
Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

ZOT-BINARY: A NEW NUMBERING SYSTEM WITH AN
APPLICATION ON BIG-INTEGER MULTIPLICATION

1SHAHRAM JAHANI, 2AZMAN SAMSUDIN

1,2 School of Computer Sciences, Universiti Sains Malaysia,Pulau Penang, Malaysia

E-mail: 1shahramjahani@gmail.com, 2azman@cs.usm.my

ABSTRACT

In this paper we present a new numbering system with an efficient application on Big-Integer
multiplication. The paper starts with an introduction to a new redundant positional numbering system
known as “Big-Digit Numbering System” (BDNS). With BDNS, a new non-redundant positional numbering
system known as ZOT-Binary is proposed. ZOT-Binary has a low Hamming weight with an average of
23.8% nonzero symbols, and therefore is highly suitable for Big-Integer calculation, especially for Big-
Integer multiplication. To harvest such benefit from the ZOT-Binary representation, a new Big-Integer
multiplication algorithm, ZOT-CM, which is based on the Classical multiplication algorithm, is proposed.
Our result shows that when compared with the Classical multiplication algorithm, ZOT-CM is about 12
times faster for multiplying 128 bits numbers and at least 16 times faster for multiplying numbers that are
bigger than 32,000 bits long. Our result also shows that ZOT-CM is about 20 to 3 times faster than
Karatsuba multiplication algorithm, for multiplying numbers that are ranging from 128 bits to 32,000 bits
long. From the findings, it is clear that ZOT-CM is a valuable addition to Big-Integer multiplication
algorithm, and it is also believed that ZOT-Binary representation can benefit many other Big-Integer
calculations.
Keywords: Numbering system, Big-Integer multiplication, Cryptography, Hamming weight.

1. INTRODUCTION

Numbering system has always been important in
the history of human civilization, and the increasing
of number crunching applications signifies
numbering system as a crucial necessity more than
in the past. To improve arithmetic operations,
researchers [1-4] have looked into alternative
numbering systems. For example, by proposing
signed-binary numbers [1, 3, 4] instead of the
standard binary numbers has decreased the number
of partial product in Classical multiplication
algorithm [5] and therefore increased overall
algorithm efficiency. Multi-base numbering
systems [2, 6, 7] are other similar examples.

The main goal of this paper is to increase the
efficiency of Big-Integer multiplication operation
which has many important applications, such as
cryptography and other scientific calculations. To
achieve this goal, modification of known
multiplication algorithm running on top of a new
numbering system has been identified as the
approach. The most popular algorithms for Big-
Integers multiplication are Classical, Karatsuba

[8], Toom-Cook [9, 10] and Shonang-Strassen [11],
in which the first two algorithms are more common
than the others. Although the complexity of
Classical multiplication algorithm, 𝑂(𝑛2), is higher
than the complexity of other algorithms, Xianjin
and Longshu [12] have shown that the Classical
multiplication algorithm is efficient for multiplying
numbers that are less than 255 digits long. On top
of its efficiency, it has also been shown that
Classical multiplication algorithm is efficient in
memory utilization. Karatsuba multiplication
algorithm has a better complexity, 𝑂(𝑛1.58),
compared to Classical multiplication algorithm.
However Karatsuba multiplication algorithm
overhead in lower range numbers (less than 255
digits) has caused implementers [12] to combine
both algorithms, Classical and Karatsuba, to
achieve better overall algorithm efficiency. In this
paper we propose a new numbering system that can
help improve the efficiency of Classical
multiplication algorithm and consequently increase
the range of its functionality above the 255 digits
threshold.

http://www.jatit.org/
mailto:1shahramjahani@gmail.com
mailto:2azman@cs.usm.my

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

30

We review most of the related works on the
positional numbering system of radix 2 in Section
2.1. We describe the Classical multiplication
algorithm in Section 2.2. Section 3 is dedicated to
the proposed numbering systems, BDNS, and ZOT-
Binary. In Section 3.4 the proposed multiplication
algorithms mbCM and ZOT-CM are described. We
present the experimental results and comparison of
the proposed multiplication algorithm with existing
methods in Section 4, before concluding in Section
5.

2. NUMBERING SYSTEMS AND
ARITHMETIC OPERATIONS

Section 2.1 reviews positional numbering system
since it has a significant role in arithmetic
operations. Following that, Section 2.2 reviews the
Classical multiplication algorithm which is
fundamental to the work of this paper.

2.1. Positional Numbering System
In positional numbering system, an integer in

radix-r (or base r) can be written as:

(𝑎𝑛 … 𝑎1𝑎0)𝑟 = 𝑎𝑛𝑟𝑛 + ⋯+ 𝑎1𝑟1 + 𝑎0 (1)

If 0 ≤ 𝑎𝑖 < 𝑟, then this representation is unique.
We call 𝑎𝑖 as digit, and its related set, such as
{0,1, … , r − 1}, as digit set. Decimal numbers with
r = 10 and 𝑎𝑖 ∈ {0,1, … ,9}, and binary numbers
with r = 2 and 𝑎𝑖 ∈ {0,1}, are the two most known
numbering systems. Ternary (r = 3), quaternary (r
= 4), octal (r = 8) and hexadecimal (r = 16) are the
other examples of fixed-radix positional numbering
system [5].

2.1.1. Fixed-radix numbering system
Equation (1) represents the fixed-radix

numbering system. The weight of each digit
(𝑟𝑖 for 𝑎i) in the representation is obtained by
multiplying a fixed value (r) by the previous digit’s
weight (𝑟𝑖−1). In the following, our discussion
focus on the radix-2 number systems with different
digit set. We use S to represent the digit set.

2.1.1.1. Binary number
The birth of radix-2 arithmetic is usually

attributed to G. W. Leibniz[13], while the binary
notation has appeared in 1605 in some unpublished
manuscripts of Thomas Harriot [5]. Digit set for the
binary system is 𝑆 = {0,1} .

2.1.1.2. Signed binary (SB) number

In Signed Binary representation, which is
sometimes known as Ternary Numbering System
[14], the digit set is 𝑆 = {0, ±1}. The redundancy in
the numbering system is the result of using 3

symbols in radix-2. Booth [1], NAF [3] and MOF
[4] algorithms are the examples of SB numbering
systems that take advantage from this redundancy
to decrease the number of operations in the
multiplication [1, 15-18], exponentiation [19, 20]
and scalar multiplication [1, 3, 4, 17, 18]
computations.

Booth [1] in 1959 proposed an algorithm to
speed up the Classical multiplication computation
on computer. The main goal of the original Booth’s
algorithm and in the higher radix Booth’s algorithm
[15, 16], is to decrease the number of partial
product in the algorithm by decreasing the number
of nonzero digits in the binary representation
through the use of the symbol “-1” in radix-2.

NAF (Non-Adjacent-Form) [3] is another ternary
numbering system that was introduced by
Reitwiesner in 1960. NAF representation is
obtained by scanning every 3 bits in a binary
number (from right to left) and substituting “𝑥11”
with “101�” where “1�” denotes “−1” and 𝑥
represents any digit. The immediate advantage of
the NAF representation is a low Hamming weight,
which is 1/3 [21]. The generalization of
Reitwiesner’s NAF algorithm can be found in [22,
23].

Another important SB representation is MOF
(Mutual Opposite Form). MOF has a Hamming
weight of 1/2 [4]. However MOF can perform its
calculation in both directions (right-to-left and left-
to-right) and requires less memory compared to
NAF.

Note that, the SB representation is not always
used for optimizing arithmetic operations. For
example, in [24] the Highest-Weight Binary Form
(HBF) of scalars and randomization are proposed to
resist power analysis in Elliptic Curve
Cryptography (ECC). There is another ternary
numbering system, Balanced Ternary System [5,
25], which is very similar to the SB numbering
system. Balance Ternary System uses the same
digits set as the SB numbering system but with a
base of 3.

