   is a 

mixed-base number in terms of (rqi)           

Output: C = �c�∑ pi
n
i=0 +∑ qj

m
j=0 � … , c2, c1, c0�

r
 

1. carry = 0   
2. for( i = 0; i ≤ n; i++)                                       
3.         I+= pi;                                                               
4.         for ( j = 0; j ≤ m; j++)  
5.                 J+= qi;        
6.                temp = (cI+J+q(i+1) … cI+J) +

                �ai × bj�r+ carry; 
7.                carry = ⌊temp/rq(i+1)⌋ 
8.                �cI+J+q(i+1) … cI+J� = temp −

                 carry × rq(i+1); 
9. (cI+J+qm+pi … cI+J+qm) = carry; 
10. return   C 

 

 

There are two main differences in Algorithm 4 
over the normal Classical multiplication algorithm. 
First, Algorithm 4 ignores zeros between every two 
Big-Digits (Steps 3 and 5) in its calculation. 
Second, digits in this algorithm are processed in a 
group (Steps 6, 7 and 8). Both modifications will 
additionally speed-up the multiplication calculation 

compared to the normal Classical algorithm. 

3.4.3. ZOT-CM: Classical multiplication on 
ZOT-Binary representation 

By substituting r = 2 in Algorithm 4, we can 
modify Algorithm 4 to Algorithm 5 that supports 
ZOT-Binary numbers. We call this algorithm as 
ZOT-CM. Let the sequence of A and B be the two 
ZOT-Binary numbers. 

 

Algorithm 5: Classical Multiplication for ZOT-
Binary Numbers  ZOT-CM(A , B) 

Input:    A = �
(an … , a2, a1, a0)

(2pn … , 2p2 , 2p1 , , 2p0)�   is a 

ZOT-Binary number  

               B = �
(bm … , b2, b1, b0)

(2qm … , 2q2 , 2q1 , 2q0)�    is a 

ZOT-Binary number  
Output: C  = �cpn+qm … , c2, c1, c0�2       
1. carry = 0   
2. for( i = 0; i ≤ n; i++)                                       
3.         I+= pi;                                                               
4.         for ( j = 0; j ≤ m; j++)  
5.               J+= qi  ;       
6.               temp = (cI+J+q(i+1) … cI+J) +

              �ai × bj�2+ carry ; 
7.              carry = ⌊temp/2q(i+1)⌋ 
8.              �cI+J+q(i+1) … cI+J� = temp −

               carry × 2q(i+1); 
9. (cI+J+qm+pi … cI+J+qm) = carry ; 
10. return   C 

 
 

4. EXPERIMENTAL RESULTS 

In Section 3.4, it has been shown that the average 
of nonzero Big-Digit for relatively large sample of 
random numbers is about 24%. Since the 
complexity of the Classical multiplication is 𝑂(𝑛2), 
then theoretically, the execution time of ZOT-CM 
compare to the Classical multiplication algorithm 
must be: 
Partial multiplication of ZOT−CM

Partial multiplication of CM
= 0.24n×0.24n

n2
≅ 0.058. 

Table 7 shows the execution time of the 
Classical, Karatsuba and ZOT-CM multiplication 
algorithms against different bit length numbers 
which are randomly generated. Each value in Table 
8 is based on an average of 20 actual readings and 
the conversion overhead had already been included 
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in the readings. Experiment was conducted on 
AMD Phenom (TM), 9950, Quad core processor, 
2.6 GHz, 3.25GB RAM, with Windows XP 
(Service Pack 2) Professional and Dev-C++ version 
4.9.9.2 compiler. 

 

 

 

Table 7. Execution Time (Msec) Of Different Multiplication Algorithms 
            Length 
Algorithm 

128 
bits 

256 
bits 

512 
bits 

1 
kbits 

2 
kbits 

4 
kbits 

8 
kbits 

16 
kbits 

32 
kbits 

Classical 0.1140 0.451 1.793 7.163 28.66 114.70 458.8 1,916.7 7,703 
Karatsuba 0.1726 0.522 1.582 4.753 14.29 43.00 129.0 388.2 1,165.6 
ZOT-CM 0.0087 0.030 0.111 0.427 1.68 6.65 26.6 108.4 434.92 

 

Table 8. Execution Time Ratio Of ZOT-CM Multiplication Algorithm Against Classical And Karatsuba Multiplication 
Algorithms  

 

Tables 7 and 8 show that ZOT-CM multiplication 
algorithm performs better than the Classical and 
Karatsuba multiplication algorithms, for 
multiplying integers in the range of 128 bits – 32 
kbits. The execution time of ZOT-CM 
multiplication algorithm is 8% of the Classical 
multiplication algorithm for 128 bits integers, and 
this ratio decreases to 6% for 32,000 bits numbers. 
For multiplying numbers that are bigger than 
32,000 bits, the ratio should be 6% or lower.  

