
Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

15

AUTOMATIC GENERATION OF BPEL PROCESSES FROM
NATURAL LANGUAGE REQUIREMENT

1DENG NA, 2LI DESHENG

1 Dr., School of Computer, Hubei University of Technology, China
2 Dr., School of Science, Anhui Science and Technology University, China

E-mail: 1iamdengna@gmail.com, 2ldsyy2006@126.com

ABSTRACT

Software’s final success depends seriously on its requirement description. Nowadays, natural language is
still the main description language of software requirement documents. In order to minimize the
comprehension differences between users and developers about requirement, if natural language described
requirement could be automatically transformed to BPEL processes, users and developers would reach a
consensus rapidly and BPEL’s development would be accelerated. In this paper, we propose an automatic
generation method from natural language requirement description to BPEL processes. Firstly, requirement
description is restricted and formalized; then, for those sentences with the prefix [RECEIVE] and
[INVOKE], the relevant web services highly semantically matched are found out from the set of WSDLs;
finally, the whole corresponding BPEL process is assembled from bottom to up. We provide a prototype to
indicate our method’s validity.

Keywords: Requirement Description, BPEL, Natural Language, Semantic, Web Services, WordNet

1. INTRODUCTION

Requirement description is one important step in
software engineering. It records the functional and
non-functional requirement software must satisfy
according users’ demand. Software’s final success
depends seriously on its requirement description.
Whether the requirement description is clear and
complete or not, whether users and developers have
reached a consensus or not, whether developers
would act on the requirement description or not, all
of these will influence the software’s final success.

Due to different viewpoints, users and developers
often have their own comprehension of the
requirement. Users pay their attention on what
function software can provide and which level its
performance can reach; however, developers prefer
to consider from the angle of technology. In most
situations, users are not familiar with those
professional terms and technical problems. If the
comprehension difference is not solved, it will be a
hidden trouble in the lifecycle of software
development.

Natural language has two main disadvantages:
ambiguity and inconsistency. However, nowadays
most of the software requirement documents are
still written by natural language. This ascribes to
two reasons: one is because users and developers

nearly don’t have the capability of describing
requirement formally, and the other is because
natural language has abundant glossary and strong
expression ability.

Web Services are self-contained and self-
described modular applications which can be
released, found and used in the Internet [1]. As the
de facto standard, Business Process Execution
Language (BPEL) [2] is widely used in the
composition and orchestration of web services. It
makes use of some structural activities and
orchestrates web services into a complete and
executable business flow. Since BPEL put some
useful atomic services together to become a
business process satisfying a specific functional
requirement, in some extent, BPEL can be seen as a
software application. In this paper, we only
concerns about BPEL’s functional requirement.

This paper aims to automatically transform
BPEL’s natural language described requirement to
BPEL process. The main contributions of this paper
are: 1. We propose a restriction and formalization
method so that computer can understand the
requirement. 2. We show how to find the most
matching messages and atomic services with each
requirement sentence, and give an algorithm to put
atomic services together. 3. A prototype
implemented by Java is provided, and the

http://www.jatit.org/
mailto:iamdengna@gmail.com
mailto:ldsyy2006@126.com

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

16

experiments on an actual multimedia conference
system indicate our method’s validity.

2. RELATED WORK

References [3, 4] work over the similarity
computation of requirement description. [3] points
out that computing requirement similarity is helpful
for the reuse of software’s design, source code and
testing cases, and it gives a framework SimReq. A
similarity analysis algorithm is provided in [4], and
it contains four steps: word segmentation, stop
words deletion, stemming and similarity
computation. On the basis of these four steps, we
will add synonyms extension and modify the
algorithm of similarity computation to fit our
situation. With regard to BPEL’s automatic
generation, [5] converts labeled finite state machine
to executable BPEL and WSDL codes, and creates
a tool named HUMSA. [6] makes use of model-
driven approach to generate BPEL processes. [7-10]
study on how to transform UML to BPEL. There
are also many researches on sentences similarity
[11, 12].

3. INTRODUCTION TO BPEL

BPEL is a XML-formatted business process
execution language. It makes use of some kinds of
BPEL elements, including basic activities (Receive,
Reply, Invoke, Assign, Throw, Rethrow, Exit, Wait,
Empty), structural activities (Sequence, If, While,
RepeatUntil, ForEach, Pick, Flow, Scope) and some
other assistant elements (elseif, else, catch,
compensateHandler, faultHandlers, eventHandlers,
terminationHandler, catchAll, onEvent, onAlarm,
onMessage), to orchestrate web services to an
executable business process.