2.1.1.3. Multi-Base numbering system (MBNS)
The simplest system in MBNS category is the

double-base numbering system (DBNS). This
numbering system was first proposed by Dimitrov
et al. [2] for computing the scalar multiplication in
ECC. Numbers in DBNS are represented as

∑ 𝑐𝑖2𝑎𝑖3𝑏𝑖𝑖 where 𝑐𝑖 ∈ {0, ±1}, and 𝑎𝑖 , 𝑏𝑖 ∈ 𝑍+.

If 𝑑𝑖 = 𝑐𝑖 × 3𝑏𝑖 , then this representation can be
transformed to ∑ 𝑑𝑖2𝑎𝑖𝑖 . This shows DBNS

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

31

representation is a radix-2 numbering system, with
an enlarged set of integers. Other MBNS [6, 7, 26]
use radix-2 as one of the main bases, and similar to
DBNS, it can be shown that they are all a radix-2
numbering system with an enlarger digit set. Multi-
base NAF (mbNAF)[7] is one of the latest
numbering systems that falls under this category.

2.1.1.4. Window sliding method
A number 𝐴 = (𝑎𝑛 … 𝑎2𝑎1𝑎0)𝑏 where 𝑎𝑖 ∈

{0, … , 𝑏 − 1} can be represented by

 𝐴 = �𝐴𝑝 …𝐴2𝐴1𝐴0�𝑟 (2)

where 𝑟 = 𝑏𝑤, 𝐴𝑖 = ∑ (𝑎𝑗+𝑖𝑤𝑏𝑗𝑤−1
𝑗=0) and

 𝑝 = 𝑛 𝑚𝑜𝑑 𝑟.

The digit set for Equation (2) numbering system
is {0,1, … , 𝑏𝑤 − 1}. In this way, we can represent
numbers with fewer digits. The time complexity of
algorithms (such as multiplication algorithm)
utilizing this windowing method is related to the
number of digits and the window size. In general,
Window Sliding Method increases the arithmetic
efficiency in an algorithm. Most popular bases of
this group are in the form of 𝑟 = 2𝑤 .

Window Sliding Method can be combined with
SB representation. wNAF [22, 23], wMOF [4],
wmbNAF [7] are the windowing method of NAF,
MOF and mbNAF, respectively. Mishra and et al.
[27] presented in 2007 a new variant for the
window version of DBNS. The windowing method
improves the efficiency of the original algorithms
by having pre-calculated calculations saved in a
lookup table (LUT) and uses pre-calculated values
in computations. However, the size of the window
depends on application and is limited to the
available memory. For example if we want to store
a multiplication LUT for w = 16 bits, we need
216 × 216 × (2 × 16) = 128 Gbyte of memory,
which is not reasonable in most applications, even
with today’s technology.

2.1.2. Mixed-base numbering system
Fixed-base numbering system was first

generalized to a mixed-base numbering system by
Georg Cantor in 1869 [5]. Prime number system
and factorial number system [5] are examples of
mixed-base systems. Equation (3) shows the
representation of integers in mixed-base numbering
system. There are two sequences of numbers
(𝑎𝑛 … , 𝑎2, 𝑎1, 𝑎0) and (𝑏𝑛 … , 𝑏2, 𝑏1, 𝑏0) where 𝑎𝑛’s
are the digits and 𝑏𝑛’s are the bases. The weight of
each digit is a multiple of the weight of previous
digit.

� 𝑑𝑖𝑔𝑖𝑡𝑠
𝑟𝑎𝑑𝑖𝑥𝑒𝑠

� = �
(𝑎𝑛 … , 𝑎1, 𝑎0)
(𝑏𝑛 … , 𝑏1, 𝑏0)� =

𝑎𝑛(𝑏𝑛 … 𝑏0) + ⋯+ 𝑎1(𝑏1𝑏0) + 𝑎0𝑏0 (3)

2.2. Classical Multiplication Algorithm
Big-Integer multiplication algorithm is one of the

fundamental algorithms for scientific computing, in
which many mathematicians and computer
scientists are continuously making improvements
on the subject [10, 11, 28]. As mentioned earlier,
among the multiplication algorithms, Classical
multiplication algorithm is the most used. This is
because of its efficiency in multiplying lower range
numbers [12]. Classical multiplication algorithm is
also being used in combination with the other
multiplication algorithms to gain overall
improvement. Better space complexity is another
advantage of the Classical multiplication algorithm,
resulted in the algorithm being used in memory
constrained applications.

The efficiency of the Classical multiplication
algorithm is related to the numbering system used.
The complexity of the Classical multiplication
algorithm (see Algorithm 1 [5]) is 𝑂(𝑛2), where n
is the size of the numbers being multiplied.
Therefore, the number representation that has fewer
digits is theoretically should run faster than the
number representation that has more digits in its
representation. In addition, the density of nonzero
digits in the numbers influences the number of
addition that has to be carried out in the Classical
multiplication algorithm. Equation (4) describes the
Classical multiplication equation in radix-r, in
which the Algorithm 1 is based on.

 𝐴 × 𝐵 = ∑ ∑ 𝑎𝑖𝑏𝑗(𝑟𝑖+𝑗)𝑚
𝑗=0

𝑛
𝑖=0 . (4)

Algorithm 1: Classical Multiplication CM (A,B)
Input: A = (an … a0)r
 B = (bm … b0)r
Output: C = (cm+n … , c1c0)r
1. carry = 0; temp = 0
2. for (i = 0; i ≤ m + n; i++)
3. ci = 0
4. for (i = 0; i ≤ n; i++)
5. for (j = 0; j ≤ m; j++)
6. temp = ci+j + �ai × bj � + carry
7. carry = ⌊temp/r⌋
8. ci+j = temp − carry × r
9. return C

In Algorithm 1, Steps 2 and 3 initialize the
output array to zero. Multiplicand and multiplier
digits are scanned in a row manner in Steps 4 and 5.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

“temp” is a temporary memory used to keep the
summation of the partial product, with the last
result being saved in the output array and carry. In
Steps 7 and 8, the value of the output and the new
carry is calculated from temp.

3. BIG-DIGIT NUMBERING SYSTEM

(BDNS)

In this section we first introduce a new digit set
of radix-2, followed by a new numbering system
based on the new proposed digit set.

3.1. Definitions
Definition 1: Let 𝑂� = {𝑂1,𝑂2 … ,𝑂𝑛 , … } be a set,

where 𝑂𝑛 is a sequence of n consecutive binary
symbol “1”. We call 𝑂𝑛 as Big-One (BO) with
length 𝑛 and 𝑂� as the set of Big-Ones.

Example: 𝑶𝟏 = 𝟏𝟐, 𝑶𝟓 = 𝟏𝟏𝟏𝟏𝟏𝟐 𝐚𝐧𝐝
 𝑶� = {𝑶𝟏,𝑶𝟐,𝑶𝟑, … } = {𝟏𝟐,𝟏𝟏𝟐,𝟏𝟏𝟏𝟐, … }.

Definition 2: Let 𝑇� = {𝑇1,𝑇3,𝑇5 … ,𝑇𝑛 , … },
where 𝑇𝑛 is a sequence of (𝑛−1

2
) consecutive two

binary symbols “10” with additional “1” at the
rightmost of the sequence. We call 𝑇𝑛 as Big-Two
(BT) with length n and 𝑇� as the set of Big-Twos.

 Example: 𝑇1 = 12, 𝑇5 = 101012 and
𝑇� = {𝑇1,𝑇3,𝑇5, … } = {12, 1012, 101012, … }.

Definition 3: Big-Digits set (𝐷�) is defined as
𝐷� = 𝑂� ∪ 𝑇 � ∪ {0}. Each element of 𝐷 � is a Big-
Digit (BD). (Note: to prevent redundancy, we
remove 𝑇1and use 𝑂1in 𝐷� to represent “12”)

Based on these Definitions (1-3), there are three
new possible numbering systems of base 2.

1. System 1: 𝑂� ∪ {0} as the digit set.
2. System 2: 𝑇 � ∪ {0} as the digit set.
3. System 3: 𝐷� as the digit set.

Given a positive integer A, if we represent A by
using System 1, the number of 𝑂1in the number will
increase because the existence of pattern “010”.
Similarly, if we represent A by using System 2, the
number of 𝑇1in the number will increase because
the existence of pattern “11”. System 3 which is a
hybrid of both previous systems produces the best
result. The following examples describe the
phenomenon. Let 𝐴 = 111010101011112 and
consists of 10 non-zero digits.