ZOT-MC multiplication algorithm is also faster 
than the Karatsuba algorithm for multiplying 
numbers in the range of 128 – 32,000 bits.  For 128 
bits integers, the execution time of ZOT-CM 
multiplication algorithm is about 5% of the 
Karatsuba multiplication algorithms execution 
time, and the ratio gradually increases to 37% for 
32,000 bits integers. The reason for the increment 
in the ratio is because Karatsuba algorithm posses a 
better algorithm complexity than the ZOT-CM 
algorithm. However, from the readings found in 
Tables 7 and 8, it is expected that Karatsuba 
multiplication algorithm will out-perform ZOT-CM 
multiplication algorithm only when multiplying 
numbers that are bigger than 442.6 kbits long. 

5. CONCLUSION AND FUTURE WORK 

Having new perspective to existing numbering 
systems might reveal some hidden advantages. 
Based on this believe a new positional numbering 
system (BDNS) and its canonic numbering system 

(ZOT-Binary) were created. BDNS and ZOT-Binary 
representation was extracted from the binary 
representation and posses some interesting 
properties, such as lower percentage of nonzero 
symbols. In this paper we are focusing on Big-
Integer multiplication on ZOT-Binary. The 
modified Classical multiplication algorithm, ZOT-
CM, increases the efficiency of the multiplication 
algorithm in such way that ZOT-CM not only can 
replace Classical multiplication algorithm but also 
can replace Karatsuba multiplication algorithm 
when multiplying numbers in a certain range. It is 
believe that many other calculations that depend on 
binary systems can benefit from the ZOT-Binary 
representation. 

6. ACKNOWLEDGMENT 

We are pleased to make an acknowledgement to the 
Universiti Sains Malaysia, for their support on this 
research (Grant number: 1001/PKOMP/817059).   

REFERENCES 

[1] A. D. Booth, "A signed binary multiplication 
technique," Quarterly J. Mechanical and 
Applied Math, vol. 4, pp. 236-240, 1951. 

[2] V. Dimitrov, L. Imber, and P. K. Mishra, 
"Efficient and secure elliptic curve point 
multiplication using double-base chains," in 
Advances in Cryptology, ASIACRYPT’05, ser. 

           Length 
Ratio 

128  
bits 

256 
bits 

512 
bits 

1  
kbits 

2  
kbits 

4  
kbits 

8  
kbits 

16  
kbits 

32  
kbits 

ZOT-CM / CM 8% 7% 6% 6% 6% 6% 6% 6% 6% 
ZOT-CM / KM 5% 6% 7% 9% 12% 15% 21% 28% 37% 

          

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th February 2013. Vol. 48 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
39 

 

Lecture Notes in Computer Science, vol. 
3788, pp. 59-78, 2005. 

[3] G. W. Reitwiesner, "Binary arithmetic," 
Advances in Computers vol. 1, 1960. 

[4] K. Okeya, K. Schmidt-Samoa, C. Spahn, and 
T. Takagi, "Signed binary representations 
revisited," in Advances in Cryptology - Crypto 
2004, Proceedings. vol. 3152, M. Franklin, 
Ed. Berlin: Springer-Verlag Berlin, 2004, pp. 
123-139. 

[5] E. Knuth, The Art of Computer  Programming 
vol. 2: Addison-Wesley, 1997. 

[6] V. Dimitrov, L. Imber, and P. K. Mishra, 
"The double-base number system and its 
application to elliptic curve cryptography," 
Mathematics of Computation, vol. 77, pp. 
1075-1104, 2008. 

[7] P. Longa and A. Miri, "New Multibase Non-
Adjacent Form Scalar Multiplication and its 
Application to Elliptic Curve Cryptosystems 
(Extended Version)," in Cryptology ePrint 
Archive, Report 2008/052, 2008. 

[8] A. Karatsuba and Y. Ofman, "Multiplication 
of Multidigit Numbers on Automata," Soviet 
Physics Doklady (English translation), vol. 7, 
pp. 595-596, 1963. 

[9] A. Cook, "On the Minimum Computation 
Time of Functions,"  Harvard: Harvard 
University, May 1966. 

