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ABSTRACT 

 
This paper deals with closed form solutions for the inverse and forward position analyses of a 3-SPR 
parallel mechanism, which can be used to form the main body of a 5-DOF hybrid robot manipulator. In the 
inverse position analysis, a fourth order polynomial equation has been formulated, leading to four set of 
solutions of limb lengths for a given position of the reference point on the platform. In the forward position 
analysis, a sixteenth order polynomial equation has been derived, leading to four sets of mirror poses given 
a set of limb lengths. Consequently, the complete sets of solutions for the inverse and forward position 
analyses of the mechanism have been achieved. An example is given to illustrate the effectiveness of this 
approach. 

Keywords: 3-SPR Parallel Mechanism, Forward and Inverse Position Analyses 
 

1. INTRODUCTION  
 

Inverse and forward position analyses are 
fundamentally important in the development of 
parallel mechanisms for workspace analysis, 
dimensional synthesis and control purposes, etc. 
Approaches for solving these problems can be 
classified into two categories, i.e., analytical 
method and numerical algorithm. The analytical 
approach is focused on finding the complete set of 
solutions using the procedure that can usually be 
implemented by two steps: (1) formulate the 
kinematic constraints into a set of nonlinear 
equations, and (2) generate a polynomial equation 
having a single unknown by means of certain 
elimination methods. As a result, all configurations 
can be found by solving the end polynomial 
equation [1-12]. The complexity of the polynomial 
approach depends upon the geometry of the object 
and proper choice of elimination techniques. 
Numerical approach can be used to find one 
solution using iterative algorithms or optimization 
techniques [13-15]. 

It is well recognized that for most parallel 
mechanisms, inverse position analysis is much 
easier than the forward one. For the lower mobility 
parallel mechanisms having coupled degrees of 
freedom (DOF) in terms of both translations and 
rotations, if the dependent coordinates can 
explicitly be expressed in terms of the independent 
ones, the inverse position analysis is still simple, 3-
PRS and 3-RPS parallel mechanisms for instance 
[16,17]. However, it would be not the case if the 
dependent coordinates can not be explicitly 
expressed in terms of the independent ones, leading 
to both inverse and forward position analysis 

problem being complicated. The 3-SPR parallel 
mechanism having one translational and two 
rotational movement capabilities would be a typical 
example. 

The above mentioned problem has been notified 
by only a few researchers. By reversing the base 
and moving platforms, Lu et al [18] dealt with the 
inverse position analysis problem of a 3-SPR 
parallel mechanism, which involves 15 unknowns 
in terms of 9 direction cosines of the orientation 
matrix and 6 translational coordinates of two 
reference points on the base and moving platforms, 
leading to a nonlinear equation containing a single 
unknown derived by the elimination method. 
Unfortunately, the mathematic model for the 
forward position analysis was failed to give all the 
solutions of the problem. Lukanin [19] dealt with 
the closed-form solution for the inverse position 
analysis problem of the same mechanism. Although 
eight real solutions were obtained from a fourth 
order polynomial equation, four of them did not 
satisfy the constraint equations. In addition, the 
numerical algorithm was merely presented for the 
forward kinematics. 

This paper revisits the inverse and forward 
position analyses of a 3-SPR parallel mechanism 
with a goal to find the complete set of closed-form 
solutions by using elimination method. 

 

2. SYSTEM DESCRIPTIOT 
 

As shown in Fig.1, the 3-SPR parallel 
mechanism under consideration consists of a base 
and a moving platform connected by three identical 
SPR limbs. Here, S and R represent the spherical 
and revolute joints, and the underlined P denotes 
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the actuated prismatic joint. Place the reference 
frame B-xyz attached to the base and the moving 
frame A-uvw attached to the moving platform with 
B and A being the origins located at the centers of 
equilateral triangles 1 2 3A A A∆  and 1 2 3B B B∆ with the 

x and u axes being normal to B1B2 and A1A2, and the 

z and w axes being normal to 1 2 3B B B∆ and 1 2 3A A A∆ . 

Here, Ai (i=1,2,3) are the centers of the spherical 
joints and Bi (i=1,2,3) are the intersection of the 
axes of the revolute joints and actuated prismatic 
joints, respectively. 