• Based on System 1:

 𝐴 = (111)2 × 211 + (1)2 × 29 + (1)2 × 27 +

 (1)2 × 25 + (1111)2 × 20
 = 𝑂30𝑂10𝑂10𝑂10000𝑂4���������������

5 𝑛𝑜𝑛−𝑧𝑒𝑟𝑜 𝑑𝑖𝑔𝑖𝑡𝑠

• Based on System 2:

𝐴 = (1)2 × 213 + (1)2 × 212 +

 (101010101)2 × 23 + (1)2 × 22 +
 (1)2 × 21 + (1)2 × 20
 = 𝑇1𝑇100000000𝑇9𝑇1𝑇1𝑇1���������������

6 non−zero digits

• Based on System 3:

 A = (11)2 × 212 + (101010101)2 × 23 +

 (111)2 × 20
 = 𝑂200000000𝑇900𝑂3�������������

3 non−zero digits

Therefore, to reduce the number of nonzero in

Big-Digits, System 3 is preferred. Our experiment
with 10,000 random bits (see Table 1) shows that
System 3A yields the best result.

Table 1. Number of nonzero in different Big-Digit
numbering systems, based on 10,000 random bits

System 1 System 2 System 3A System 3B
2,492 3,789 2,186 2,346

As shown in Table 1 there are two versions of

System 3. In converting a binary number to Big-
Digit representation, priority can be given to
convert Big-Ones first followed by Big-Twos, or
vice-versa. For example, given a number,
11101112, System 3 can produce either 𝑂3000𝑂3
(priority on Big-Ones) or 𝑂200𝑇30𝑂2 (priority on
Big-Twos). Note that, the first representation has
less nonzero Big-Digits. Similar finding is observed
from Table 1, where System 3A which supports Big-
One priority out-performed System 3B which
supports Big-Two priority in terms of producing
fewer digits. From the examples above, it is clear
that when converting from binary to Big-Digit, the
priority must be given in converting Big-Ones,
followed by Big-Twos. With this information, we
can define a unique Big-Digit representation that
supports the minimum nonzero Big-Digits.

Definition 4: A sequence of Big-Digits is called
Big-Digits representation of A if and only if

𝐴 = (𝑎𝑛, … , 𝑎1, 𝑎0)2 = 𝑎𝑛2𝑛 + ⋯+ 𝑎0 (5)

where 𝑎𝑖 ∈ D� .

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

This numbering system is called Big-Digit
numbering system (BDNS).

3.2. ZOT-Binary: A canonic Big-Digits
numbering system

Definition 5: A sequence of Big-Digits
(𝑥𝑘 … , 𝑥1, 𝑥0)2 is known as ZOT-Binary
representation if and only if for every two
“neighboring” nonzero Big-Digits 𝑥𝑞 and 𝑥𝑝<𝑞,
where length of 𝑥𝑝 is n:

1. 𝑞 ≥ 𝑝 + 𝑛 + 2, when 𝑥𝑝 and 𝑥𝑞 are both
either Big-Two or 𝑂1 .

2. 𝑞 ≥ 𝑝 + 𝑛 + 1, for other cases.
Big-Digit 𝐴 = 𝑂10000𝑇20000𝑂5 is not a ZOT-

Binary representation since 𝑥0 = 𝑂5 (𝑝 = 0,𝑛 =
5) and 𝑥5 = 𝑇2 (q = 5) and therefore (𝑞 = 5) <
(𝑝 + 𝑛 + 1 = 6) which does not satisfy Condition
2 of Definition 5.

Big-Digit 𝐵 = 𝑂10𝑂100000𝑇3 is not a ZOT-

Binary representation since 𝑥6 = 𝑂1 (𝑝 = 6,𝑛 =
1) and 𝑥8 = 𝑂1 (𝑞 = 8) and therefore (𝑞 = 8) <
(𝑝 + 𝑛 + 2 = 9) which does not satisfy Condition
1 of Definition 5.

Definition 5 introduces the ZOT-Binary
representation. The representation is named ZOT-
Binary to highlight the base, which is base two, and
the digits used in the representation, which are
Zero, Big-One and Big-Two.

Theorem 1. Every non-negative integer A has a
unique representation in ZOT-Binary.

Proof. Assume a ZOT-Binary representation of
integer 𝐴 = (𝑎𝑚, … , 𝑎𝑝, … , 𝑎1, 𝑎0)2 is not unique,
and therefore let

𝐵 = (𝑏𝑚, … , 𝑏𝑝, … , 𝑏1, 𝑏0)2 and
𝐶 = �𝑐𝑚 , … , 𝑐𝑝, … , 𝑐1, 𝑐0�2

be the two different ZOT-Binary representations of
integer A. Compare B and C by scanning from right
to left, Big-Digit by Big-Digit, to find the first Big-
Digit which is not the same in B and C. Let the
position of the first non-similar Big-digit denoted
by p. Subsequently, we can represent B and C as
follow:

𝐵 = ∑ 𝑏𝑖 × 2𝑖𝑚
𝑖=0 = ∑ 𝑏𝑖 × 2𝑖𝑚

𝑖=𝑝
���������

𝐵𝐿

+ ∑ 𝑏𝑖 × 2𝑖𝑝−1
𝑖=0

���������
𝐵𝑅

 (6)

𝐶 = ∑ 𝑐𝑖 × 2𝑖𝑚
𝑖=0 = ∑ 𝑐𝑖 × 2𝑖𝑚

𝑖=𝑝
�������

𝐶𝐿

+ ∑ 𝑐𝑖 × 2𝑖𝑝−1
𝑖=0

���������
𝐶𝑅

 (7)

As mentioned above, ∀𝑖 ∈ {0, 𝑝 − 1}, 𝑏𝑖 = 𝑐𝑖.
Therefore from (6) and (7) we can conclude that

𝐵𝑅 = 𝐶𝑅 and 𝐵𝐿 = (𝐵 − 𝐵𝑅) = (𝐶 − 𝐶𝐿) = 𝐶𝑅.

Therefore

∑ 𝑏𝑖 × 2𝑖𝑚
𝑖=𝑝 = ∑ 𝑐𝑖 × 2𝑖𝑚

𝑖=𝑝 where 𝑐𝑝 ≠ 𝑏𝑝. (8)

In Table 2, we listed all valid cases of 𝑐𝑝 and 𝑏𝑝
(symmetrical cases have been ignored) and we
showed that for each case, there is a contradiction.
Therefore, by contradiction, the ZOT-Binary
represents non-negative integers uniquely.

Table 2. Summary Of Contradictions For Two Different ZOT-Binary Representations

𝑏𝑝 𝑐𝑝 Conditions Contradictions

o 𝑂𝑚 or 𝑇𝑚
𝑎𝑝 = 0 𝑖𝑛 𝐵𝐿
𝑎𝑝 = 1 𝑖𝑛 𝐶𝐿

𝑂𝑚 𝑂𝑛
𝑎𝑝+𝑚 = 0 𝑖𝑛 𝐵𝐿
𝑎𝑝+𝑚 = 1 𝑖𝑛 𝐶𝐿

𝑂𝑚 𝑇𝑛
𝑚 = 1

𝑧 = 1
𝑎𝑝+3 = 1 𝑖𝑛 𝐵𝐿
𝑎𝑝+3 = 0 𝑖𝑛 𝐶𝐿

𝑧 > 2
𝑎𝑝+2 = 1 𝑖𝑛 𝐵𝐿
𝑎𝑝+2 = 0 𝑖𝑛 𝐶𝐿

𝑚 ≥ 2
𝑎𝑝+1 = 1 𝑖𝑛 𝐵𝐿
𝑎𝑝+1 = 0 𝑖𝑛 𝐶𝐿

𝑇𝑚 𝑇𝑛
𝑧 = 𝑚 + 1

𝑎𝑝+𝑚+2 = 1 𝑖𝑛 𝐵𝐿
𝑎𝑝+𝑚+2 = 0 𝑖𝑛 𝐶𝐿

𝑧 > 𝑚 + 1
𝑎𝑝+𝑚+1 = 0 𝑖𝑛 𝐵𝐿
𝑎𝑝+𝑚+1 = 1 𝑖𝑛 𝐶𝐿

- z denotes the number of zeros on the left of Big-Digits in the first column.
- p, q, m and n are positive integers and m<n.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

3.3. ZOT-Binary Conversion Algorithm
Based on Definition 5, suppose 𝑚 = 𝑞 − (𝑝 +

𝑛), which indicates that m is the amount of zeros
between xp and xq in the binary representation.
Therefore we can conclude that two nonzero
neighboring Big-Digits in binary representation
satisfy the conditions of ZOT-Binary representation
if the number of zeros between them is at least
two, in which either one or both of them are Big-
Twos or 𝑂1. The ZOT-Binary conversion algorithm
(see Algorithm 2) described below, is using this
property to convert a binary number to ZOT-Binary
representation.

