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ABSTRACT 

 
The Artificial Bee Colony (ABC) algorithm based on swarm intelligence is a more competitive algorithm 
than other Evolution Algorithm (EA). The results of recent studies indicate that the ABC algorithm has 
many advantages but it has two major weaknesses: one is slower convergence speed; the other is getting 
trapped in local optimal value early. Inspired by differential evolution (DE), different with other improved 
ABC algorithm based Differential Evolution (DE), we propose a modified ABC algorithm, named it 
ABC/current-to-best/1, by introducing the best food source (the best solution) and randomly choosing food 
source (the random solution). Experiments are conducted on a group of 24 benchmark functions. The 
results testify the performance of ABC/current-to-best/1 algorithm better than original ABC and some pre-
existing improved ABC algorithm. 
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1. INTRODUCTION  
 

Population-based algorithm can be mainly classif
ied into two types: Evolutionary Algorithm (EA) an
d Swarm Intelligence Algorithm (SIA). The two po
pulation-based algorithms have a common feature: 
all possible solutions in population can be moved to
ward the optimized solution by applying some oper
ators based on the fitness value. In EA, The popular
 algorithms include Genetic Algorithm(GA)[1],Gen
etic Programming(GP)[2],Evolution Strategy(ES)[3
] and Evolution Programming(EP)[4]. Since the late
 1990s, Differential Evolution (DE) has emerged as 
a competitive EA algorithm [5-6]. From then on, D
E has been applied in tackling multimodal, multiobj
ective, constrained and dynamic optimization probl
ems extensively and has got better experimental res
ults than other EAs. As for swarm intelligence-base
d algorithm, Bonabeau has defined the swarm intell
igence as “...any attempt to design algorithms or dis
tributed problem-solving devices inspired by the co
llective behavior of social insect colonies and other 
animal societies...” [7].The classical examples of s
warm intelligence algorithms include Ant Colony O
ptimization(ACO) algorithm which simulates foragi
ng behavior of ants[9], Particle Swarm Optimizatio
n (PSO) algorithm which is composed of birds and 
simulates the social behavior of bird flocking[9], Vi
rtual bee algorithm(VBA)[10],Artificial bee colony
(ABC) algorithm[11] and so on. Moreover some hy

brid methods based EA and SIA have been propose
d to compensate some drawbacks in using EA or SI
A alone [12-15]. 

In this paper, we will pay more attention to how t
o make use of ABC algorithm to solve global nume
rical optimization problem effectively by modifying
 the searching strategies. As we all know, explorati
on and exploitation should be carefully balanced in 
all population-based algorithms in order to achieve 
better solution. Exploration means independent sear
ching for search space while exploitation means sea
rching process according to collected information 
move toward objective.  In fact, the two above cont
radicts to each other sometimes. To achieve better p
erformance, we should make balance between expl
oration and exploitation. There are similar problems
 in the ABC algorithm, as well. The major problems
 facing the ABC algorithm and all population-based
 algorithms include slower convergence speed in so
lving unimodal problems and easier getting trapped 
in local optima in solving multimodal problems [16
]. In ABC algorithm, the searching strategies are m
ore stressing exploration than exploitation and there
by some important variants about ABC algorithm h
ave been proposed to achieve better global optimiza
tion ability by balancing exploration and exploitatio
n [13, 14, 15, 17]. These improved algorithms whic
h are using either EA or PSO to ABC’s searching st
rategies enhance exploitation in some sense but gett
ing into local optimized solution easier. 
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In order to balance exploration and exploitation 
well, inspired by DE [4], we propose a new modifie
d searching strategy which is not only improving ex
ploitation but also avoiding getting trapped into loc
al optimization early.  

The rest of this paper is organized as follows. In 
section 2, we outline classical ABC algorithm and s
ome important variants of ABC algorithm. Section 
3 proposes modified ABC algorithm, explaining im
proved searching strategies in detail. The experime
ntal parameters settings and results are described in 
section 4. Section 5 concludes this paper with a disc
ussion. 