 

 

Figure.1 Diagram Of A 3-SPR Parallel Mechanism 

The orientation matrix of the A-uvw with respect 
to the B-xyz can be formulated by three Euler angles 
ψ ,θ and φ satisfying z-x-z conventions: 

[ ]
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(1) 
where u, v and w are the unit vectors of the frame 

A-uvw with respect to the frame B-xyz, and ψ , θ  
and φ  are three Euler angles of precession, nutation 
and body rotation, respectively; “s” and “c” here 
denote sin and cos functions. 

 
3. INVERSE POSITION ANALYSIS 

 
Inverse position analysis of the 3-SPR parallel 

mechanism involves the determination of the limb 
lengths given the pose of the platform. The problem 
can be solved by two kernel steps: 1) formulation of 
the constraints that relate three Euler angles with 
the coordinates of the reference point A, and 2) 

generation of an end polynomial equation in terms 
of procession angle ψ as the single unknown by 

elimination method. 
In the B-xyz, the position vector r=(x y z)T of A 

can be expressed as 

i i i iq= + −r b w a , 1,2,3i =                (2) 

where qi and wi are the length and unit vector of 
limb i ， ( )T

0 cos sin 0i i ia β β=a and 
( )T
cos sin 0i i ib β β=b are the position vectors 

of Ai and Bi measured in A-uvw  and B-xyz with a 
and b being the radii of the platform and the base, 
and 2π / 3i iβ =  the position angles to the R joints. 
Note that the constraint imposed by theR joint 
restricts both wi and ai to be normal to the unit 
vector ci of the R joint axis. Thus, taking the dot 
product with ci on both sides of Eq.(2), leads to 

( )T
0i i− =r b c , 1,2,3i =                (3) 

where 0i i=c Rc , ( )T

0 sin cos 0i i iβ β= −c . 

Substituting Eq.(1) into (3) and implementing 
subtraction and addition, yields 

( )T

2 y x

b
v u= −u r                      (4) 

( )T 3
2 y x

b
u v= −v r                     (5) 

T
xbv=v r                             (6) 

Equating Eqs.(4) and (6) gives to y xu v= . This 

leads to φ ψ= − as πθ < . Then, Eqs.(4) and (5) can 

be rewritten as 

( )T 1
cos2 1 cos

2
b ψ θ= − −u r             (7) 

( )T 1
sin 2 1 cos

2
b ψ θ= −v r              (8) 

At this stage, multiplying Eq.(7) bycosψ and (8) 

by sinψ , and implementing addition; while 

multiplying Eq.(7) bysinψ and (8) bycosψ , and 

implementing subtraction, yields 

( )1
cos sin cos3 1 cos

2
x y bψ ψ ψ θ+ = − −      (9) 

( )
sin cos cos cos sin
1

sin3 1 cos
2

x y z

b

ψ θ ψ θ θ
ψ θ

− + +

= −           (10) 

Thus, substituting tan( / 2)tθ θ= into Eqs.(9) and 

(10), gives 

A
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u
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2
1 2 0a t aθ + =                       (11) 

2
1 2 3 0b t b t bθ θ+ + =                  (12) 

where， 1 cos sin cos3a x y bψ ψ ψ= + +  

2 cos sina x yψ ψ= +  

1 sin cos sin3b x y bψ ψ ψ= − + +  

2 2b z= − , 3 sin cosb x yψ ψ= − . 

Multiplying tθ on both sides of Eqs.(11) and (12) 

results in two complementary equations which, 
together with Eqs. (10) and (11), can be written in a 
matrix form 

=Kt 0                            (13) 

where 

1 2

1 2

1 2 3

1 2 3

0        0    

   0        0

0           

          0

a a

a a

b b b

b b b

 
 
 =
 
 
  

K ,

3

2

1

t

t

t

θ

θ

θ

 
 
 =
 
  
 

t . 

The necessary condition for Eq.(13) to have 
nontrivial solutions yields the following triangular 
equation 

2 2
1 2 3

4 5 6

cos 2 sin 2 cos 2 sin 2

cos 2 sin 2 0

g g g

g g g

ψ ψ ψ ψ
ψ ψ

+ + +
+ + =

   (14) 

where 2 2
1 4 (2 )g bxz xy by= + +  

2 2 2
2 ( )g x y bx= − −  

2 2 2
3 4 2( )(2 )g byz x y bx xy by= − − − +  

2 2 2
4 2 ( )g z x y bx= − + , 2

5 2 (2 )g z xy by= −  
2 2 2

6 2 ( )g z x y bx= + − . 