Let 𝐴 = (𝑎𝑛 … , 𝑎2, 𝑎1, 𝑎0)2 be a binary number
and let the ZOT-Binary representation of A be
(𝑐𝑛 … , 𝑐2, 𝑐1, 𝑐0)2, where 𝑐𝑖 = (𝑐𝑖𝑡 , 𝑐𝑖𝑙) represents
the i-th Big-Digit in A. 𝑐𝑖𝑡 denotes the type of 𝑐𝑖 and
𝑐𝑖𝑙 denotes the length of 𝑐𝑖. Following are the steps
to convert a binary number to its ZOT-Binary
representation.

Algorithm 2: ZOT-Binary Conversion Algorithm
(right-to-left)
Input: A = (an … , a1, a0)2 is a binary number
Output:C = (cn … , c1, c0)2 where , ci = (cit, cil)
is the ZOT-Binary representation of A
1. an+1 = 0;
2. 𝐟𝐨𝐫 (i = 0 to n + 1; i + +)
3. 𝐢𝐟 ai = 1 𝐭𝐡𝐞𝐧
4. cit = (ai+1 + 1); P = i;
5. 𝐢𝐟 (cPt = 2) 𝐭𝐡𝐞𝐧
6. 𝐰𝐡𝐢𝐥𝐞 (ai = 1)
7. i + +; cPl + +; cit = 0;
8. 𝐞𝐥𝐬𝐞
9. 𝐰𝐡𝐢𝐥𝐞 (ai+1ai = 01)
10. I+= 2; cPl+= 2;
 cit = 0; c(i−1)t = 0;
 i--; cPl--;
11. 𝐢𝐟 (cPl = 1) then
12. cPt = 2;
13. return C

Step 1: Initializing: Set all 𝑐𝑖𝑡 to zero.

Step 2: Identifying the position of nonzero in
BD: Scan the binary number from right to left to
identify the first nonzero bit 𝑎𝑖 . This indicates the
beginning of a new nonzero in BD.

Step 3: Identifying the type of the BD: The Big-
Digit, 𝑎𝑖+1, can identify the type for 𝑎𝑖. If 𝑎𝑖+1 = 0
then the type is BT (𝑐𝑖𝑡 = 1), otherwise the type is
BO (𝑐𝑖𝑡 = 2).

Step 4: Identifying the length of the BD: If the
type of 𝑎𝑖 is BO then we count all of 1’s before the

first zero. However, if the type of 𝑎𝑖 is BT then we
count the number of adjacent ‘01’. The length of
BT is double of this number minus one. For
consistency, we replace all occurrence of 𝑇1 with
its equivalent 𝑂1 .

Step 5: Completing the conversion: Repeating
Steps 2-4 until the last bit.

We can also represent a ZOT-Binary number in a
mixed-base number representation. Such
representation is very useful for some calculations
such as multiplication, since we can have a more
compact representation of ZOT-Binary by removing
all the zeros. The following describes the
conversion of ZOT-Binary to its mixed-base form.

A = (101010001110001111)2�����������������
binary

 = (T500000O3000000O4)2�����������������
𝑍𝑂𝑇−𝑏𝑖𝑛𝑎𝑟𝑦

 = �
(T5, O3, O4)
(26, 27, 20)�
���������

mixed−based 𝑍𝑂𝑇−𝑏𝑖𝑛𝑎𝑟𝑦

Algorithm 3, a modified version of Algorithm2,

describes the conversion process of converting a
binary number to a mixed-base ZOT-Binary
representation. These changes are mainly related to
the relative position calculation of two neighboring
nonzero BD. In this algorithm, 𝑃𝑘 indicates the
relative position of 𝑐𝑘 and 𝑐𝑘−1.

Algorithm 3: Mixed-Base ZOT-Binary
Conversion Algorithm (right-to-left)
Input: A = (an … , a1, a0)2

Output: C= �
(ck … , c1, c0)

(2pk … , 2p1 , , 2p0)� where

 ci = (cit, cil) and pi is position of ci
1. an+1 = 0; k=0; iold=0;
2. 𝐟𝐨𝐫 (i = 0 to n + 1; i + +)
3. 𝐢𝐟 ai = 1 𝐭𝐡𝐞𝐧
4. Ckt = (ai+1 + 1);

 pk = i − iold; iold = i;
5. 𝐢𝐟 (ckt = 2) then
6. 𝐰𝐡𝐢𝐥𝐞 (ai = 1)
7. i + +; ckl + +;
8. 𝐞𝐥𝐬𝐞
9. 𝐰𝐡𝐢𝐥𝐞 (ai+1ai = 01)
10. i+= 2; ckl+= 2;
11. i--; ckl--;
12. 𝐢𝐟 (ckl = 1) then
13. ckt = 2;
14. return C

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

35

The reverse conversion, converting ZOT-Binary
representation to binary is relatively simple. The
conversion can be done by applying these
replacements:

0 … 0���
𝑛−1

𝑂𝑛 → 1 … 1���
𝑛

 and 0 … 0���
𝑛−1

𝑇𝑛 → 101 … 101�������
𝑛

 (9)

Therefore the procedure for converting a mixed-
base ZOT-Binary representation A to its binary
equivalent can be described as follows:

 A = �
(ak … , a1, a0)

(2pk … , 2p1 , , 2p0)�

 = �ak … ai 0 … 0���
pi

ai−1 … a0 0 … 0���
p0

� (10)

where all 𝑎𝑖 in Equation (10) are replaced with
their equivalent binary values as shown in Equation
(9). For example:

A = �
(O3, T3, O5)
(25, 27, , 24)�

 = �O3 00000�����
5

T3 0000000�������
7

O5 0000���
4

�

 = (1110010100111110000)2.

3.4. Multiplication On BDNS
This subsection explains the process of

performing multiplication in BDNS. Classical
multiplication algorithm that runs on ZOT-Binary is
also described in this subsection.

3.4.1. Big-Digits multiplication
In many multi-digits multiplication

implementations, multiplication time tables are
used. These tables are a pre-computed lookup-table
(LUT) that saves the information on digit by digit
multiplications. Window-based numbering systems
as describe earlier uses LUT in its calculations. LUT
is also being used to improve calculation speed as
documented in [29-31]. In the same way, we
propose three multiplications LUT-based on Big-
Digits, they are: Big-One-Big-One multiplication
LUT (BOBO-MLUT), Big-Two-Big-Two
multiplication LUT (BTBT-MLUT), and Big-One-
Big-Two multiplication LUT (BOBT-MLUT).

 Tables 3, 4 and 5 show the corresponding
multiplication tables, which we call them as Big-
Digits multiplication LUT (BD-MLUT).

Table 3. Big-One-Big-One MLUT (BOBO-MLUT)

× 1 11 111 ...
1 1 11 111 ...

11 11 1001 10101 ...
111 111 10101 110001 …

… … … … …

Table 4. Big-Two-Big-Two MLUT (BTBT-MLUT)

× 1 101 ...
101 101 11001 ...