[10] A. L. Toom, "The Complexity of a Scheme of 
Functional Elements Realizing the 
Multiplication of Integers. ," Soviet 
Mathematics vol. 3, pp. 714-716, 1963. 

[11] A. Schonhage and V. Strassen, "Schnelle 
Multiplikation großer Zahlen," Computing in 
Science & Engineering, vol. 7 pp. 139-144, 
1971. 

[12] F. Xianjin and L. Longshu, "On Karatsuba 
Multiplication Algorithm," in Data, Privacy, 
and E-Commerce, 2007. ISDPE 2007. The 
First International Symposium on, 2007, pp. 
274-276. 

[13] G. W. Leibniz, "Memoires de 1," Academie 
Royale des Sciences, pp. 110-1161, Paris 
1703. 

[14] R. Hashemian, "A new number system for 
faster multiplication," in Circuits and 
Systems, 1996., IEEE 39th Midwest 
symposium on, 1996, pp. 681-684 vol.2. 

[15] H. Sam and A. Gupta, " A generalized 
multibit recoding of two’s complement binary 
numbers and its proof with applications in 
multiplier implementations," IEEE Trans. 
Computers, vol. 39, pp. 1006-1015, 1990. 

[16] S. Vassiliadis, E. M. Schwartz, and D. J. 
Hanrahan, "A general proof for overlapped 
multiple-bit scanning multiplications," IEEE 
Trans. Compurers, vol. 38, pp. 172-183, 
1989. 

[17] P. E. Madrid, B. Millar, and E. E. S. Jr., 
"Modified Booth Algorithm for High Radix 
Fixed-Point Multiplication," IEEE 
Transactions on Very Large Scale Integration 
(VLSI) Systems, Man and Cybernetics, IEEE 
Transactions on, vol. 1, pp. 164--167, June 
1993. 

[18] J. Penhollow, "A study of arithmetic recoding 
with applications to multiplication and 
division," Dep. of Computer Sci., UNv. of 
Illinois, Urbana, Rep. 128, Sept. 1962. 

[19] B. Moller, "Improved Techniques for Fast 
Exponentiation," In: ICISC 2002,LNCS, vol. 
2587, pp. 298-312, 2003. 

[20] D. M. Gordon, "A Survey of Fast 
Exponentiation Methods," J. Algorithms, vol. 
27, pp. 129-146, 1998. 

[21] C. Heuberger and H. Prodinger, "THE 
HAMMING WEIGHT OF THE NON-
ADJACENT-FORM UNDER VARIOUS 
INPUT STATISTICS," Periodica 
Mathematica Hungarica, vol. 55, pp. 81–96, 
2007. 

[22] J. A. Solinas, "Efficient Arithmetic on Koblitz 
Curves," Designs, Codes and Cryptography, 
vol. 19, pp. 195-249, 2000. 

[23] I. F. Blake, G. Seroussi, and N. P. Smart, 
Elliptic Curves in Cryptography vol. 265. 
Cambridge: Cambridge University Press, 
1999. 

[24] N. Zhang, Z. Chen, and G. Xiao, "Efficient 
elliptic curve scalar multiplication algorithms 
resistant to power analysis," Information 
Sciences, pp. 2119-2129, 2007. 

[25] G. Frieder and C. Luk, " Algorithms for 
Binary Coded Balanced and Ordinary Ternary 
Operations," IEEE Transactions on 
Computers, vol. 24 pp. 212-215, Feb. 1975. 

[26] S. Maitra and A. Sinha, "A single digit triple 
base number system - a new concept for 
implementing high performance multiplier 
unit for DSP applications," in Information, 
Communications & Signal Processing, 2007 
6th International Conference on, 2007, pp. 1-
5. 

[27] P. K. Mishra and V. Dimitrov, "Window-
Based Elliptic Curve Scalar Multiplication 
using Double Base Number Representation," 
in INDOCRYPT'07 Proceedings of the 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th February 2013. Vol. 48 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
40 

 

cryptology 8th international conference on 
Progress in cryptology 2007. 

[28] A. Karatsuba, "The Complexity of 
Computation," Proceedings of the Steklov 
Institute of Mathematics, vol. 211, 1995. 

[29] G. Harper, A. Menezes, and S. Vanstone, 
"Public-Key Cryptosystems with Very Small 
Key Lengths," Proc. Advances in Cryptology 
ÐEUROCRYPT '92, pp. 163-173, 1992. 