2. CLASSICAL ABC ALGORITHM AND 
IMPORTANT VARIANTS 

 
Artificial Bee Colony(ABC) algorithm introduce

d by karaboga was first used to find an optimal solu
tion in numerical optimization by simulating the be
havior of foraging selection[11].The collective intel
ligence in ABC is composed of three components: f
ood sources, employed bees, unemployed bees(onlo
oker bees, scout bees)  and two behavior models: re
cruitment and abandonment. The whole algorithm s
tructure is described as follows: 

Figure 1: Flowchart Of The Classical ABC Algorithm 
 
In reference [11], a detailed explanation was mad

e for classical ABC algorithm. In this section, we o
utline the major idea of the algorithm. As we can se
e from Figure 1, three major stages are included int
o ABC algorithm, employed bees stages, onlooker 
bees stages and scout bees stages respectively.  

2.1 Initialization Stage  
In ABC algorithm, every food source position

,1 ,2 ,( , ... )i i i i DX x x x= , where D is the number of problem 

dimension, representing a possible solution. The ini
tial population should contain the range as much as 
possible by uniformly randomizing individuals with
in the search space. This operation is defined as in 
[16]: 

         
min max min(0,1)( )j j j j

ix x rand x x= + −               (1) 

Where, j
ix is the jth component of the ith food so

urce position (vector), min
jx  and max

jx  are the mini
mum and the maximum of the jth dimension res
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pectively. In ABC algorithm, the amount of nect
ar in a food source represents the quality of the 
solution. In practice, the amount of nectar can b
e expressed with the optimal value of the objecti
ve function. So, the final step in initialization sta
ge is to calculate the fitness value according to the 
objective functions optimized. 
 
2.2 Employed Bees Stage 

In this stage, every employed bee which is co
rresponding to a food source is in charge of two 
things. One is going on exploiting the food sour
ce which has already been there, the other is bei
ng responsible for exchanging information with 
onlooker bees. In ABC algorithm, exploiting me
ans that employed bees produce a modification 
on the food source (solution) according to her m
emory of finding new food source and evaluate i
t. The ABC algorithm uses (2) for producing a c
andidate solution: 

                   ( )ij ij ij ij kjv x x x= +Φ −                      (2) 
Where {1,2,3... }k SN∈ , SN is the size of populati

on, {1,2,3... }j D∈ , k is produced randomly which is
 different from i. ijΦ is restricted in [-1, 1] and deter
mined randomly. ijv  is a modification to the food so
urce ijx which is remembered by employed bees. Th
e perturbation on ijx is determined by ( )ij ij kjx xΦ − .T
he amplitude of the perturbation is controlled by ijΦ .
The employed bee will remember the new food sou
rce and forget the old one according to the amount 
of nectar. Besides exploiting, employed bees carry s
ome information (e.g. nectar amount) which is shar
ed as onlooker bees. An unemployed bee can be rec
ruited to an onlooker bee according to the probabilit
y value ip , associated with that food source. 

                        

1

i
i SN

k k

fitp
fit

=

=

∑
                                (3) 

Where ifit  is the fitness value of the objective 
functions. 
 
2.3 Onlooker Bees Stage 

Onlooker bees are recruited to those food sources
 which is abundant in nectar amount depending on t
he information carried by employed bees. Accordin
g to the probability formula (3), the onlooker bees c
an select a food source (position) which is rich in n
ectar amount (the best fitness value). When exchan
ging onlooker bees fly to the food source, exchang
ing they will also produce a modification just like e
mployed bees doing so using (2) and then check the

 nectar amount of the new food source. By compari
ng the amount of nectar of the new position with th
e old one, the onlooker bees remember the better fo
od source and forget the other. 
 
2.4 Scout Bees Stage 

When a food source (position) can not be improv
ed through predefined number which is the paramet
er called it “limit” in ABC algorithm, the old food s
ource (position) will be abandoned and replaced by 
a new food source (position) by the scout bees acco
rding to (1).  

So, from the explanation above, we can see that t
here are many advantages in ABC algorithm, such a
s fewer control parameters, including population siz
e (NP), the value Limit, the max cycle number (MC
N) and robust searching process. In robust search pr
ogress, exploitation and exploration must be carried
 out together. Employed and Onlooker bees carry o
ut exploitation while Scout bees are in charge of ex
ploration. 

