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ABSTRACT

For polytopic time singular system with inputs coaimts, the paper addresses a robust predictimgalo
law using linear matrix inequality (LMI). A piecese constant control sequence is calculated by
minimizing the worst-case linear quadratic objeetifunction. At each sample time, the sufficient
conditions on the existence of the model predictioatrollers are derived and expressed as line&rixna
inequalities. The resulting predictive control lé&ads to regular, impulse-free and robust stabitesy,
and the performance of this closed-loop systemuaranteed. Finally the numerical imitation shows th
effectiveness of the proposed method.
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The singular system model is a natural
representation of dynamic system. It describes a
- . larger class of systems than the normal linear
Model predictive control (MPC) [1.2] is a system model and has wide applications in process

popular strategy in dealing with mumva”abler%)deling. Robust model predictive control is also

constrained control problems that are encounter 3 N .
in process industries. It has been attracted rmtaéz sential in the application of singular systems [9

. . ; 2].A piecewise constant control sequence in
attentions in the control of dynamic systems an L
ef.[9] was calculated by minimizing the worst-

plays an important role in control practice. Anays case linear quadratic objective function. At each

and sy_ntheS|s approaches for robust MPC have beseargmple time, the sufficient conditions on the
extensively studied. [3-5]

existence of the model predictive control were
In Ref.[3],their main idea is to use infinite derived and expressed as linear matrix inequalities
horizon control laws to guarantee robust stabilitjRef.[10] considered the stabilization of linear
for state feedback. Another paper by Vesel et al[4jontinuous time singular systems and presented a
presented the problem of designing a robusiampled-data model predictive control scheme. For
output/state model predictive control for lineamuncertain singular systems with both state andtinpu
polytopic systems with input constraints. All thedelays, the approximate solutions of optimal
time demanding computations of state feedbagkoblems for infinite time interval and with
gain matrices were realized off-line. The actuafjuadratic performance index were calculated in
value of the control variable was obtained througRef.[11]. The mixed HH<> control approach to
simple on-line computation of scalar parameterdesign of MPC has been proposed in Ref.[12].
and the convex combination of the computed matrix o . .
gains. Another work considered output feedback The main idea Qf_th's paper Is to present 'Fhe
robust model predictive control for the quasi-linear_obUSt _model predictive c_ontr_ol law for po_Iytoplc
parameter varying (quasi-LPV) system withfime singular systems with input constraints, to

bounded disturbance. An iterative algorithm igna!yze the fea§ibility of the_problem and provide
proposed for the on-line synthesis of the contral | all time demanding computations of state feedback

via convex optimization [5]. References [6-g]92in matrices guaranteeing the performance

addressed the robust model predictive contréPPustness and performance (guaranteed cost) over

problems, giving the sufficient conditions on the0le uncertainty domain.

existence of robust predictive control law and The paper is organized as follows. A problem
analyzing the feasibility and asymptotically stibil formulation and preliminaries on a predictive state
of the closed-loop uncertain systems with delay. model as a polytopic singular system are given in
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the next section. In sgct.ion 3, the approach omsop J_(K) = J“”(x( KT+o, KT Rk KFo, KT
state feedback predictive controller design using 0 (3)
linear matrix inequality is presented. There is an +UKT+0o kT] B u(kFo, k) o

example to illustrate the effectiveness of the . .

proposed method which is discussed in the sectid{1€€ R >0, R >0 are the weighted matrices.

4. Finally, some conclusions are given in the The problem studied in this paper can be

section 5. summarized as follows. Design the robust model
predictive controller with state feedback and input

2. PROBLEM STATEMENT AND

PREL IMINARIES constraints in the form
Consider the following polytopic singular system u(kT+o, kT = K{kT*+o, k7,02 0.

with time-delay: [u(kT + 7, kT)||, € Yo, 720 (4)
(1) = _ such that the system (1) is regular, impulse-freg a
EX(D= ADX9+ ACYXE D+ Y O) robust stable and meets the performance index (2)
y(t) =C() X9 (1) and (3).