4. RESTRICTION OF BPEL’S NATURAL
LANGUAGE REQUIREMENT

Natural language uses un-structural sentences’

combination to describe things, so the logic
relationships between things are implied in
sentences’ semantic and it is difficult for computers
to comprehend these logic relationships directly
from the sentences. For example, a natural language
requirement description of stop recording in our
multimedia conference system is as follows:

After receiving the request of stopping recording,
stop the recording. If the stopping is successful,
then return a message of success; or else, return a
message of error and inform the chairman for 3
times at the same time. If any mistakes happen in

the whole procedure, then return a message of
error.

From above we can see that the requirement
description is step by step, and this is revealed by
the repositions (after, if, then, or else, at the same
time). However, these simple logic relationships are
hard to understand for computers. To resolve this
problem, we shift the work of identifying steps to
humans.

Definition 1: Operation sentence

Operation sentence is the sentence representing
some operation in BPEL’s natural language
requirement description, eg: receiving the request of
stopping recording, stop the recording.

Definition 2: Judgment sentence

Judgment sentence is the sentence representing
deciding to execute some branch according to some
condition in BPEL’s natural language requirement
description, eg: If the recording is successful, or
else.

Definition 3: Choice introductory sentence

Choice introductory sentence is the sentence
introducing a group of choice branches in the
restricted BPEL’s natural language requirement
description. We use “Choice” in this paper.

Definition 4: Concurrence introductory sentence

Concurrence introductory sentence is the
sentence introducing a group of parallel branches in
BPEL’s natural language requirement description,
eg: in parallel, at the same time, simultaneously.
We use “in parallel” after restriction in this paper.

Definition 5: Repeat introductory sentence

Repeat introductory sentence represents some
operations are executed repeatedly. eg: for three
times. We use “repeat for n times” after restriction
in this paper.

Definition 6: Assistant sentence

Assistant sentences are the sentences except
operation sentences, including judgment sentence,
choice introductory sentence, concurrence
introductory sentence, repeat introductory sentence
and others.

We restrict BPEL’s natural language requirement
description by the following rules:

Rule 1: Restricted BPEL’s natural language
requirement description is composed by the main
part and some fault handler parts. Each part is

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

17

composed by some steps, and each step is assigned
a serial number.

Rule 2: Each operation sentence, judgment
sentence, choice introductory sentence, concurrence
introductory sentence, repeat introductory sentence
is represented by a step.

Rule 3: The serial number of each branch under a
choice introductory sentence is the direct sub-serial
number of which of the choice introductory
sentence.

Rule 4: The serial number of each branch under a
concurrence introductory sentence is the direct sub-
serial number of which of the concurrence
introductory sentence.

Rule 5: The serial number of each branch under a
repeat introductory sentence is the direct sub-serial
number of which of the repeat introductory
sentence.

Rule 6: Each fault handler part corresponds to
some steps in the main part. If errors happen in
some steps of the main part, they will be handled by
fault handler part.

After these rules’ restriction, the stop recording
example becomes such a form:

The main part:

1 receive the request of stopping recording
2 stop the recording
3 choice
 3.1 if the stopping is successful
 3.1.1 return a message of success
 3.2 or else
 3.2.1 in parallel
 3.2.1.1 return a message of

error
 3.2.1.2 repeat for 3 times
 3.2.1.2.1 inform the

chairman
Fault handler part:

If any mistakes happen in the procedure of step 1
to step 3

1 return a message of error

We give the mapping between the sentence
patterns after restriction and the requirement
description after formalization, shown in Table 1:

5. FORMALIZATION OF BPEL’S
NATURAL LANGUAGE REQUIREMENT

We give the mapping between the sentence
patterns after restriction and the requirement
description after formalization, shown as follows:

the sentence patterns
after restriction

the requirement
description after
formalization

receive the request of X [RECEIVE]X request
if X [CONDITION]X
return X [REPLY]X
or else [ORELSE]
in parallel [FLOW]
Choice [CHOICE]
repeat for X times [REPEAT]X
If any mistakes happen
in the procedure of step
X to step Y

[FAULTHANDLER]X,
Y

X [INVOKE]X
Definition 7: requirement description statement

After natural language described requirement is
formalized, each step is defined as a requirement
description statement.

Definition 8: requirement description prefix

After natural language described requirement is
formalized, the part bracketed by square bracket is
defined as requirement description prefix.

Definition 9: requirement description sentence

After natural language described requirement is
formalized, the part not bracketed by square bracket
is defined as requirement description sentence.

After formalization, the stop recording example
becomes such a form:

The main part:

1 [RECEIVE]stopping recording request
2 [INVOKE]stop the recording
3 [CHOICE]
 3.1 [CONDITION]the stopping is successful
 3.1.1 [REPLY]a message of success
 3.2 [ORELSE]
 3.2.1 [FLOW]
 3.2.1.