However, like the other EA, there are some probl
ems in ABC algorithm. As indicated in reference [1
3], the two major problems are slowing convergenc
e speed in handling unimodal and easier getting in l
ocal optima in solving multimodal. So, a number of
 variants have been proposed to improve original A
BC by balancing exploration and exploitation and t
o enhance the searching ability in solving complex 
global optimized questions [13, 15, 17]. For exampl
e, GABC, inspired by PSO [13] improves the explo
itation ability by introducing the information of glo
bal best solution to searching space.  CABC which i
s taking advantage of chaotic idea to improve ABC 
[15] and ABC/best, inspired by DE [17], and the lik
e. 

To achieve the two above goals, exploration and 
exploitation, inspired by DE, we propose a new mo
dified searching strategy to improve ABC algorith
m, named it ABC/rand-to-best/1 which is different f
rom reference [17]. In the following section, the pro
posed improved ABC will be explained in detail. 

3. ABC/CURRENT-TO-BEST/1 
ALGORITHM 

 
Differential Evolution [5] is a simple and very ef

fective EA. The performance of DE is dependent on
 the mutation strategies, crossover scheme and selec
tion. The family of DE mainly contains some differ
ent mutation strategies, such as, DE/rand/1, DE/ran
d/2, DE/current-to-best/1, DE/best/1, and so on [18].
 Different search strategies result in different mutati
on scheme. The following mutation strategy is used
 in the literature about DE: 
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, , ,,

1, 2,

/ /1: ( )

( )

i G best G i Gi G

r G r G

DE current to best V X F X X

F X X

− − = + ⋅ −

+ ⋅ −

   

 
 

                                                                      (4) 
Where the indices r1, r2 are mutually exclusively

 integers randomly selected from [1 ]NP and diffe
rent with i, NP is the size of the population. The fac
tor F is a controlling parameter which is used to sca
le the difference vector. ,i GX


 and ,i GV


are known as

 target vector and donor vector. ,best GX


 is the best in
dividual at the generation G which is the minimum 
objective function value in the minimum problem. 
The best solution is introduced to the current genera
tion in (4), which guides the searching progress. It i
s beneficial to discover rapidly the best solution [6]. 

Inspired by the above mutation in DE and based 
on the characteristic of ABC algorithm, we modify 
the strategies in searching new food source by empl
oyed and onlooker bees, named it ABC/current-to-b
est/1. The expression is as follows: 

, , , , , , , , , 1, , 2,1 2

/ /1:

( ) ( )j i G j i G j best G j i G j r G j r G

ABC current to best

v x F x x F x x

− −

= + ⋅ − + ⋅ −
       

(5) 
Where, , ,j i Gx is the jth component in the ith food

 source at the generation G. similarly, , ,j best Gx is the
 jth component of the best food source in the curren
t generation. The definition r1, r2 is the same as the
 above in DE/current-to-best/1. The combination of
 , , , ,j best G j i Gx x−
 

 and , 1, , 2,j r G j r Gx x−
 

 to perturb the targe

t vector , ,j i Gx . The one difference , , , ,j best G j i Gx x−
 

indi
cates the distance between the current food source a
nd the best food source in the current generate,  whi
ch helps to  fast discover optimized food source fast
 but exists some risk in getting trapped local optima;
 the other difference  , 1, , 2,j r G j r Gx x−

 
 reflects some ra

ndom exploration in the neighbor of the old food so
urce. So, the improved method we propose is not on
ly keeping the search guide to the optimized solutio
n rapidly but also keeps a certain stochastic explora
tion. The scaling factors F1 and F2 are controlling 
parameters for the two above differences and are ge
nerated as uniform random numbers in [0, f1] and 
[0,f2] respectively. It is noted that parameters f1 an
d f2 play an important role in producing candidate s
olution. By adjusting different group of (f1, f2), we 
can achieve optimum searching process. 

In this paper, we modify the search strategies at 
the employed and onlooker bees stage in the 
original ABC algorithm, inspired by DE. Although 
some modifications about ABC based on DE are 
also made in reference [17], it is different from our 
modification. The modification in [17] increases the 
exploitation of ABC algorithm but gets trapped in 
local optimization early sometimes. 

