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ABSTRACT 

 
How to match two large graphs by maximizing the number of matched edges, which is known as maximum 
common subgraph matching and is NP-hard. A new anchor-selection / expansion approach to compute an 
initial matching is presented in the paper. We give heuristics to select a small number of important anchors 
using a new similarity score, which measures how two nodes in two different graphs are similar to be 
matched by taking both global and local information of nodes into consideration. And then by expanding 
from the anchors selected we work out a good initial matching. The expansion is based on structural 
similarity among the neighbors of nodes in two graphs.  The approach that can efficiently match two large 
graphs over thousands of nodes with high matching quality is proved in theorized. 
. 

Keywords: Large Graph Match, Maximum Common Subgraph (MCS), Global Node Similarity, Anchor 
Selection And Expansion.  

 

1. INTRODUCTION  
 

Graph proliferates in a wide variety of 
applications, including social networks in psycho-
sociology, attributed graphs in image processing, 
food chains in ecology, electrical circuits in 
electricity, road networks in transport, protein 
interaction networks in biology, topological 
networks on the Web. Graph processing has 
attracted great attention from both research and 
industrial communities. Graph matching is an 
important type of graph processing, which aims at 
finding correspondences between the nodes/edges 
of two graphs to ensure that some substructures in 
one graph are mapped to similar substructures in 
the other. Graph matching plays an essential role in 
a large number of concrete applications. 

The graph matching literature is extensive, and 
many different types of approaches have been 
proposed, which mainly focus on approximations 
and heuristics for the quadratic assignment 
problem. An incomplete list includes spectral 
methods, relaxation labeling and probabilistic 
approaches, semi-definite relaxations, replication 
equations, tree search, graduated assignment, and 
RKHS methods [3]. A number of algorithms have 
been proposed for graph matching including exact 
matching [1] and approximate matching [17]. The 
exact approaches are able to find the optimal 
matching at the cost of exponential running time, 

while the approximate approaches are much more 
efficient but can get poor matching results. More 
importantly, most of them can only handle small 
graphs with tens to hundreds of nodes. As an 
indication, exactly matching two undirected graphs 
with 30 nodes may take time about 100,000s. It is 
important to note that real-world networks 
nowadays can be very large. The existing 
approaches cannot efficiently match graphs even 
with thousands of nodes with high quality.  

In this paper, we study the problem of matching 
two large graphs, which is formulated as follows. 
Given two graphs G1 and G2, we find a one-to-one 
matching between the nodes in G1 and G2 such that 
the number of the matched edges is maximized. The 
optimal solution to the problem corresponds to the 
maximum common subgraph (MCS) between G1 
and G2, which is an NP-hard problem, and has been 
studied in decades. It is known to be very difficult 
to find a high-quality approximate matching 
efficiently even for small graphs. In order to meet 
the needs of handling large graphs for graph 
matching and analysis, we propose a novel 
approximate solution with polynomial time 
complexity while still attaining high matching 
quality. The rest of the paper is organized as 
follows. Section 2 discusses some related work. 
Section 3 gives the problem statement. Section 4 
gives the anchor-selection/expansion approach and 
its application examples. Section 5 shows the 
performance results with synthetic datasets, and 
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confirmed the quality and efficiency of the 
approach. Section 6 concludes this paper. 

 

2. RELATED WORKS 
 

We discuss exact graph matching and 
approximate graph matching, according to whether 
(sub) graph isomorphism problem or maximum 
common subgraph problem is involved. For exact 
graph matching problems most of the algorithms 
use backtracking (refer to Ullmann’s algorithm for 
subgraph and graph isomorphism [1]). Existing 
solutions on finding the maximum common 
subgraph mainly focus on the maximum common 
node induced subgraph, and most techniques can 
hardly be used for the maximum common edge 
induced subgraph. Among them, [4] proposes a 
backtracking search method for finding the 
maximum common subgraph. An improved 
backtracking algorithm is given in [4] with time 
complexity O(mn+1·n), where n and m are the 
numbers of vertices of G1 and G2, respectively. [1] 
propose an algorithm that combines backtracking 
and vertex cover enumeration to solve the 
maximum common node induced subgraph 
problem. There are also some other studies to 
calculate the maximum common node induced 
subgraph by finding the maximum clique in the 
association graph [8,]. The complexity of the 
maximum clique approach is no better than 
backtracking.  For approximate graph matching, 
there are three categories: propagation-based 
method, spectral-based method, and optimization-
based method.  