X(®) =¢(),t0-h 0], Definition 1. Singular systerEx(t) = A § + B )

Euclidean norm bounds on the input is given ais stablizable if there exists control law
Ju(t)], < Yyeo t=0, wherext)OR'is the state vector , u(t) = K(t)x(f) such that the closed-loop system is

Wt OR'is the control input vectory(t) 0 R® is the regular, impulse-free and asymptotically stable.

output vector, ¢(t) is the continuous initial Definition 2. Singular systemB()=A()+ ALt b

function. E, A, A,B,C and C are real constant is regular, impulse-free and asymptotically stable

, , , , _ .there exists matrixy, p such thate'P=P Ex0, and
matrices with appropriate dimensions, the matrix

' y 1
EOR™ is a real constant matrix with rank A* *P A P AQ AP G0 .
(E)=r <n, his positive time-delay constants, Lemma 1. Let orthogonal matricesu=U U}
V =[V, V,] be such thatg - [Zo B}VT , from

A A®M BO]=Y A, [A ,
At A B(o] .Z:; ofa 4 8 which it can be seen thagv,=0,UlE=0. the

Zm:/‘i t)=14(@t)=0 following items are true.
= (1Al z satisfyingzE™ = EZ™ = 0 can be
0 :{2”’: AD[A A B Zm: A(h =1 parameterized ag = EV,\W'\' + SV , where
=L =1 W=00R", 51 R
A t)> 0t > 0}

Assume that model predictive control for (1) will (2) Furthermore, wherZz = EVW ' + SY s
?e Zonsidelr.ed over arl] izfinite h?rizop. Ig'l?bf thke nonsingular and W>0, then there exisfs such
ixed sampling interval. At sampling tim or that AT T ¢ with
= 0,1,..., plant measurements are obtained, then a (EVWIAL + S\{) . YWY B 4 -
predictive model is used to predict future behaviorW = Z*'W™'z* and S=U; (EVW Y + SY)
of the systemx(kT+o, kT) denote the predicted
state at timekT +o, based on the measurements a3 MAIN RUSULTS
sampling timekT , x(kT, kT) refers to the state

measured at sampling timeT , u(kT+g, KT)is the To solve the robust MPC problem, the key is to

control action for timekT+¢ obtained by an Solve the optimization problem (2)(3). We first

optimization problem over the infinite predictionn€ed to computg_ (k) by a maximization over the

horizon. whole uncertainty domaifAK) AR B B|0Q .
For the polytopic singular system with delay (1)However, this maximization is not numerically

the rolling optimization performance index in thetractable. Hence, in Ref[9], by imposing an
infinite horizon is considered as follows: inequality constraint, an upper bound fr(k) is

«) @ derived, and then the upper bound is minimized.

min max . . :
u(kT+0,kN.o20[AGK) A(K  B(R]TQ Consider a quadratic function:

V()= x0T E PY)+[  X(3Qk)k ds0 (5)
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with Q>0,E' P= P' E= 0 andP is nonsingular . [E, AX Y z Z ]
At sampling time kT, suppose that/ (x(t)) * =X, 0 0 0 0
satisfies the following robust stability constraint o -1 0 0 0 1.0 (12
V(X(KT+7, KT)) < —( X( KF7, KT RK k¥, KF * o+ x -RT 0 0
u" kKT+7 KT BuKR7 KT vt =% 0
* * * * * -_R!
(6) : R
S .
For all [A(k) A(KW B(RJOQ , 720 with A" 13
control law (4) andJ, (k) to be finite, we must . 20

have X(c0,kT) =0,V(eo, kT)= 0 under the control
law (4). Hence, integrating both sides of thavhere,E =zA +YB+ AZ+ BY,I=1,2,..m.
inequality (6) from 7 = 0to « , we obtain 7= EVWV + SV -

J.. (k) = V(X(kT) ) [©XT(KT+7, KT) ( KT+7, KT d= N MVLY,,
thus, the robust MPC problem at tirk€ can be "

solved by minimizing V(xKkT)) subject to the can be obtained by Lemma 1.