4. EXPERIMENTS 
 
Some experiments are designed to illustrate our 

modification to ABC algorithm. We used 24 bench
mark problems [16] including unimodal, multimoda
l, separable and non-separable in order to test the pe
rformance of ABC/current-to-best/1 algorithm. The
 24 benchmark functions are listed in Table 1.  Beca
use the parameters (f1, f2) play an important role in
 the algorithm we propose, we will test how to choo
se f1 and f2 to achieve better searching optimizatio
n ability in the first experiment. The second one is c
omparing between original ABC and ABC/current-t
o-best/1 algorithm we propose and the last group is 
done between pre-existing ABC algorithm (e.g. tho
se improved) and that we propose 
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Table1. Benchmark Function Used In Experiments 
D: Dimension, C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable  

No Function Search 
Range C D Formulation Min 

1 Step [-
100,100] 

US 30/60 2
1

( ) ( 0.5 )n
ii

f x x
=

= +  ∑  0 

2 Sphere [-
100,100] 

US 30/60 2
1

( ) n
ii

f x x
=

=∑  0 

3 SumSquares [-10,10] US 30/60 2
1

( ) n
ii

f x ix
=

=∑  0 

4 Quartic [-
1.28,1.28] 

US 30/60 4
1

( ) [0,1)n
ii

f x ix random
=

= +∑  0 

5 Beale [-4.5,4.5] UN 5 2 2 2
1 1 2 1 1 2

3 2
1 1 2

( ) (1.5 ) (2.25 )

(2.625 )

f x x x x x x x
x x x

= − + + − +

+ − +
 

0 

6 Easom [-
100,100] 

UN 2 2 2
1 2 1 2( ) cos( )cos( )exp( ( ) ( ) )f x x x x xπ π= − − − − −  -1 

7 Matyas [-10,10] UN 2 2 2
1 2 1 2( ) 0.26( ) 0.48f x x x x x= + −  0 

8 Colville [-10,10] UN 4 2 2 2 2 2 2
1 2 1 3 3 4

2 2
2 4 2 4

( ) 100( ) ( 1) ( 1) 90( )

10.1(( 1) ( 1) ) 19.8( 1)( 1)

f x x x x x x x

x x x x

= − + − + − + −

+ − + − + − −
 

0 

9 Trid10 [-D2,D2] UN 10 2
11 2

( ) ( 1)n n
i i ii i

f x x x x −= =
= − −∑ ∑  -210 

10 Schwefel2.22 [-10,10] UN 30/60 
11

( ) | | | |n n
i i ii

f x x x==
= +∏∑  0 

11 Rosenbrock [-30,30] UN 3/4 1 2 2 2
11

( ) [100( ) ( 1) ]n
i i ii

f x x x x−

+=
= − + −∑  0 

12 Dixon-Price [-10,10] UN 30/60 2 2 2
1 12

( ) ( 1) (2 )n
i ii

f x x i x x −=
= − + −∑  0 

13 Bohachevsky1 [-
100,100] 

MS 2 2 2
1 2 1 2( ) 2 0.3cos(3 ) 0.4cos(4 ) 0.7f x x x x xπ π= + − − +  0 

14 Booth [-10,10] MS 2 2 2
1 2 1 2( ) ( 2 7) (2 5)f x x x x x= + − + + −  0 

15 Rastrigin [-
5.12,5.12] 

MS 30/60 2
1

( ) [ 10cos (2 )+10]n
i ii

f x x xπ
=

= −∑  0 

16 Schwefel [-
500,500] 

MS 30/60 
1

( ) * 418.982887 ( sin( ))n
i ii

f x n x x
=

= −∑  0 

17 Schaffer [-
100,100] 

MN 2 2 2 2
1 2

2 2 2
1 2

sin ( ) 0.5
( ) 0.5

(1 0.001( ))
x x

f x
x x
+ −

= +
+ +

 
0 

18 Six Hump 
Camel Back 

[-5,5] MN 2 
2 4 6 2 4
1 1 1 1 2 2 2

1( ) 4 2.1 4 4
3

f x x x x x x x x= − + + − +  
-

1.03163 

19 Bohachevsky2 [-
100,100] 

MN 2 2 2
1 2 1 2( ) 2 0.3cos(3 )cos(4 ) 0.3f x x x x xπ π= + − +  0 

20 Bohachevsky3 [-
100,100] 

MN 2 2 2
1 2 1 2( ) 2 0.3cos(3 4 ) 0.3f x x x x xπ π= + − + +  0 

21 GoldStein-
Price 

[-2,2] MN 2 2
1 2

2 2
1 1 2 1 2 2

2
1 2

2 2
1 1 2 1 2 2

1 ( 1)
( ) [ ]