Substituting tan( )tψ ψ= into Eq.(14) finally 

results in a fourth order polynomial equation in 
terms of tψ  as the single unknown. 

4

0

0i
i

i

h tψ
=

=∑                             (15) 

where 4 1 4 6h g g g= − + , ( )3 3 52h g g= − +  

( )2 1 2 62h g g g= − + + , ( )1 3 52h g g= +  

        0 1 4 6h g g g= + + . 

Solving Eq.(15) for ψ , θ can then be determined 

by Eqs.(9) and (10). This allows the orientation 
matrix R  to be generated such that 

0 ,    =1,2,3i i iq i= + −r b Ra            (16) 

Note that: 
1) If x=y=0, then 4 3 2 1 0 0h h h h h= = = = = , 

leading to 0ψ θ= = . In this case, 

( )22
1 2 3q q q z b a= = = + − . 

2) If y=0, then h4=h3=0, Eq.(15) degenerates to 
2

2 1 0 0h t h t hψ ψ+ + = , meaning that tψ  has at 

most two solutions. 
 

4. FORWARD POSITION ANALYSIS  
 
The forward position analysis of the mechanism 

is concerned with the determination of the moving 
platform pose given the limb lengths, qi (i=1,2,3). 
The skills to solve this problem can be divided into 
two kernel steps: 1) expression of x and y in terms 
ofψ ，θ and z as φ ψ= − ; and 2) generation of an 

end polynomial equation in terms of procession 
angleψ as the single unknown by the elimination 

method. 
Firstly, taking Euclidean norm on both sides of 

Eq.(2), and implementing necessary addition and 
subtraction, yields 

( )( )2 2 2
1 2 3

1
2 6 1 cos cos 2

6
x q q q ab

b
θ ψ= + − − −   (17) 

( ) ( )( )2 2
1 2

1
6 1 cos sin 2 3

6
y ab q q

b
θ ψ= − − −    (18) 

( )2 2 2 2 2 2 2
1 2 3

2

1

3
(1 cos )

x y z q q q a

b ab θ
+ + = + + − −

+ +
  (19) 

Note that 
T sin sin cos sin cosx y zψ θ ψ θ θ= − +w r     (20) 

In comparison with Eq.(10), Eq.(20) can also be 
rewritten as 

( )T 1 1
sin 3 1 cos sin

cos 2
z b ψ θ θ

θ
 = − − 
 

w r    (21) 

Substituting Eqs.(7),(8) and (21) into the 
following identity 

( ) ( ) ( )T T Tr = u r u + v r v + w r w         (22) 

leads to another two expressions of x and y in 
terms of ψ ，θ and z  

( )
( )

1
sin tan 1 cos

2
cos cos3 sin sin3 sec

x z bψ θ θ
ψ ψ ψ ψ θ

= + − ⋅

− −
     (23) 

( )
( )

1
cos tan 1 cos

2
sin cos3 cos sin3 sec

y z bψ θ θ
ψ ψ ψ ψ θ

= − − ⋅
− +

      (24) 

Secondly, equating Eq.(24) with (18) on the one 
hand, and substituting Eq.(17) and (18) into (19) on 
the other, gives 

1 2 0c z c+ =                           (25) 
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 2
1 0z d+ =                      (26) 

Then, substituting Eq.(25) into (26), yields 
2 2
1 2 1 0c c d+ =                    (27) 

where 1 cos sinc ψ θ= , 2
2 1 2 3cos cosc f f fθ θ= + +  

2
1 4 5 6cos cosd f f fθ θ= + +  

( )1 1 4 sin 2 1 2 sin 2 cos 2f b a bψ ψ ψ= − −  

( )2 2
2 1 2sin 2 sin 2 cos 2 3 q q 6bf a bψ ψ ψ= + − −  

3 1 4 sin 2 1 2 sin 2 cos 2f b bψ ψ ψ= − − , 2
4f a=  

( )( )
( )( )
2 2 2

5 1 2 3

2 2 2
1 2

2 3 cos2

3 3 sin 2 2

f a q q q b

a q q b ab a

ψ
ψ

= + − +
− − −

 

( )( )
( )( ) ( )

2
2 2 2 2

6 1 2 3
2

2 2 2 2 2
1 2 1 2 3 5

2 2 6

3 6 3

f b ab q q q b

q q b q q q f

= − + + − +

− − + + −
. 