imposed constraint (6),namely Remark 1 Notice thatK in (8) and the solutions
max 3. )<V (x(KT)< y X,,W,Y, Sy to LMIs (9)—(13) depend only on the
[ado A0 = k]e current statex(kT) at sampling timekT ,hence,
this gives an upper bound on the robusiX,,W,Y, Sy remain constant in a certain interval
performance objectives. [KT, (k + 1)T), but in different intervals,

The goal of robust MPC algorithm has beenX:,W,Y, Sy can be different with the change of
redefined to synthesize, at each time skepa  x(KkT).

constant state-feedback control lawProof. At sampling interval KT, (k+1)T), define
u(kT+g, kT)= KX kT+g, KJ,0= 0.to minimize this Lyapunov-krasovskii functions as follows:
upper bound, only the first computed input V(X(KT)= XKT)" E P& KJ+ (16)
u(kT,kT) = Kx(KT,kT) is implemented. At the jith KT+7 KT Rx(KT+7 ,kT)d

next sampling time, the statex(k+1)T) is whereQ>0,E"P= P E= 0 andP is nonsingular.
measured, and the optimization is repeated to re-|if there exist a scalar y satisfying
computeK. The following theorem gives the LMI X (KN E P kT<y , then X' (KNE PXKJ<y i

conditions for the feasibility of the optimization )
problem (2)(3) and the expression of the statBauivalent to (10) by the Schur complement and
feedback matrik. ref.]9]. Furthermore, an invariant ellipsoid

Theorem 1. Let (k1) be the state of uncertain X ={z Z VW'Y =1} for the predicted states of

system (1) measured at sampling tikTe The state the uncertain system (1) is obtained. The second
feedback matrix K in the controller (4) that itemin (14) may be reduced to

minimizesV (x(kT)) is given by [ % (KT+7, KT) Q¢ KFe7, KT d

K=YT(EVWV + SY)7 (8) o . . (15)
where X, >0,W>0,Y,S and a scalary are :J.—htr(x (KT+7, KT X" X kT+7, KT) d
obtained from the following convex programming  =tr (N"NX)=tr(N" X;*N)
problem: where X' = Q , assume there exist a matrix
yw min oy rtr(My) ®) 1. such thattr (NX*N) < tr(M,) .then (11) holds
T
ot TyI x"(KT)V, 0 (10) by the Schur complém.ent.' SEX(KT)) < y+ ti( M)
V' X(KT) w and the problem (7) is implieghin y+r (M, ).From
U 1) and (2), (4) is implied fof > o :
M, N ay @and@. @isimp >
N X
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V (x(KT+71))
=X"(KT+7)E" PX kT+71) +
X" (KT+71) P" EX kT+71) +
X" (KT +7) QX kT+71) -

X (KT+7-H QX kT+7- h

=M Px(kT+7)+ X (KkT+7) P M+
X (KT +7) QX KT+71) -
X (KT+7-H QX kT+7- R

<-x"(KT+7)(R+ K' R K X kT+71)

(16)

whereM = AX(KT+7)+ AX( KT+7— h+ BKK KF7).
Furthermore, (16) is equivalent to

[X(KT+) X(KF+7- m]{

)

1
*

PA

_Q

L

X(KT+7) }so

(kT+r-H

(17)

where o =(A+BK) P+ P (A BR+ Q- R+ K Rt
by the Schur complement lemma, we have

®, P'TA P K’ | |
* -Q O 0 0 0
* x -1 0 0 0 |_,@
*oox xR0 0
* * * * _Q—l 0
* * * * * _Rl_l
8)
where®, = (A+ BK)" P+ P ( A+ BK).
Multiplying by diag{ P, X, |, I, 1,1}, on the
left, diag{ P, X, | I, 1,1}, on the right, and

definingz =P >0,Y= zK ,by Lemma 1.Z can
be reconstructed by = EyWV + Sy, we have (21).

The inequality (18) is affine pA(k + i) A(k+ )
B(k + i)] ;hence it is satisfied for IA(K + i)

A(k+i) Bk+)]OQ if andonly if there
existx, >0,Y,W> 0, S at sampling tim&T such
that (12) is hold.

wOAX
* _Xl
* *
* *
* *
* *

wherew = ZA" + YB' + AZ + BY.