1
[REPLY]a message of error

 3.2.1.
2

[REPEAT]3

 3.2.1.2.
1

[INVOKE]inform
the chairman

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

18

Fault handler part:

[FAULTHANDLER]1, 3

1 [REPLY]a message of error
6. MATCHING AND LOOKUP OF

MESSAGES AND ATOMIC SERVICES

The method we adopt is: finding all the most
matching message names and operation names from
WSDL (Web Services Description Language)
documents with formalized requirement
description, and using the relevant web services’
information to replace the requirement sentences
behind [RECEIVE], [REPLY], and [INVOKE].

We give an algorithm calculating the matching
degree between requirement sentences described by
natural language and message/operation names.
Here, requirement sentences are the sentences with
the prefix [RECEIVE] and [INVOKE].

Algorithm: SimilarityCalculation
Input: natural language described requirement
sentence A; message/operation name B; synonyms
set of WordNet C; stop words set D
Output: the matching degree ϕ
1. After restriction and formalization, A becomes

'A
2. If the prefix of 'A is [RECEIVE] or

[INVOKE]
2.1 ''A is the requirement description sentence of

'A
2.2 The set of segmented words of ''A is

Awordset
2.3 Move stop words from Awordset . For any

word w in Awordset , if ∈w D , then
{ }= −A Awordset wordset w .

2.4 Extent synonyms for Awordset . For any word
w in Awordset , lookup synonyms()w in C, and put
all the synonyms of w into Awordset , that is,

()= +A Awordset wordset synonyms w .
2.5 Do Stemming for Awordset . For any word w

in Awordset , get the etyma of w using Porter[13],
denoted as 'w , and replace w in Awordset with 'w ,
that is, '= − +A Awordset wordset w w . In this paper,
we represent 'w as Porter(w).
3. The set of segmented words of

message/operation names is Bwordset
4. Calculate the matching degree of Awordset

and Bwordset using Algorithm DicePlus.

Algorithm: DicePlus
Input: Awordset and Bwordset
Output: the matching degree ϕ of Awordset and

Bwordset
1. int count=0;
2. or each word w in Bwordset

2.1 if (Porter()∈ Aw wordset || ' synonyms()∃ ∈w w
satisfying '∈ Aw wordset)

2.1.1 count=count+1;

 3. 2*
=

+A B

count
wordset wordset

ϕ

7. BPEL PROCESS’S ASSEMBLY

BPEL process is a XML-formatted document,
and the requirement description after restriction
reveals a hiberarchy structure, so we use the idea of
from bottom to up in programming to assemble
BPEL process. According to steps’ serial numbers
of formalized requirement sentences, we assemble
BPEL’s XML snatches level by level. In more
detail, firstly, BPEL’s XML snatches are generated
corresponding to the lowest requirement description
sentences; then, based on the prefix of the
requirement description sentence in a higher leve,
these XML snatches are assembled as a whole to be
BPEL’s snatch of this higher level’s requirement
description sentence; finally, the whole BPEL is
assembled level by level in the same way.

During BPEL process’s assembly, we consider
the main part and the fault handler part separately.
We firstly assemble the main part’s BPEL snatch,
and then assemble the corresponding snatch for
each fault handler part, finally, we embed fault
handler’s snatch into main part’s.

Algorithm: assembly of the main part
Input: formalized requirement description’s main
part M
Output: BPEL’s XML snatch of the main part
1. Get the number of levels of the main part,
denoted as maxLevel. Initialize a empty hashtable
HT, the key of which is the serial number of steps,
and the value of which is BPEL’s XML snatch
corresponding to the serial number.
2. Divide M into some heaps according to the
level, and each heap has the same level.
steps()level denotes the set of all the steps with the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

19

level level. statement()step denotes the requirement
description sentence corresponding to step step.
prefix()statement denotes the prefix of statement.
3. for (int level=maxLevel; i>1;i--)
3.1. steps()=Steps level
3.1.1. for ∈step Steps , its step number is
StepID, and its requirement description sentence
denoted as statement()=statement step
3.1.1.1 =prefix()prefix statement ,

sentence()=sentence statement
3.1.1.1.1 if prefix=[RECEIVE],
handleReceive()statement
3.1.1.1.2 if prefix=[INVOKE],
handleInvoke()statement
3.1.1.1.3 if prefix=[REPLY],
handleReply()statement
3.1.1.1.4 if prefix=[CONDITION],
handleCondition(,)stepID statement
3.1.1.1.5 if prefix=[ORELSE],
handleOrelse()stepID
3.1.1.1.6 if prefix=[CHOICE],
handleChoice()stepID
3.1.1.1.7 if prefix=[REPEAT],
handleRepeat(,)stepID statement
4. get all the step serial numbers stored in HT
where the level of the key is 1. Arrange these serial
numbers in order as 1 2{ , }nstepID stepID stepID ,
then the BPEL process is:
<process>