(19 14 13 14 6 3 )

30 (2 3 )
*[ ]

(18 32 12 48 36 27 )

x x
f x

x x x x x x
x x

x x x x x x

+ + +
=

− + − + +

+ −
− + + − +

 
3 

22 Griewank [-
600,600] 

MN 30/60 2
11

1( ) cos( ) 1
4000

n n i
i ii

xf x x
i==

= −∏ +∑  0 

23 Ackley [-32,32] MN 30/60 
2

1

1

1( ) 20exp( 0.2 )

1exp( cos(2 )) 20

n
ii

n
ii

f x x
n

x e
n

π

=

=

= − −

− + +

∑

∑

 
0 

24 Penalized2 [-50,50] MN 30/60 2
1

1 2 2
11

2 2

1

sin ( )
( ) 0.1{ ]

( 1) [1 sin (3 )

( 1) [1 sin (2 )]}

( ,5,100,4)

n
i ii

n n
n

ii

x
f x

x x

x x

u x

π

π

π

−
+=

=

+
=

− +

+ − +

+

∑

∑

( ) ,
( , , , ) 0,

( ) ,

m
i i

i i
m

i i

k x a x a
u x a k m a x a

k x a x a

 − >
= − ≤ ≤
 − − < −

 
0 
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4.1 Influence of Parameters in ABC/Current-to-
Best/1 

Different from original ABC and other improved 
ABC algorithms, the parameter (f1, f2) plays an im
portant role in ABC/current-to/best/1 algorithm. So,
 we make use of several typical benchmark function
s to see how the parameters (f1, f2) influence the ab
ility of ABC/current-to-best/1 algorithm. The result 

is listed in Table 2. The arrangement of the paramet
ers is the same as GABC [13]. 

From Table 2, as a whole, ABC/current-to-best/1
 displays excellent performance when parameters (f
1, f2) are (1.6, 0.4) rough. Here, the result on the Gr
iewank and Rastrigin is better than the two others. 
 

 
Table 2 . The Analysis Of The Performance Of Parameters In ABC/Current-To-Best/1 

            (C1,C2) 
 

Fun 
(0.0, 2.0) 

 
(0.4, 1.6) 

 
(0.6, 1.4) 

 
(0.8, 1.2) 

 
(1.0, 1.0) 

Sphere 
 

Griewank 
 

Rastrigin 
 

Ackley 

1.3043e-005(mean) 
（5.6479e-005）(std) 

0.0121 
(0.0124) 
0.0097 

(0.0162) 
1.2475e-004 

(2.0417e-004) 

1.3208e-58 
(1.1728e-58) 
7.5658e-07 

(4.1393e-06) 
6.0583e-010 

(3.3181e-009) 
3.5468e-14 

(3.9510e-15) 

1.1729e-78 
(8.2620e-79) 

0 
(0) 
0 

(0) 
3.4284e-14 

(4.6275e-15) 

3.3911e-97 
(3.0445e-97) 

0 
(0) 
0 

(0) 
3.1442e-14 

(3.3118e-15) 

2.3591e-116 
(3.2080e-116) 

0 
(0) 
0 

(0) 
3.0731e-14 

(2.0010e-15) 

         
 

(1.2, 0.8) 
 

(1.4, 0.6) 
 

(1.6, 0.4) 
 

(1.8, 0.2) 
 

(2.0, 0) 
 

Sphere 
 

Griewank 
 

Rastrigin 
 

Ackley 

1.4067e-130 
(1.4790e-130) 

0 
(0) 
0 

(0) 
2.9665e-14 

(2.3511e-15) 

2.1038e-137 
(4.2126e-137) 

0 
(0) 
0 

(0) 
2.9428e-14 

(2.7174e-15) 

4.5502e-140 
(9.0476e-140) 