10101 10101 1101001 ...
1010101 1010101 1101100001 …

… … … …

Table 5. Big-One-Big-Two MLUT (BOBT-MLUT)

× 1 11 ...
101 101 1001 ...

10101 10101 111111 ...
1010101 1010101 11111111 …

… … … …

In general, rows and columns in Tables 3-5 are
unlimited and therefore tables size do not limit to a
certain value. One advantage of BD-MLUT is that it
grows relatively slower compared to decimal or
binary multiplication time-tables, which suggest
that storing BD-MLUT requires notably less
memory comparing to storing decimal or binary
multiplication tables. Nevertheless storing big size
tables will put a constraint on a computer memory.
To solve this problem, many implementation such
as in [30, 31] divide the numbers into smaller parts
so that smaller LUTs are used.

For Big-Digits, we had analyzed 10,000 random
bits representing random integers and found that the
following five Big-Digits, 1, 11, 111, 1111 and 101
occurs 90.3% of the time (see Figure. 1).

This finding has a big implication in determining
the size of BD-MLUT that we need to use
effectively for our multiplication algorithm. A
small size of BD-MLUT of 5 rows by 5 columns is
enough to capture almost 90.3% of random Big-
Digits. For the rest of the 9.7% cases, we need to
run the following conversion which will break the
Big-Digits into the identified five Big-Digits
mentioned above.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

36

Figure 1: Nonzero Big-Digits distribution in ZOT-Binary representation based on 10,000 random bits

In general, suppose the length of a Big-Digit is n
and BD-MLUT support only Big-Digits less than
m, then the following conversions can be applied.

 Let 𝑝 = 𝑛 𝑚𝑜𝑑 𝑚 and 𝑛 = 𝑘 × 𝑚 − 𝑝, then

0 … 0���
𝑛−1

𝑂𝑛 = 0 … 0���
𝑝−1

𝑂𝑝 0 … 0���
𝑚−1

𝑂𝑚 … 0 … 0���
𝑚−1

𝑂𝑚�������������
𝑘

 .

Or let 𝑝 = 𝑛 𝑚𝑜𝑑 (𝑚 + 1) and 𝑛 = 𝑘 × (𝑚 +
1) − 𝑝, then

0 … 0���
𝑛−1

𝑇𝑛 = 0 … 0���
𝑝−1

𝑇𝑝 0 … 0���
𝑚

𝑇𝑚 … 0 … 0���
𝑚

𝑇𝑚�������������
𝑘

 .

The memory requirement to store the MLUT for
ZOT-CM is only 25 byte as shown below:

Size of 𝑀𝐿𝑈𝑇 = � 5⏟
rows

× 5⏟
columns

× 8� = 25 byte.

Table 6 shows another perspective of the Big-
Digits distribution in range of 128 bits to 32 kbits
random integer. It indicates that ZOT-Binary
representation reduce the percentage of nonzero
symbols to 21.86%, while the average of Hamming
weight for MOF and NAF is 50% [4] and 33% [21]
respectively.

Table 6. Distribution of nonzero Big-Digits in ZOT-Binary representation in range of 128 bits to 32 kbits

Length 128
bits

256
bits

512
bits

1
kbits

2
kbits

4
kbits

8
kbits

16
kbits

32
kbits Average

 (𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝐵𝐷
𝐿𝑒𝑛𝑔𝑡ℎ

) % 21.1 22.7 21.9 21.2 21.7 22.0 21.6 21.8 22.0 21.8

3.4.2. mb-CM: A modified mixed-base
Classical multiplication algorithm

Let 𝐴 = �
(𝑎𝑛 … , 𝑎2, 𝑎1, 𝑎0)

(𝑟𝑝𝑛 … , 𝑟𝑝2 , 𝑟𝑝1 , 𝑟𝑝0)� and

 𝐵 = �
(𝑏𝑚 … , 𝑏2, 𝑏1, 𝑏0)

(𝑟𝑞𝑚 … , 𝑟𝑞2 , 𝑟𝑞1 , 𝑟𝑞0)�

be the two mixed-base integer multiplicands such
that 𝑝𝑖 ,𝑞𝑖 ,𝑚,𝑛 and 𝑟 are integers. Integer A and B
can be written as series, as shown by Equations

(11) and (12), respectively.

 𝐴 = ∑ 𝑎𝑖(𝑟𝑝𝑖 × … 𝑟𝑝1 × 𝑟𝑝0)𝑛

𝑖=0
 = ∑ 𝑎𝑖(𝑟

∑ 𝑝𝑗
𝑖
𝑗=0)𝑛

𝑖=0 (11)

𝐵 = ∑ 𝑏𝑘(𝑟𝑞𝑘 × … 𝑟𝑞1 × 𝑟𝑞0)𝑚

𝑘=0
 = ∑ 𝑏𝑘(𝑟∑ 𝑞𝑙

𝑘
𝑙=0)𝑚

𝑘=0 (12)

Multiplying A and B, we have:

1 2 3 4 5 6 7 8 9 10
Big-Two 0.0% 0.0% 7.4% 0.0% 2.2% 0.0% 0.4% 0.0% 0.1% 0.0%
Big-One 32.0% 29.2% 14.2% 7.5% 3.8% 1.5% 1.0% 0.3% 0.2% 0.2%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Big-Two

Big-One

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

37

𝐴 × 𝐵 = ��𝑎𝑖 �𝑟
∑ 𝑝𝑗
𝑖
𝑗=0 �

𝑛

𝑖=0

� ×

 ��𝑏𝑘(𝑟∑ 𝑞𝑙
𝑘
𝑙=0)

𝑚

𝑘=0

�

Then
𝐴 × 𝐵 = (∑ 𝑎𝑖(𝑟𝑃𝑖)𝑛

𝑖=0) × (∑ 𝑏𝑘(𝑟𝑄𝑘)𝑚
𝑘=0)

Where 𝑃𝑖 = ∑ 𝑝𝑗𝑖
𝑗=0 and 𝑄𝑘 = ∑ 𝑞𝑙𝑘

𝑙=0 .

Then

 𝐴 × 𝐵 = ∑ ∑ 𝑎𝑖(𝑟𝑃𝑖) × 𝑏𝑘(𝑟𝑄𝑘)𝑚
𝑘=0

𝑛
𝑖=0

 = ∑ ∑ 𝑎𝑖𝑏𝑘𝑟(𝑃𝑖+𝑄𝑘)𝑚
𝑘=0

𝑛
𝑖=0 (13)

Series in Equation (13) has a similar structure to
the series in Equation (4). Therefore, Algorithm 1
can be generalized to Algorithm 4 to support the
mixed-base Classical multiplication and result is
saved in radix-r.

Algorithm 4: Mixed-Base Classical
Multiplication mbCM(A(rpi) , B(rqi))

Input: A = �
(an … , a2, a1, a0)

(rpn … , rp2 , rp1 , rp0)� is a

mixed-base number in terms of (rpi)

 B = �
(bm … , b2, b1, b0)

(rqm … , rq2 , rq1 , rq0)� is a

mixed-base number in terms of (rqi)

Output: C = �c�∑ pi
n
i=0 +∑ qj

m
j=0 � … , c2, c1, c0�

r

1. carry = 0
2. for(i = 0; i ≤ n; i++)
3. I+= pi;
4. for (j = 0; j ≤ m; j++)
5. J+= qi;
6. temp = (cI+J+q(i+1) … cI+J) +

 �ai × bj�r+ carry;
7. carry = ⌊temp/rq(i+1)⌋
8. �cI+J+q(i+1) … cI+J� = temp −

 carry × rq(i+1);
9. (cI+J+qm+pi … cI+J+qm) = carry;
10. return C

There are two main differences in Algorithm 4
over the normal Classical multiplication algorithm.
First, Algorithm 4 ignores zeros between every two
Big-Digits (Steps 3 and 5) in its calculation.
Second, digits in this algorithm are processed in a
group (Steps 6, 7 and 8). Both modifications will
additionally speed-up the multiplication calculation

compared to the normal Classical algorithm.