[30] M. A. Hasan, "Look-up table-based large 
finite field multiplication in memory 
constrained cryptosystems," IEEE 
Transactions on Computers, vol. 49, pp. 749-
758, Jul 2000. 

[31] A. Mahboob and N. Ikram, "Lookup table 
based multiplication technique for GF(2(m)) 
with cryptographic significance," IEE 
Proceedings-Communications, vol. 152, pp. 
965-974, Dec 2005. 

http://www.jatit.org/

	ZOT-BINARY: A NEW NUMBERING SYSTEM WITH AN APPLICATION ON BIG-INTEGER MULTIPLICATION
	1SHAHRAM JAHANI, 2AZMAN SAMSUDIN
	1,2 School of Computer Sciences, Universiti Sains Malaysia,Pulau Penang, Malaysia
	E-mail:  1shahramjahani@gmail.com, 2azman@cs.usm.my
	ABSTRACT
	Keywords: Numbering system, Big-Integer multiplication, Cryptography, Hamming weight.
	Definition 1: Let ,𝑂.=,{𝑂-1.,,𝑂-2.…,,𝑂-𝑛.,…} be a set, where ,𝑂-𝑛. is a sequence of n consecutive binary symbol “1”. We call ,𝑂-𝑛. as Big-One (BO) with length 𝑛 and ,𝑂. as the set of Big-Ones.
	Example: ,𝑶-𝟏.=,𝟏-𝟐.,  ,𝑶-𝟓.=,𝟏𝟏𝟏𝟏𝟏-𝟐. 𝐚𝐧𝐝
	,𝑶.=,{𝑶-𝟏.,,𝑶-𝟐.,,𝑶-𝟑.,…}={,𝟏-𝟐.,,𝟏𝟏-𝟐.,,𝟏𝟏𝟏-𝟐.,…}.