Expansion of Eq.(27) leads to 
4

0

cos 0i
i

i

k θ
=

=∑                   (28) 

Thirdly, equating Eqs.(23)-(24) with Eqs.(17)-
(18), respectively to eliminatez , leads to 

( ) ( )
( )( )
2 2 2 2 2
1 2 3 1 22 cos 3 sin

3 2 1 cos cos3
q q q q q
b a b

ψ ψ
θ ψ

+ − − − =
− −

    (29) 

Here, we assume2a b≠ , Eq.(29) can be 
rewritten as 

1) In case of q1=q2 

( )
( ) ( )

2 2
1 34

cos 1
3 2 3cos 2 5

q q

b a b
θ

ψ

−
= −

− −
     (30a) 

2) In case of q1=q3 

( )
( )

( )
( )

2 2
2 12

cos 1
3 2

2sin 2 2 3 cos 2 2 3

3sin 2 cos 2 5sin 2

q q

b a b
θ

ψ ψ

ψ ψ ψ

−
= − ⋅

−
− +

−

     (30b) 

3) In case of q2=q3 

( )
( )

( )
( )

2 2
1 22

cos 1
3 2

2sin 2 2 3 cos 2 2 3

3sin 2 cos 2 5sin 2

q q

b a b
θ

ψ ψ

ψ ψ ψ

−
= − ⋅

−
+ −

−

    (30c) 

4) In case of q1≠q2≠q3 
2

1 2 3
2

2cos 2 cos 2 sin 2
cos

2cos 2 cos 2 1

s s sψ ψ ψθ
ψ ψ

+ + +
=

+ −
 (30d) 

where 
( )

2 2 2
1 2 3

1

2
1

3 2

q q q
s

b a b

+ −
= −

−
,

( )
( )

2 2
1 2

2

3

3 2

q q
s

b a b

−
=

−
 

( )
2 2 2
1 2 3

3

2
1

3 2

q q q
s

b a b

+ −
= − −

−
. 

Lastly, substituting the adequate equation in 
Eq.(30) into (28) and letting tan( )tψ ψ=  finally 

results in a sixteenth polynomial equation with 
tψ being the unknown 

16

0

0i
i

i

p tψ
=

=∑                       (31) 

where, pi (i=0,1,… 16) are functions of the 
dimensions of the mechanism and the the limb 
lengths. 

Given a set of limb lengths, sixteen solutions of 
ψ can be determined. For each real solution ofψ , 

we can solve forθ  by using Eq.(30). Thus, the 
orientation matrixR  can be generated because 
ofφ ψ= − , leading to the solution of x, y and z by 

using Eqs.(17), (18) and (26). 
 

5. EXAMPLE 
 
In this section, the procedure for the inverse and 

forward position analyses of a 3-SPR parallel 
mechanism is presented to illustrate effectiveness of 
the proposed methods. The dimensional parameters 
and coordinates of the reference point A in the B-
xyz frame are assigned in Table 1 for the inverse 
position analysis. Then, one set of limb lengths is 
chosen as the joint variables for the forward 
position analysis. 

In the inverse position analysis, a fourth order 
polynomial equation (see Eq.(15)) is formulated 
using the data given in Table 1. 

 
Table 1: The Dimensional Parameters And  

Position Vector Of A  

a(mm) b(mm) (x,y,z)T (mm) 

300 400                 (200, 100, 900)T 

 
4 3 27.0928 15.9381 7.0928 10.1856 0t t t tψ ψ ψ ψ− − + + =   

(32) 
With the aid of root search routine in the Matlab, 

four real solutions of tψ can be determined as 

follows: 
{ }8.7978 1.8759 0.8757 0.7048tψ = − −  

Consequently, ψ , θ  and ( 1,2,3)iq i = can be 

obtained as shown in Table 2. Fig.2 depicts the 
configurations associated with these solutions. It is 
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easy to see from Fig.2 that given the coordinates of 
A there is only one set of limb lengths (see Fig.2(b)) 
that makes the mechanism to be free of mechanical 
interference. 