3.4.3. ZOT-CM: Classical multiplication on
ZOT-Binary representation

By substituting r = 2 in Algorithm 4, we can
modify Algorithm 4 to Algorithm 5 that supports
ZOT-Binary numbers. We call this algorithm as
ZOT-CM. Let the sequence of A and B be the two
ZOT-Binary numbers.

Algorithm 5: Classical Multiplication for ZOT-
Binary Numbers ZOT-CM(A , B)

Input: A = �
(an … , a2, a1, a0)

(2pn … , 2p2 , 2p1 , , 2p0)� is a

ZOT-Binary number

 B = �
(bm … , b2, b1, b0)

(2qm … , 2q2 , 2q1 , 2q0)� is a

ZOT-Binary number
Output: C = �cpn+qm … , c2, c1, c0�2
1. carry = 0
2. for(i = 0; i ≤ n; i++)
3. I+= pi;
4. for (j = 0; j ≤ m; j++)
5. J+= qi ;
6. temp = (cI+J+q(i+1) … cI+J) +

 �ai × bj�2+ carry ;
7. carry = ⌊temp/2q(i+1)⌋
8. �cI+J+q(i+1) … cI+J� = temp −

 carry × 2q(i+1);
9. (cI+J+qm+pi … cI+J+qm) = carry ;
10. return C

4. EXPERIMENTAL RESULTS

In Section 3.4, it has been shown that the average
of nonzero Big-Digit for relatively large sample of
random numbers is about 24%. Since the
complexity of the Classical multiplication is 𝑂(𝑛2),
then theoretically, the execution time of ZOT-CM
compare to the Classical multiplication algorithm
must be:
Partial multiplication of ZOT−CM

Partial multiplication of CM
= 0.24n×0.24n

n2
≅ 0.058.

Table 7 shows the execution time of the
Classical, Karatsuba and ZOT-CM multiplication
algorithms against different bit length numbers
which are randomly generated. Each value in Table
8 is based on an average of 20 actual readings and
the conversion overhead had already been included

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

38

in the readings. Experiment was conducted on
AMD Phenom (TM), 9950, Quad core processor,
2.6 GHz, 3.25GB RAM, with Windows XP
(Service Pack 2) Professional and Dev-C++ version
4.9.9.2 compiler.

Table 7. Execution Time (Msec) Of Different Multiplication Algorithms
 Length
Algorithm

128
bits

256
bits

512
bits

1
kbits

2
kbits

4
kbits

8
kbits

16
kbits

32
kbits

Classical 0.1140 0.451 1.793 7.163 28.66 114.70 458.8 1,916.7 7,703
Karatsuba 0.1726 0.522 1.582 4.753 14.29 43.00 129.0 388.2 1,165.6
ZOT-CM 0.0087 0.030 0.111 0.427 1.68 6.65 26.6 108.4 434.92

Table 8. Execution Time Ratio Of ZOT-CM Multiplication Algorithm Against Classical And Karatsuba Multiplication
Algorithms

Tables 7 and 8 show that ZOT-CM multiplication
algorithm performs better than the Classical and
Karatsuba multiplication algorithms, for
multiplying integers in the range of 128 bits – 32
kbits. The execution time of ZOT-CM
multiplication algorithm is 8% of the Classical
multiplication algorithm for 128 bits integers, and
this ratio decreases to 6% for 32,000 bits numbers.
For multiplying numbers that are bigger than
32,000 bits, the ratio should be 6% or lower.

ZOT-MC multiplication algorithm is also faster
than the Karatsuba algorithm for multiplying
numbers in the range of 128 – 32,000 bits. For 128
bits integers, the execution time of ZOT-CM
multiplication algorithm is about 5% of the
Karatsuba multiplication algorithms execution
time, and the ratio gradually increases to 37% for
32,000 bits integers. The reason for the increment
in the ratio is because Karatsuba algorithm posses a
better algorithm complexity than the ZOT-CM
algorithm. However, from the readings found in
Tables 7 and 8, it is expected that Karatsuba
multiplication algorithm will out-perform ZOT-CM
multiplication algorithm only when multiplying
numbers that are bigger than 442.6 kbits long.

5. CONCLUSION AND FUTURE WORK

Having new perspective to existing numbering
systems might reveal some hidden advantages.
Based on this believe a new positional numbering
system (BDNS) and its canonic numbering system

(ZOT-Binary) were created. BDNS and ZOT-Binary
representation was extracted from the binary
representation and posses some interesting
properties, such as lower percentage of nonzero
symbols. In this paper we are focusing on Big-
Integer multiplication on ZOT-Binary. The
modified Classical multiplication algorithm, ZOT-
CM, increases the efficiency of the multiplication
algorithm in such way that ZOT-CM not only can
replace Classical multiplication algorithm but also
can replace Karatsuba multiplication algorithm
when multiplying numbers in a certain range. It is
believe that many other calculations that depend on
binary systems can benefit from the ZOT-Binary
representation.

6. ACKNOWLEDGMENT

We are pleased to make an acknowledgement to the
Universiti Sains Malaysia, for their support on this
research (Grant number: 1001/PKOMP/817059).

REFERENCES

[1] A. D. Booth, "A signed binary multiplication
technique," Quarterly J. Mechanical and
Applied Math, vol. 4, pp. 236-240, 1951.

[2] V. Dimitrov, L. Imber, and P. K. Mishra,
"Efficient and secure elliptic curve point
multiplication using double-base chains," in
Advances in Cryptology, ASIACRYPT’05, ser.

 Length
Ratio

128
bits

256
bits

512
bits

1
kbits

2
kbits

4
kbits

8
kbits

16
kbits

32
kbits

ZOT-CM / CM 8% 7% 6% 6% 6% 6% 6% 6% 6%
ZOT-CM / KM 5% 6% 7% 9% 12% 15% 21% 28% 37%

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

39

Lecture Notes in Computer Science, vol.
3788, pp. 59-78, 2005.

[3] G. W. Reitwiesner, "Binary arithmetic,"
Advances in Computers vol. 1, 1960.

[4] K. Okeya, K. Schmidt-Samoa, C. Spahn, and
T. Takagi, "Signed binary representations
revisited," in Advances in Cryptology - Crypto
2004, Proceedings. vol. 3152, M. Franklin,
Ed. Berlin: Springer-Verlag Berlin, 2004, pp.
123-139.

[5] E. Knuth, The Art of Computer Programming
vol. 2: Addison-Wesley, 1997.

[6] V. Dimitrov, L. Imber, and P. K. Mishra,
"The double-base number system and its
application to elliptic curve cryptography,"
Mathematics of Computation, vol. 77, pp.
1075-1104, 2008.

[7] P. Longa and A. Miri, "New Multibase Non-
Adjacent Form Scalar Multiplication and its
Application to Elliptic Curve Cryptosystems
(Extended Version)," in Cryptology ePrint
Archive, Report 2008/052, 2008.

[8] A. Karatsuba and Y. Ofman, "Multiplication
of Multidigit Numbers on Automata," Soviet
Physics Doklady (English translation), vol. 7,
pp. 595-596, 1963.

[9] A. Cook, "On the Minimum Computation
Time of Functions," Harvard: Harvard
University, May 1966.

[10] A. L. Toom, "The Complexity of a Scheme of
Functional Elements Realizing the
Multiplication of Integers. ," Soviet
Mathematics vol. 3, pp. 714-716, 1963.

[11] A. Schonhage and V. Strassen, "Schnelle
Multiplikation großer Zahlen," Computing in
Science & Engineering, vol. 7 pp. 139-144,
1971.

[12] F. Xianjin and L. Longshu, "On Karatsuba
Multiplication Algorithm," in Data, Privacy,
and E-Commerce, 2007. ISDPE 2007. The
First International Symposium on, 2007, pp.
274-276.

[13] G. W. Leibniz, "Memoires de 1," Academie
Royale des Sciences, pp. 110-1161, Paris
1703.

[14] R. Hashemian, "A new number system for
faster multiplication," in Circuits and
Systems, 1996., IEEE 39th Midwest
symposium on, 1996, pp. 681-684 vol.2.

[15] H. Sam and A. Gupta, " A generalized
multibit recoding of two’s complement binary
numbers and its proof with applications in
multiplier implementations," IEEE Trans.
Computers, vol. 39, pp. 1006-1015, 1990.