	Definition 2: Let ,𝑇.=,{,𝑇-1.,𝑇-3.,,𝑇-5.…,,𝑇-𝑛.,…}, where ,𝑇-𝑛. is a sequence of (,𝑛−1-2.)  consecutive two binary symbols “10” with additional “1” at the rightmost of the sequence. We call ,𝑇-𝑛. as Big-Two (BT) with length n and ,𝑇. as th...
	Example: ,𝑇-1.=,1-2.,  ,𝑇-5.=,10101-2. and
	,𝑇.=,{𝑇-1.,,𝑇-3.,,𝑇-5.,…}={,1-2.,,101-2.,,10101-2.,…}.
	Definition 3: Big-Digits set (,𝐷.) is defined as ,𝐷.=,𝑂. ∪ ,𝑇 . ∪ {0}. Each element of ,𝐷 .is a Big-Digit (BD). (Note: to prevent redundancy, we remove ,𝑇-1.and use ,𝑂-1.in  ,𝐷. to represent “,1-2.”)
	Based on these Definitions (1-3), there are three new possible numbering systems of base 2.
	1. System 1: ,𝑂. ∪{0} as the digit set.
	2. System 2: ,𝑇 . ∪,0. as the digit set.
	3. System 3: ,𝐷. as the digit set.
	Given a positive integer A, if we represent A by using System 1, the number of ,𝑂-1.in the number will increase because the existence of pattern “010”. Similarly, if we represent A by using System 2, the number of ,𝑇-1.in the number will increase be...
	 Based on System 1:
	𝐴=,,,(111)-2.×,2-11.+(1)-2.×,2-9.+(1)-2.×,2-7.+          ,(1)-2.×,2-5.+,(1111)-2.×,2-0.
	= ,,,𝑂-3.0,𝑂-1.0,𝑂-1.0,𝑂-1.0,000𝑂-4..-5 𝑛𝑜𝑛−𝑧𝑒𝑟𝑜 𝑑𝑖𝑔𝑖𝑡𝑠.
	 Based on System 2:
	,𝐴= ,1.-2.×,2-13.+,,1.-2.×,2-12.+
	,,,101010101.-2.×,2-3.+,1.-2.×,2-2.+
	,              (1)-2.×,2-1.+,(1)-2.×,2-0.
	=,,,𝑇-1.,𝑇-1.,00000000𝑇-9.,𝑇-1.,𝑇-1.,𝑇-1..-6 non−zero digits.
	 Based on System 3:
	A =,,(11)-2.×,2-12.+(101010101)-2.×,2-3.+,        (111)-2.×,2-0.
	=,,,𝑂-2.,00000000𝑇-9.,00𝑂-3..-3 non−zero digits.
	Therefore, to reduce the number of nonzero in Big-Digits, System 3 is preferred. Our experiment with 10,000 random bits (see Table 1) shows that System 3A yields the best result.
	Table 1. Number of nonzero in different Big-Digit numbering systems, based on 10,000 random bits
	As shown in Table 1 there are two versions of System 3. In converting a binary number to Big-Digit representation, priority can be given to convert Big-Ones first followed by Big-Twos, or vice-versa. For example, given a number, ,1110111-2., System 3 ...
	Definition 4: A sequence of Big-Digits is called Big-Digits representation of A if and only if
	𝐴=,,,𝑎-𝑛.,…,,𝑎-1.,,𝑎-0..-2.=,𝑎-𝑛.,2-𝑛.+…+,𝑎-0.               (5)
	where ,𝑎-𝑖.∈,D. .
	This numbering system is called Big-Digit numbering system (BDNS).
	3.2.  ZOT-Binary: A canonic Big-Digits numbering system
	Definition 5: A sequence of Big-Digits ,,(𝑥-𝑘.…,,𝑥-1.,,𝑥-0.)-2. is known as ZOT-Binary representation if and only if for every two “neighboring” nonzero Big-Digits  ,𝑥-𝑞. and ,𝑥-𝑝<𝑞., where length of  ,𝑥-𝑝. is n:
	1. 𝑞≥𝑝+𝑛+2, when ,𝑥-𝑝. and ,𝑥-𝑞. are both either Big-Two or ,𝑂-1 ..
	2. 𝑞≥𝑝+𝑛+1, for other cases.
	Big-Digit, 𝐴=𝑂-1.0000,𝑇-2.0000,𝑂-5. is not a ZOT-Binary representation since ,𝑥-0.=,𝑂-5 . ,𝑝=0, 𝑛=5. and ,𝑥-5.=,𝑇-2. (q = 5) and therefore (𝑞=5)<(𝑝+𝑛+1=6) which does not satisfy Condition 2 of Definition 5.
	Big-Digit 𝐵=,𝑂-1.0,𝑂-1.00000,𝑇-3. is not a ZOT-Binary representation since ,𝑥-6.=,𝑂-1 .,𝑝=6, 𝑛=1. and ,𝑥-8.=,𝑂-1  .(𝑞=8) and therefore ,𝑞=8.<(𝑝+𝑛+2=9) which does not satisfy Condition 1 of Definition 5.
	Definition 5 introduces the ZOT-Binary representation. The representation is named ZOT-Binary to highlight the base, which is base two, and the digits used in the representation, which are Zero, Big-One and Big-Two.
	Theorem 1. Every non-negative integer A has a unique representation in ZOT-Binary.
	Proof. Assume a ZOT-Binary representation of integer 𝐴=,(,𝑎-𝑚.,…,,𝑎-𝑝.,…,,𝑎-1., ,𝑎-0.)-2. is not unique, and therefore let
	𝐵=,(,𝑏-𝑚.,…,,𝑏-𝑝.,…,,𝑏-1., ,𝑏-0.)-2 . and
	𝐶=,,𝑐-𝑚.,…,,𝑐-𝑝.,…,,𝑐-1., ,𝑐-0..2