<sequence>
HT.get(1stepID)
HT.get(2stepID)
……
HT.get(nstepID)

</sequence>
</process>

Algorithm: handleReceive()statement
1. sentence()=sentence statement
2. In WSDL, find the most matching message
name inputMessageName with sentence from all
the attributes name of <portType>→<operation>→
<input>. Suppose the name attributes of
<operation>, <portType> and <output> are
operationName , portTypeName and

outputMessageName respectively.
3. BpelStr=<receive createInstance=“yes”
name=“ operationName ” operation=
“ operationName ” partnerLink=
“ operationName ” varaible=
“ inputMessageName ”>
4. put (StepID, BpelStr) into HT. Save the data
during this algorithm’s execution.

Algorithm: handleInvoke()statement
1. sentence()=sentence statement
2. In WSDL, find the most matching operation
name operationName with sentence from all the
attributes name of <portType> → <operation>.
Suppose the name attribute of <portType>
is portTypeName , the message attributes of
<operation>→<input> and <operation>→<output>
are inputMessageName and outputMessageName
respectively.
3. BpelStr=<invoke name=“ operationName ”
operation=“ operationName ” partnerLink=
“ operationName ” inputVariaible=
“ inputMessageName ” outputVariaible=
“ outputMessageName ”/>
4. put (StepID, BpelStr) into HT.

Algorithm: handleReply()statement
1. get the data stored during the execution of
algorithm handleReceive()statement
2. BpelStr=<reply name=“ operationName ”
operation=“ operationName ” partnerLink=
“ operationName ” varaible=
“ outputMessageName ”>
3. put (StepID, BpelStr) into HT.

Algorithm: handleCondition(,)stepID statement
1. sentence()=sentence statement
2. get the direct sub-serial number of stepID , and
arrange them in order as

1 2{ , }nstepID stepID stepID . BpelStr is set as:
<condition> sentence </condition>
<sequence>

HT.get(1stepID)
HT.get(2stepID)
……

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

20

HT.get(nstepID)
</sequence>
3. put (StepID, BpelStr) into HT.

Algorithm: handleOrelse()stepID
1. get the direct sub-serial number of stepID , and
arrange them in order as

1 2{ , }nstepID stepID stepID . BpelStr is set as:
<else>

<sequence>
HT.get(1stepID)
HT.get(2stepID)
……
HT.get(nstepID)

</sequence>
</else>
2. put (StepID, BpelStr) into HT.

Algorithm: handleChoice()stepID
1. get the direct sub-serial number of stepID , and
arrange them in order as

1 2{ , }nstepID stepID stepID . BpelStr is set as:
<if>

HT.get(1stepID)
HT.get(2stepID)
……
HT.get(nstepID)

</if>
2. put (StepID, BpelStr) into HT.

Algorithm: handleRepeat(,)stepID statement
1. sentence()=sentence statement , sentence

represents the times repeated, denoted as
TIMES.

2. get the direct sub-serial number of stepID , and
arrange them in order as

1 2{ , }nstepID stepID stepID .
3. BpelStr is set as:
<variable name=“repeat_time” type=“xsd:int”/>
<sequence>

<assign>
<copy>

<from>
<literal>0</literal>

</from>

<to variable=“repeat_time”/>
</copy>

</assign>
<repeatUtil>

<condition>$repeat_time<TIMES</condit
ion>

<sequence>
<sequence>

HT.get(1stepID)
HT.get(2stepID)
……
HT.get(nstepID)

</sequence>
<assign>

<copy>
<from>$repeat_time+1</from>
<to variable=”repeat_time”/>

</copy>
</assign>

</sequence>
</repeatUtil>

</sequence>

The assembly of fault handler part is similar to
which of the main part. The difference only exists
in step 4 in algorithm “assembly of the main part”.
The BPEL’s snatch of fault handler part is as
follows:

<faultHandler>
<catchAll>

<sequence>
HT.get(1stepID)
HT.get(2stepID)
……
HT.get(nstepID)

</sequence>
</catchAll>

</faultHandler>
Here, 1stepID , 2stepID …… nstepID represent the

serial numbers with level 1 of the fault handler
requirement description after formalization.