[16] S. Vassiliadis, E. M. Schwartz, and D. J.
Hanrahan, "A general proof for overlapped
multiple-bit scanning multiplications," IEEE
Trans. Compurers, vol. 38, pp. 172-183,
1989.

[17] P. E. Madrid, B. Millar, and E. E. S. Jr.,
"Modified Booth Algorithm for High Radix
Fixed-Point Multiplication," IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems, Man and Cybernetics, IEEE
Transactions on, vol. 1, pp. 164--167, June
1993.

[18] J. Penhollow, "A study of arithmetic recoding
with applications to multiplication and
division," Dep. of Computer Sci., UNv. of
Illinois, Urbana, Rep. 128, Sept. 1962.

[19] B. Moller, "Improved Techniques for Fast
Exponentiation," In: ICISC 2002,LNCS, vol.
2587, pp. 298-312, 2003.

[20] D. M. Gordon, "A Survey of Fast
Exponentiation Methods," J. Algorithms, vol.
27, pp. 129-146, 1998.

[21] C. Heuberger and H. Prodinger, "THE
HAMMING WEIGHT OF THE NON-
ADJACENT-FORM UNDER VARIOUS
INPUT STATISTICS," Periodica
Mathematica Hungarica, vol. 55, pp. 81–96,
2007.

[22] J. A. Solinas, "Efficient Arithmetic on Koblitz
Curves," Designs, Codes and Cryptography,
vol. 19, pp. 195-249, 2000.

[23] I. F. Blake, G. Seroussi, and N. P. Smart,
Elliptic Curves in Cryptography vol. 265.
Cambridge: Cambridge University Press,
1999.

[24] N. Zhang, Z. Chen, and G. Xiao, "Efficient
elliptic curve scalar multiplication algorithms
resistant to power analysis," Information
Sciences, pp. 2119-2129, 2007.

[25] G. Frieder and C. Luk, " Algorithms for
Binary Coded Balanced and Ordinary Ternary
Operations," IEEE Transactions on
Computers, vol. 24 pp. 212-215, Feb. 1975.

[26] S. Maitra and A. Sinha, "A single digit triple
base number system - a new concept for
implementing high performance multiplier
unit for DSP applications," in Information,
Communications & Signal Processing, 2007
6th International Conference on, 2007, pp. 1-
5.

[27] P. K. Mishra and V. Dimitrov, "Window-
Based Elliptic Curve Scalar Multiplication
using Double Base Number Representation,"
in INDOCRYPT'07 Proceedings of the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

40

cryptology 8th international conference on
Progress in cryptology 2007.

[28] A. Karatsuba, "The Complexity of
Computation," Proceedings of the Steklov
Institute of Mathematics, vol. 211, 1995.

[29] G. Harper, A. Menezes, and S. Vanstone,
"Public-Key Cryptosystems with Very Small
Key Lengths," Proc. Advances in Cryptology
ÐEUROCRYPT '92, pp. 163-173, 1992.

[30] M. A. Hasan, "Look-up table-based large
finite field multiplication in memory
constrained cryptosystems," IEEE
Transactions on Computers, vol. 49, pp. 749-
758, Jul 2000.

[31] A. Mahboob and N. Ikram, "Lookup table
based multiplication technique for GF(2(m))
with cryptographic significance," IEE
Proceedings-Communications, vol. 152, pp.
965-974, Dec 2005.

http://www.jatit.org/

	ZOT-BINARY: A NEW NUMBERING SYSTEM WITH AN APPLICATION ON BIG-INTEGER MULTIPLICATION
	1SHAHRAM JAHANI, 2AZMAN SAMSUDIN
	1,2 School of Computer Sciences, Universiti Sains Malaysia,Pulau Penang, Malaysia
	E-mail: 1shahramjahani@gmail.com, 2azman@cs.usm.my
	ABSTRACT
	Keywords: Numbering system, Big-Integer multiplication, Cryptography, Hamming weight.
	Definition 1: Let ,𝑂.=,{𝑂-1.,,𝑂-2.…,,𝑂-𝑛.,…} be a set, where ,𝑂-𝑛. is a sequence of n consecutive binary symbol “1”. We call ,𝑂-𝑛. as Big-One (BO) with length 𝑛 and ,𝑂. as the set of Big-Ones.
	Example: ,𝑶-𝟏.=,𝟏-𝟐., ,𝑶-𝟓.=,𝟏𝟏𝟏𝟏𝟏-𝟐. 𝐚𝐧𝐝
	,𝑶.=,{𝑶-𝟏.,,𝑶-𝟐.,,𝑶-𝟑.,…}={,𝟏-𝟐.,,𝟏𝟏-𝟐.,,𝟏𝟏𝟏-𝟐.,…}.