	be the two different ZOT-Binary representations of integer A. Compare B and C by scanning from right to left, Big-Digit by Big-Digit, to find the first Big-Digit which is not the same in B and C. Let the position of the first non-similar Big-digit den...
	𝐵=,𝑖=0-𝑚-,𝑏-𝑖.×,2-𝑖..=,,,𝑖=𝑝-𝑚-,𝑏-𝑖.×,2-𝑖...-,𝐵-𝐿..+,,,𝑖=0-𝑝−1-,𝑏-𝑖.×,2-𝑖...-,𝐵-𝑅.. (6)
	𝐶=,𝑖=0-𝑚-,𝑐-𝑖.×,2-𝑖..=,,,𝑖=𝑝-𝑚-,𝑐-𝑖.×,2-𝑖...-,𝐶-𝐿..+,,,𝑖=0-𝑝−1-,𝑐-𝑖.×,2-𝑖...-,𝐶-𝑅..  (7)
	As mentioned above, ∀𝑖∈,0,𝑝−1., ,𝑏-𝑖.=,𝑐-𝑖.. Therefore from (6) and (7) we can conclude that
	,𝐵-𝑅.=,𝐶-𝑅. and , 𝐵-𝐿.=,𝐵−,𝐵-𝑅..=(𝐶−,𝐶-𝐿.)=,𝐶-𝑅..
	Therefore
	,𝑖=𝑝-𝑚-,𝑏-𝑖.×,2-𝑖..=,𝑖=𝑝-𝑚-,𝑐-𝑖.×,2-𝑖..  where,    𝑐-𝑝.≠,𝑏-𝑝..     (8)
	In Table 2, we listed all valid cases of ,𝑐-𝑝 .and ,𝑏-𝑝. (symmetrical cases have been ignored) and we showed that for each case, there is a contradiction. Therefore, by contradiction, the ZOT-Binary represents non-negative integers uniquely.
	Table 2. Summary Of Contradictions For Two Different ZOT-Binary Representations
	-  z denotes the number of zeros on the left of Big-Digits in the first column.
	- p, q, m and n are positive integers and m<n.
	Based on Definition 5, suppose 𝑚=𝑞−(𝑝+𝑛), which indicates that m is the amount of zeros between xp and xq in the binary representation. Therefore we can conclude that two nonzero neighboring Big-Digits in binary representation satisfy the conditio...
	Let 𝐴=,,,𝑎-𝑛.…,,𝑎-2.,,𝑎-1.,,𝑎-0..-2. be a binary number and let the ZOT-Binary representation of A be ,,,𝑐-𝑛.…,,𝑐-2.,,𝑐-1.,,𝑐-0..-2., where ,𝑐-𝑖.=(,𝑐-𝑖𝑡.,,𝑐-𝑖𝑙.)  represents the i-th Big-Digit in A. ,𝑐-𝑖𝑡. denotes the type of ,𝑐...
	The reverse conversion, converting ZOT-Binary representation to binary is relatively simple. The conversion can be done by applying these replacements:
	In many multi-digits multiplication implementations, multiplication time tables are used. These tables are a pre-computed lookup-table (LUT) that saves the information on digit by digit multiplications. Window-based numbering systems as describe earli...
	Tables 3, 4 and 5 show the corresponding multiplication tables, which we call them as Big-Digits multiplication LUT (BD-MLUT).
	Table 3. Big-One-Big-One MLUT (BOBO-MLUT)
	Table 4. Big-Two-Big-Two MLUT (BTBT-MLUT)
	Table 5. Big-One-Big-Two MLUT (BOBT-MLUT)
	In general, rows and columns in Tables 3-5 are unlimited and therefore tables size do not limit to a certain value. One advantage of BD-MLUT is that it grows relatively slower compared to decimal or binary multiplication time-tables, which suggest tha...
	For Big-Digits, we had analyzed 10,000 random bits representing random integers and found that the following five Big-Digits, 1, 11, 111, 1111 and 101 occurs 90.3% of the time (see Figure. 1).
	This finding has a big implication in determining the size of BD-MLUT that we need to use effectively for our multiplication algorithm. A small size of BD-MLUT of 5 rows by 5 columns is enough to capture almost 90.3% of random Big-Digits. For the rest...
	Figure 1: Nonzero Big-Digits distribution in ZOT-Binary representation based on 10,000 random bits
	In general, suppose the length of a Big-Digit is n and BD-MLUT support only Big-Digits less than m, then the following conversions can be applied.
	Let  𝑝=𝑛 𝑚𝑜𝑑 𝑚 and 𝑛=𝑘×𝑚−𝑝, then
	,,0…0.-𝑛−1.,𝑂-𝑛. = ,,0…0.-𝑝−1.,𝑂-𝑝.,,,,0…0.-𝑚−1.,𝑂-𝑚.…,,0…0.-𝑚−1.,𝑂-𝑚..-𝑘.  .
	Or let  𝑝=𝑛 𝑚𝑜𝑑 (𝑚+1) and 𝑛=𝑘×(𝑚+1)−𝑝, then
	,,0…0.-𝑛−1.,𝑇-𝑛. = ,,0…0.-𝑝−1.,𝑇-𝑝.,,,,0…0.-𝑚.,𝑇-𝑚.…,,0…0.-𝑚.,𝑇-𝑚..-𝑘.  .
	Table 6 shows another perspective of the Big-Digits distribution in range of 128 bits to 32 kbits random integer. It indicates that ZOT-Binary representation reduce the percentage of nonzero symbols to 21.86%, while the average of Hamming weight for M...
	Table 6. Distribution of nonzero Big-Digits in ZOT-Binary representation in range of 128 bits to 32 kbits