8. IMPLEMENT AND ANALYSIS OF THE
PROTOTYPE

We implement a prototype using Java. It can

automatically transform restricted requirement
description to BPEL process. In our experiments,

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

21

we use the atomic web services of a multimedia
conference system.

The human–computer interaction interface of our
prototype has four parts:

(1)Inputbox of natural language described
requirement

(2)Inputbox of threshold of the matching degree

(3)Outputbox of formalized requirement
description

(4)Outputbox of generated BPEL process

Figure 1: The Prototype Automatically Transforming Requirement Description To BPEL Process

As shown in the Figure 1, through the semantic
matching lookup based on WordNet, service
“EndRecord” can be found corresponding to “stop
the recording” in user’s requirement. Thus this
indicates the semantic matching method’s validity.

9. CONCLUSION

Requirement description has greate influence on
software’s success. Natural language is still the
mainstream description language of requirement
document currently. The automatic generation of
BPEL process from requirement can help users and
developers reach a consensus in a short time, and
can also quicken BPEL’s development. Our paper
proposes such a generation method, which is direct
and creative. We provide a prototype to indicate
our method’s validity. The future research will
focus on BPEL’s semantic analysis.

ACKNOWLEDGMENTS：

This work was supported by the Natural Science
Foundation of Educational Government of Anhui
Province of China (No. KJ2013B073), the Science
and Technology Plan Project of Chuzhou City
(No.201236), and the Talent Introduction Special
Fund of Anhui Science and Technology University
(No.ZRC2011304).

REFRENCES:

[1] Tidwell D, “Web services-The Web's Next
Revolution”, 2001,
http://www.ibm.com/developerWorks/

[2] Oasis, “Business Process Execution
Language(bpel) v2.0”, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[3] Muhammad Ilyas and Josef Küng, “A
Comparative Analysis of Similarity
Measurement Techniques through SimReq
Framework”, Proceedings of the 7th
International Conference on Frontiers of
Information Technology, Abbotabad, Pakistan,
2009, pp.1-6.

[4] Johan Natt Och Dag, Björn Regnell, Pär
Carlshamre, et al, “Evaluating Automated
Support for Requirements Similarity Analysis
in Market-driven Development”, Proceedings
of the Seventh International Workshop on
Requirements Engineering: Foundation for
Software Quality, Interlaken, Switzerland,
2001.

[5] Mohanty H, Chenthati D, Vaddi S, et al,
“Automatic Generation of BPEL and WSDL
from FSM Models of Web Services”,
Proceedings of 2006 International Conference

http://www.jatit.org/
http://www.ibm.com/developerWorks/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

22

on Advanced Computing and Communications,
Surathkal, 2006, pp.440-444.

[6] Li Zhang and Wei Jiang, “Transforming
Business Requirements into BPEL: A MDA-

based Approach to Web Application
Development”, Proceedings of 2008 IEEE

International Workshop on Semantic
Computing and Systems, Huangshan, China,
2008, pp. 61-66.

[7] Anisha Vemulapalli and Nary Subramanian.
“Evaluating Consistency between BPEL
Specifications and Functional Requirements of
Complex Computing Systems using the NFR
Approach”, Proceeding of 2010 IEEE
International Systems Conference, San Diego,
2010, pp.153-158.

[8] Anisha Vemulapalli and Nary Subramanian.,
“Transforming Functional Requirements from
UML into BPEL to Efficiently Develop SOA-
based Systems”, Proceeding of 2009 On the
Move to Meaningful Internet Systems: OTM
2009 Workshops, Vilamoura, Portugal, 2009,
pp. 337-346.

[9] Keith Mantell, “From UML to BPEL: Model
Driven Architecture in a Web Services World”,
http://www.ibm.com/developerworks/webservi
ces/library/ws-uml2bpel/#author1

[10]Rainer Anzböck and Schahram Dustdar,
“Semi-automatic Generation of Web Services
and BPEL Processes - a Model-driven
Approach”, Proceedings of the 3rd
International Conference on Business Process
Management, Nancy, France, 2006, pp.64-79.

[11]Jin Feng, Yiming Zhou and Trevor Martin.,
“Sentence Similarity based on Relevance”,
Proceedings of IPMU’08, Malaga, Spain,
2008, pp.832-839.

[12]Chukfong Ho, Masrah Azrifah, Azmi Murad,
et al, “Word Sense Disambiguation-based
Sentence Similarity”, Proceedings of Coling
2010: Poster Volume, 2010, pp. 418–426.

[13]Porter M F, “An Algorithm for Suffix
Stripping”, Program, Vol.14, No.3, 1980,
pp.130-137.

http://www.jatit.org/

	1DENG NA, 2LI DESHENG