	Definition 2: Let ,𝑇.=,{,𝑇-1.,𝑇-3.,,𝑇-5.…,,𝑇-𝑛.,…}, where ,𝑇-𝑛. is a sequence of (,𝑛−1-2.) consecutive two binary symbols “10” with additional “1” at the rightmost of the sequence. We call ,𝑇-𝑛. as Big-Two (BT) with length n and ,𝑇. as th...
	Example: ,𝑇-1.=,1-2., ,𝑇-5.=,10101-2. and
	,𝑇.=,{𝑇-1.,,𝑇-3.,,𝑇-5.,…}={,1-2.,,101-2.,,10101-2.,…}.
	Definition 3: Big-Digits set (,𝐷.) is defined as ,𝐷.=,𝑂. ∪ ,𝑇 . ∪ {0}. Each element of ,𝐷 .is a Big-Digit (BD). (Note: to prevent redundancy, we remove ,𝑇-1.and use ,𝑂-1.in ,𝐷. to represent “,1-2.”)
	Based on these Definitions (1-3), there are three new possible numbering systems of base 2.
	1. System 1: ,𝑂. ∪{0} as the digit set.
	2. System 2: ,𝑇 . ∪,0. as the digit set.
	3. System 3: ,𝐷. as the digit set.
	Given a positive integer A, if we represent A by using System 1, the number of ,𝑂-1.in the number will increase because the existence of pattern “010”. Similarly, if we represent A by using System 2, the number of ,𝑇-1.in the number will increase be...
	 Based on System 1:
	𝐴=,,,(111)-2.×,2-11.+(1)-2.×,2-9.+(1)-2.×,2-7.+ ,(1)-2.×,2-5.+,(1111)-2.×,2-0.
	= ,,,𝑂-3.0,𝑂-1.0,𝑂-1.0,𝑂-1.0,000𝑂-4..-5 𝑛𝑜𝑛−𝑧𝑒𝑟𝑜 𝑑𝑖𝑔𝑖𝑡𝑠.
	 Based on System 2:
	,𝐴= ,1.-2.×,2-13.+,,1.-2.×,2-12.+
	,,,101010101.-2.×,2-3.+,1.-2.×,2-2.+
	, (1)-2.×,2-1.+,(1)-2.×,2-0.
	=,,,𝑇-1.,𝑇-1.,00000000𝑇-9.,𝑇-1.,𝑇-1.,𝑇-1..-6 non−zero digits.
	 Based on System 3:
	A =,,(11)-2.×,2-12.+(101010101)-2.×,2-3.+, (111)-2.×,2-0.
	=,,,𝑂-2.,00000000𝑇-9.,00𝑂-3..-3 non−zero digits.
	Therefore, to reduce the number of nonzero in Big-Digits, System 3 is preferred. Our experiment with 10,000 random bits (see Table 1) shows that System 3A yields the best result.
	Table 1. Number of nonzero in different Big-Digit numbering systems, based on 10,000 random bits
	As shown in Table 1 there are two versions of System 3. In converting a binary number to Big-Digit representation, priority can be given to convert Big-Ones first followed by Big-Twos, or vice-versa. For example, given a number, ,1110111-2., System 3 ...
	Definition 4: A sequence of Big-Digits is called Big-Digits representation of A if and only if
	𝐴=,,,𝑎-𝑛.,…,,𝑎-1.,,𝑎-0..-2.=,𝑎-𝑛.,2-𝑛.+…+,𝑎-0. (5)
	where ,𝑎-𝑖.∈,D. .
	This numbering system is called Big-Digit numbering system (BDNS).
	3.2. ZOT-Binary: A canonic Big-Digits numbering system
	Definition 5: A sequence of Big-Digits ,,(𝑥-𝑘.…,,𝑥-1.,,𝑥-0.)-2. is known as ZOT-Binary representation if and only if for every two “neighboring” nonzero Big-Digits ,𝑥-𝑞. and ,𝑥-𝑝<𝑞., where length of ,𝑥-𝑝. is n:
	1. 𝑞≥𝑝+𝑛+2, when ,𝑥-𝑝. and ,𝑥-𝑞. are both either Big-Two or ,𝑂-1 ..
	2. 𝑞≥𝑝+𝑛+1, for other cases.
	Big-Digit, 𝐴=𝑂-1.0000,𝑇-2.0000,𝑂-5. is not a ZOT-Binary representation since ,𝑥-0.=,𝑂-5 . ,𝑝=0, 𝑛=5. and ,𝑥-5.=,𝑇-2. (q = 5) and therefore (𝑞=5)<(𝑝+𝑛+1=6) which does not satisfy Condition 2 of Definition 5.
	Big-Digit 𝐵=,𝑂-1.0,𝑂-1.00000,𝑇-3. is not a ZOT-Binary representation since ,𝑥-6.=,𝑂-1 .,𝑝=6, 𝑛=1. and ,𝑥-8.=,𝑂-1 .(𝑞=8) and therefore ,𝑞=8.<(𝑝+𝑛+2=9) which does not satisfy Condition 1 of Definition 5.
	Definition 5 introduces the ZOT-Binary representation. The representation is named ZOT-Binary to highlight the base, which is base two, and the digits used in the representation, which are Zero, Big-One and Big-Two.
	Theorem 1. Every non-negative integer A has a unique representation in ZOT-Binary.
	Proof. Assume a ZOT-Binary representation of integer 𝐴=,(,𝑎-𝑚.,…,,𝑎-𝑝.,…,,𝑎-1., ,𝑎-0.)-2. is not unique, and therefore let
	𝐵=,(,𝑏-𝑚.,…,,𝑏-𝑝.,…,,𝑏-1., ,𝑏-0.)-2 . and
	𝐶=,,𝑐-𝑚.,…,,𝑐-𝑝.,…,,𝑐-1., ,𝑐-0..2
	be the two different ZOT-Binary representations of integer A. Compare B and C by scanning from right to left, Big-Digit by Big-Digit, to find the first Big-Digit which is not the same in B and C. Let the position of the first non-similar Big-digit den...
	𝐵=,𝑖=0-𝑚-,𝑏-𝑖.×,2-𝑖..=,,,𝑖=𝑝-𝑚-,𝑏-𝑖.×,2-𝑖...-,𝐵-𝐿..+,,,𝑖=0-𝑝−1-,𝑏-𝑖.×,2-𝑖...-,𝐵-𝑅.. (6)
	𝐶=,𝑖=0-𝑚-,𝑐-𝑖.×,2-𝑖..=,,,𝑖=𝑝-𝑚-,𝑐-𝑖.×,2-𝑖...-,𝐶-𝐿..+,,,𝑖=0-𝑝−1-,𝑐-𝑖.×,2-𝑖...-,𝐶-𝑅.. (7)
	As mentioned above, ∀𝑖∈,0,𝑝−1., ,𝑏-𝑖.=,𝑐-𝑖.. Therefore from (6) and (7) we can conclude that
	,𝐵-𝑅.=,𝐶-𝑅. and , 𝐵-𝐿.=,𝐵−,𝐵-𝑅..=(𝐶−,𝐶-𝐿.)=,𝐶-𝑅..
	Therefore
	,𝑖=𝑝-𝑚-,𝑏-𝑖.×,2-𝑖..=,𝑖=𝑝-𝑚-,𝑐-𝑖.×,2-𝑖.. where, 𝑐-𝑝.≠,𝑏-𝑝.. (8)
	In Table 2, we listed all valid cases of ,𝑐-𝑝 .and ,𝑏-𝑝. (symmetrical cases have been ignored) and we showed that for each case, there is a contradiction. Therefore, by contradiction, the ZOT-Binary represents non-negative integers uniquely.
	Table 2. Summary Of Contradictions For Two Different ZOT-Binary Representations
	- z denotes the number of zeros on the left of Big-Digits in the first column.
	- p, q, m and n are positive integers and m<n.
	Based on Definition 5, suppose 𝑚=𝑞−(𝑝+𝑛), which indicates that m is the amount of zeros between xp and xq in the binary representation. Therefore we can conclude that two nonzero neighboring Big-Digits in binary representation satisfy the conditio...
	Let 𝐴=,,,𝑎-𝑛.…,,𝑎-2.,,𝑎-1.,,𝑎-0..-2. be a binary number and let the ZOT-Binary representation of A be ,,,𝑐-𝑛.…,,𝑐-2.,,𝑐-1.,,𝑐-0..-2., where ,𝑐-𝑖.=(,𝑐-𝑖𝑡.,,𝑐-𝑖𝑙.) represents the i-th Big-Digit in A. ,𝑐-𝑖𝑡. denotes the type of ,𝑐...
	The reverse conversion, converting ZOT-Binary representation to binary is relatively simple. The conversion can be done by applying these replacements:
	In many multi-digits multiplication implementations, multiplication time tables are used. These tables are a pre-computed lookup-table (LUT) that saves the information on digit by digit multiplications. Window-based numbering systems as describe earli...
	Tables 3, 4 and 5 show the corresponding multiplication tables, which we call them as Big-Digits multiplication LUT (BD-MLUT).
	Table 3. Big-One-Big-One MLUT (BOBO-MLUT)
	Table 4. Big-Two-Big-Two MLUT (BTBT-MLUT)
	Table 5. Big-One-Big-Two MLUT (BOBT-MLUT)
	In general, rows and columns in Tables 3-5 are unlimited and therefore tables size do not limit to a certain value. One advantage of BD-MLUT is that it grows relatively slower compared to decimal or binary multiplication time-tables, which suggest tha...
	For Big-Digits, we had analyzed 10,000 random bits representing random integers and found that the following five Big-Digits, 1, 11, 111, 1111 and 101 occurs 90.3% of the time (see Figure. 1).
	This finding has a big implication in determining the size of BD-MLUT that we need to use effectively for our multiplication algorithm. A small size of BD-MLUT of 5 rows by 5 columns is enough to capture almost 90.3% of random Big-Digits. For the rest...
	Figure 1: Nonzero Big-Digits distribution in ZOT-Binary representation based on 10,000 random bits
	In general, suppose the length of a Big-Digit is n and BD-MLUT support only Big-Digits less than m, then the following conversions can be applied.
	Let 𝑝=𝑛 𝑚𝑜𝑑 𝑚 and 𝑛=𝑘×𝑚−𝑝, then
	,,0…0.-𝑛−1.,𝑂-𝑛. = ,,0…0.-𝑝−1.,𝑂-𝑝.,,,,0…0.-𝑚−1.,𝑂-𝑚.…,,0…0.-𝑚−1.,𝑂-𝑚..-𝑘. .
	Or let 𝑝=𝑛 𝑚𝑜𝑑 (𝑚+1) and 𝑛=𝑘×(𝑚+1)−𝑝, then
	,,0…0.-𝑛−1.,𝑇-𝑛. = ,,0…0.-𝑝−1.,𝑇-𝑝.,,,,0…0.-𝑚.,𝑇-𝑚.…,,0…0.-𝑚.,𝑇-𝑚..-𝑘. .
	Table 6 shows another perspective of the Big-Digits distribution in range of 128 bits to 32 kbits random integer. It indicates that ZOT-Binary representation reduce the percentage of nonzero symbols to 21.86%, while the average of Hamming weight for M...
	Table 6. Distribution of nonzero Big-Digits in ZOT-Binary representation in range of 128 bits to 32 kbits