Y

*

z

0
0
0

_Xl

*

Z
0
0
0
0

- R2-1

<0 (19

Now, we will reduce the input constraints to
LMI, at sampling timekT,
Ju(kT +7, KT)[, < Y, 7 2 0, furthermore

2

2 _
max|u (kT +7 ,kT}|, = max Y Z7 (kT 7, kTﬁ2 (20)
2
< ZDTE#YTVlV\fl\{T 1,

= A WAL YY (W)
By the Schur complement lemma, the input
constraints is equivalent to (13). The state feekba

predictive  controller K=Y (EyWY + Sy)" at
sample timg kT, (k+1)T].

Lemma 21¥. (Feasibility) Any feasible solution of
the optimization (9)-(13) at timkT is also feasible
for all timest > k. Thus if the optimization problem
(9) is feasible at time then it is feasible for all
timest > k.

Theorem 2. If the optimization problems (9)-(13)
exist feasible solutions in the momedi, thus (i)
there also exist feasible solutions in tHi€ moment
NT(N = k). (ii) We get a piecewise state feedback

control sequend&,} ., whenk change from O to
o. Therefore, the closed-loop system which is
composed of piecewise state feedback control
sequence{K} ., is regular, impulse-free and
asymptotically stable.

Proof. First, we show that the close-loop system
is regular and impulse-free. At time interval
td[kT,(k+1)T] , by(1l7) and the Schur
complement lemma, the following is guaranteed,

{(A+BK)T PrP(ABITQ P A}o (21)
or equivalently,
(A+BK)P + P( A BY+ P AQ AR ®0. By Definition
2, the close-loop system is regular, impulse-free.
Now, we show the asymptotic stability of the close-
loop system. At time intervad O[KT, (k+1)T],
Lyapunov--krasovskii function of the close-loop
system as follows:

V(x(kT)) = X kT)T E Px kT+

. (22)
jith(kT +7,KT)QX kT+7, kT d
From (16), it follows that
%(V(x(t)»s—(x(tf(a+ K BK X)) (23)

becaus® >0,R >0, s0_9_(y (x(1))) < 0is derived,
dr

furthermore,v (x(t) is strictly decreasing, the close-

loop system is asymptotically stable.

4. ILLUSTRATIVE EXAMPLE
Consider the polytopic uncertain singular system

with delay both in state equation with parametsrs a
follows:
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10 (a1 [-1 1 application to a pilot plant”,International
E= o ol A= 2 3|’ A= -2 9" Journal of Robust and Nonlinear Control,
S 03 01 03 - 0 Vol.20, No.16, 2010, pp. 1817_—1835. .
A= 5 3l A= 01 -0 v A= 01 03’ [2] C. Wen, X. Ma, B. Ydstie, “Analytical
L ' ' ' ' expression of explicit mpc solutionvia lattice
A,= 03 01 |10 piecewise-affine function"Automatica Vol.45,
° |01 -0.3/ 0 2 2009, pp. 910-917.

[3] M. A. Kothare, V. Balakrishnan, M. Morari,

wherey=1,h=05x()=[1 -} R=R=1I,
T=0.2

2

1k

inputs

8]
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-4

L L L
15 2 25
t

Figure 1: Inputs Of The Close-Loop System

L L
o os 1 3

[7

An MPC is designed and the simulation result is
shown in Fig. 1 and the simulated inputs of the
resulting closed-loop system are also illustratéd.
is shown that the closed-loop system is stable and
impulse-free.

5. CONCLUSIONS

This paper addresses the problem of designi
state feedback robust model predictive controll
with input constraints for a class of time-delay
singular systems with polytopic uncertainty. The
existing sufficient conditions of the robus
predictive controller are presented using Lyapun
stability theory and linear matrix inequality (LMI)
method. At each sample time, the controller could
be determined when these conditions have feasible
solutions. We get a piecewise state feedback

control sequendK,} -, whenk changes from 0 to [11
o. The closed-loop system which is composed of
piecewise state feedback control sequéHgEy_, is

regular, impulse-free and asymptotically stable.
Finally, a numerical example demonstrates tQe2
applicability of the proposed approach.
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