0 
(0) 
0 

(0) 
2.9428e-15 

(1.9755e-15) 

6.2978e-140 
(1.1991e-139) 

1.4297e-08 
(7.8310e-08) 

0 
(0) 

3.0020e-14 
(2.1681e-15) 

7.7552e-134 
(1.1756e-133) 

2.4898e-04 
(0.0013) 

0 
(0) 

3.0139e-14 
(1.7906e-15) 

 
4.2 Comparison Between ABC/Current-To-

Best/1 And Original ABC 
In the second experiment, parameters are arrange

d below: population size SN is 100, limit is SN/2*D.
All benchmark functions listed in Table 1 are condu
cted for different dimensions. Each of the experime
nt was run 30 times independently. The means and 
standard deviations of the experiments comparing o
riginal ABC with that of we propose are reported in
 Table 3. 

From the Table 3, we can see clearly that ABC/c
urrent-to-best/1 displays preferable ability of search
ing optimization in most cases through the searchin
g space. In order to explain convergence speed mor
e visually, we choose several benchmark functions t
o illustrate it in Figure 2 - 7. 
 

 
4.3 ABC/Current-To-Best/1 Vs. Other Pre-Existi

ng Improved ABC 
In this part, we will assess the performance of wh

at we propose with GABC [13], ABC/best/1, ABC/
best/2[17], EABC [19]. The setting of parameters is
 the same as [13]. The result of the experiment is lis
ted in Table 4 below. 

It is distinct that there is better result on Rosebro
ck and Sphere test functions and the others keep sli
mily consequence. As a whole, ABC/current-to-bes
t/1 has been demonstrated as good performance co
mpared with original ABC algorithm in Table 4. 
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Table 3. The Performance Comparison Of ABC And ABC/Current-To-Best/1 
 

Fun D G ABC 
(mean    std) 

ABC/current-to-best/1 
(mean    std) 

F1 30 
60 

1000 
2000 

0                        0 
0                        0 

 0                          0 
 0                          0 

F2 30 
60 

1000 
2000 

  6.99e-10       5.91e-10 
1.94e-09    8.33e-10 

1.5150e-030     1.1045e-27 
4.8462e-025   2.4576e-24 

F3 30 
60 

1000 
2000 

   5.1976e-13    4.3798e-13 
 4.4281e-12    3.3042e-12 

1.4495e-025    9.6960e-026 
1.2956e-023   8.0970e-024 

F4 30 
60 

1000 
2000 

1.01e-01     2.44e-02 
2.58e-01      2.92e-02 

  0.0402            0.0081101 
0.1179           0.012609 

F5 5 2000 1.5026e-008    2.3103e-008 1.1409e-012   4.1795e-012 
F6 2 2000 -1.0000          5.1531e-008      -1               5.1531e-09 
F7 2 2000 2.9632e-016     2.0788e-016 3.3994e-048    1.4509e-047 
F8 4 2000 1.17e-01         6.94e-02  0.1e-04          9.9096e-04 
F9 10 2000 -209.9540        0.0372 -209.8984              0.0070 

F10 30 
60 

1000 
2000 

2.36e-06         8.32e-07   
8.30e-06       8.93e-07 

5.0520e-017     1.6848e-15 
3.4634e-015     7.1907e-014 

F11 3 
4 

1000 
2000 

3.93e-02      3.11e-02 
3.21e-02         3.26e-02 

2.3661e-008      4.5290e-06 
1.2443e-007     1.7276e-05 

F12 30 
60 

1000 
2000 

0.0153            0.0089 
  0.0335            0.0203 

0.0103        0.14299 
0.0214         0.32399 

F13 2 2000 0                      0 0                            0 
F14 2 2000 4.7386e-018   4.6731e-018 0                            0 

F15 30 
60 

1000 
2000 

6.63e-03         1.71e-02 
3.03e-01         4.53e-01 

1.3074e-013      1.5380e-13 
2.6441e-010    1.4324e-09 

F16 30 
60 

1000 
2000 

  2.05e+02         1.63e+02 
  6.93e+02         1.39e+02 

0                           0 
1.2164e-12      1.3436e-11 

F17 2 2000   3.7007e-018       1.4084e-017      0                           0 

F18 2 2000      -1.0316             6.7122e-016 -1.0316       5.4546e-16 

F19 2 2000 0                            0 0                         0 
F20 2 2000 3.6822e-016         2.7793e-016    0                          0 
F21 2 2000     3.0000             1.5472e-015   2.6950            1.1662e-015 