 
Table 2: Solutions Of ψ And θ For The Inverse  

Position Analysis  

No. ψ  (rad) θ (rad) ( )1 2 3    q q q  (mm) 

(a) 1.4576 -2.5509 
(985.6939,969.2243, 

1165.3375) 

(b) -1.0810 -0.2430 
(936.5959,1012.9202, 

846.9695) 

(c) 0.7192 2.8358 
(1244.3039,  939.2895, 

939.5435) 

(d) 0.6139                       -2.9325 
(1127.61912,1010.642, 

1014.5123) 

 
In the forward position analysis, given the set of 

limb lengths associated with Fig.2(b), i.e. 
q1=936.5959 mm, q2=1012.9202 mm, and 
q3=846.9695 mm, a sixteenth order polynomial 
equation can be formulated 

16 15 14 13

12 11 10

9 8 7

6 5 4

3 2

7.6830 14.8714  26.8046

41.8795  +30.4458  40.1028  +

7.5296 4.0414 7.1520

11.7715 2.9020 2.4277

0.5882 1.2876 1.1327 0.0028 0

t t t t

t t t

t t t

t t t

t t t

ψ ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

+ + + +

+

+ − −

− − +

+ + − =

(33) 

Solving Eq.(33) using Matlab function “roots” 
results in four real and six pairs of conjugate 
complex solutions as follows 

-5.6934, 0.0179,-0.5774 i ,-0.097 i , 0.5774 i

-1.8761,-0.1314, 0.0231 i, -0.0231 i, 0.097 i 
tψ

± ± ± ∈  ± ± ± 
 

Consequently, the nutation angleθ and the 
coordinates of the reference point Acorresponding 
to the four real solutions of ψ  can be determined as 

shown in Table 3. It can be seen from Table 3 and 
Fig. 3 that for a givenψ , θ  has a pair of solutions, 

one is positive and the other is negative, leading to 
a pair of mirror image configurations with respect 
to the base. Note that the mirror images merely 
make sense in mathematics and they thereby should 
be regarded as the extraneous solutions. 

 
Table 3: Solutions Of ψ And θ For The Forward  

Position Analysis  

No. ψ  (rad) θ (rad) (x  y  z) T  (mm) 

(a) -1.3969 

2.0309 
(602.4655, -40.2937, 

570.6485) T 

-2.0309 
(602.4655, -40.2937, 

 -570.6485) T 

(b) -1.0811 

0.2427 
(200.1141, 100.0270,  

-900.0057)T 

-0.2427 
(200.1141, 100.0270, 

900.0057)T 

(c) -0.1307 

2.8018 
(-367.8511, -43.2719,  

-702.4174)T 

-2.8018 
(-367.8511, -43.2719, 

702.4174)T 

(d) 0.0179                    

2.9117 
(-396.5313, 128.5471, 

672.9851)T 

-2.9117 
(-396.5313, 128.5471, -

672.9851)T 
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Figure 2  The Results Of Inverse Position Analysis Given: 
200 mm,  =100 mm,  =900 mmx y z=  

(a) 1.4576, 2.5509ψ θ= = − ,   (b) 1.0810, 0.2430ψ θ= − = −  

(c) 0.7192, 2.8358ψ θ= = ,    (d) 0.6139, 2.9325ψ θ= = −  
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Figure  3  The Results Of Forward Position Analysis Given: 

1 2 3963.5959 mm, 1012.9202 mm, 846.9695 mmq q q= = = . (a) 1.3969, =2.0309ψ θ= − ± ,  

(b) 1.0811, = 0.2427ψ θ= − ± , (c) 0.1307, = 2.8018ψ θ= − ± , (d) 0.0179, = 2.9117ψ θ= ±  
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6. CONCLUSIONS 
 
This paper deals with the closed-form solutions 

for the inverse and the forward position analyses of 
a 3-SPR parallel mechanism. The conclusions are 
drawn as follows.  

1）For the inverse position analysis, there exist 
at most four sets of limb lengths given the 
coordinates of the reference point on the platform, 
and only one of them makes the mechanism to be 
free of mechanical interference. If x=y=0, then 

( )22
1 2 3q q q z b a= = = + − ; and if y=0, there are 

at most two sets of limb lengths. 
2） In the forward position analysis, there exist 

at most four sets of mirror image poses given a set 
of limb lengths. If a/b=1/2, ψ can directly be 

obtained, and θ can then be determined by a 
second/third/fourth order polynomial equation 
according to the specific arrangements of q1, q2 and 
q3. 
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