F22 30 
60 

1000 
2000 

8.73e-09              1.47e-08 
4.46e-09                6.68e-09 

2.3700e-013    9.5669e-09 
1.9114e-12      6.9137e-12 

F23 30 
60 

1000 
2000 

1.02e-05                4.15e-06 
 2.05e-05                5.54e-06 

2.1521e-15     7.2099e-13 
1.0075e-15      2.1603e-14 

F24 30 
60 

1000 
2000 

3.72e-09               1.79e-09 
            1.06e-08               6.25e-09 

2.9044e-032    1.5136e-29 
8.8286e-029    4.0155e-28 
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Figure 2:   Convergence Curves For                             Figure 3: Convergence Curves For  
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Figure 4: Convergence Curves For                             Figure 5: Convergence Curves For  
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Figure 6:   Convergence Curves For                         Figure 7:  Convergence Curves For  
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Table 4.  Performance Comparison Between ABC/Current-To-Best/1 And Pre-Existing Improved ABC 
 

 
Algorithm 

 

Schaffer Rosebrock 
D=2 D=3 D=2 D=3 

Mean Std Mean Std Mean Std Mean Std 
GABC 0 0 1.85e-18 1.01e-17 1.68e-04 4.42e-04 2.65e-03 2.22e-03 
EABC 0 0 2.79e-07 2.24e-07 4.63e-04 4.57e-04 1.20e-02 7.06e-03 

ABC/best/1 0 0 0 0 4.99e-06 8.22e-06 5.52e-06 3.03e-06 
ABC/best/2 0 0 3.56e-06 1.27e-06 4.42e-04 2.39e-04 9.90e-04 6.92e-04 

ABC/current-to-best/1 0 0 0 0 3.50e-16 1.53e-15 3.34e-11 1.62e-10 

 
 

Sphere Griewank 
D=30 D=60 D=30 D=60 

Mean Std Mean Std Mean Std Mean Std 
GABC 4.17e-16 7.36e-17 1.43e-15 1.37e-16 2.96e-17 4.99e-17 7.54e-16 4.12e-16 
EABC 1.67e-16 2.70e-16 1.41e-15 1.82e-15 4.90e-14 7.31e-03 4.19e-14 9.05e-03 

ABC/best/1 1.1e-150 1.4e-150 4.40e-69 2.56e-69 0 0 0 0 
ABC/best/2 1.7e-126 2.7e-126 3.72e-58 2.67e-58 0 0 0 0 

ABC/current-to-best/1 4.55e-160 9.05e-157 3.92e-72 3.13e-70 0 0 0 0 

 
 

Rastrigin Ackley 
D=30 D=60 D=30 D=60 

Mean Std Mean Std Mean Std Mean Std 
GABC 1.32e-14 2.44e-14 3.52e-13 1.24e-13 3.21e-14 3.25e-15 1.66e-13 2.21e-14 
EABC 9.97e-15 3.87e-15 7.51e-13 6.15e-13 1.22e-10 4.86e-11 1.55e-07 2.84e-08 

ABC/best/1 0 0 0 0 1.72e-14 2.84e-15 6.62e-14 1.74e-15 
ABC/best/2 0 0 0 0 2.50e-14 3.48e-15 7.12e-14 4.14e-15 

ABC/current-to-best/1 0 0 0 0 2.94e-14 1.98e-15 7.34e-14 4.44e-15 

 
5. CONCLUSION 

 
In this paper, we modify the searching strategies

 of Artificial Bee Colony algorithm at the employe
d and onlooker bees’ stage. The modification is ins
pired by DE and introduces not only the best soluti
on at the current generation but also stochastic pert
urbation. We can get better balance between explo
ration and exploitation by adjusting the amplitude 
of the perturbation f2 and f2.It is clear that the impr
oved method we propose with suitable parameters 
can enhance the ability of searching optimization e
ffectively by testing a group of 24 benchmark func
tions. 
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