The propagation-based method is mainly based 
on the intuition that two nodes are similar if their 
respective neighborhoods are similar. In [2], a 
similarity flooding approach is proposed, which 
starts from string-based comparison of the vertices 
labels to obtain an initial alignment between nodes 
of two graphs and refines it by an iterative fix-point 
computation. [8] construct a similarity measure 
between any two nodes in any two graphs based on 
Kleinberg’s hub and authority idea of HITS 
algorithm [6]. This procedure will, in general, 
converge to different even and odd limits which 
will depend upon the initial conditions. Recently, 
[18] extends the propagation-based method by 
adding the weight of propagation into the iteration 
process.  

Spectral-based method aims to represent and 
distinguish structural properties of graphs using 
eigenvalues and eigenvectors of graph adjacency 
matrices. It is based on the observation that if two 
graphs are isomorphic, their adjacency matrices will 

have the same eigenvalues and eigenvectors. Since 
the computation of eigenvalues can be solved in 
polynomial time, it is used by a lot of works in 
graph matching [4,]. Among these works, [18] uses 
the eigende composition of adjacency matrices of 
the graphs to derive a simple expression of the 
orthogonal matrix that optimizes the objective 
function. [15] propose a solution to the weighted 
isomorphism problem that combines the use of 
eigenvalues/eigenvectors with continuous 
optimization techniques. These two methods are 
only suitable for graphs with the same number of 
nodes. In [6], the authors solve the problem to 
handle graphs with different number of nodes, 
using the Laplacian eigenmaps scheme to perform a 
generalized eigende composition of the Laplacian 
matrix. [10] propose a method of projecting vertex 
into eigen-subspace for graph matching, which is 
used for inexact many-to-many graph matching 
other than one-to-onematching, and in [12] extend 
Umeyama’s work to match two graphs of different 
sizes by choosing the largest k-eigenvalues as the 
projection space. [17] improve the matching result 
by performing eigende composition on the 
Laplacian matrix since it is positive and 
semidefinite. [14] is used to embed the nodes of the 
graph into vector-space based on the graph-spectral 
method, and the correspondence matrix between the 
embedded points of two graphs is computed by a 
variant of the Scott and Longuet-Higgins algorithm. 

The optimization-based method aims to model 
graph matching as an optimization problem and 
solve it. The representative algorithms include 
PATH and GA [5]. In PATH, the graph matching 
problem is formulated as a convex-concave 
programming problem, and is approximately 
solved. It starts from the convex relaxation and then 
iteratively solves the convex-concave programming 
problem by gradually increasing the weight of the 
concave relaxation and following the path of 
solutions thus created. GA is a gradient method 
based approach, which starts from an initial 
solution and iteratively chooses a matching in the 
direction of a gradient objective function. 

Aside from the propagation-/spectral-based 
methods that compute the similarity score by 
iterations of random walks or spectral 
decomposition of adjacency matrix, [2] propose a 
vector-based node signature that can be computed 
straightforwardly from the adjacency matrix. Here, 
every node is associated with a vector containing its 
node degree and the incident edge weights. The 
similarity between two nodes is computed based on 
their signatures, and the graph matching problem is 
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reduced to a bipartite graph matching problem. A 
survey can be found in [6]. 

 
3. PROBLEM STATEMENT 

 
We first focus on undirected and unlabeled 

graphs, since the most difficult part for graph 
matching is the structural matching without any 
assistance of labels. We will discuss how to handle 
labeled graphs later in this paper. For a graph G(V, 
E), we use V(G) to denote the set of nodes and 
E(G) to denote the set of edges. 

Definition 1: Graph/Subgraph Isomorphism. 
Graph G1 is isomorphic to graph G2, if and only 

if there exists a bijective function f: V(G1)→V(G2) 
such that for any two nodes u1∈V(G1) and u2∈
V(G1), (u1, u2)∈E(G1) if and only if (f (u1), f 
(u2))∈E(G2). G1 is subgraph isomorphic to G2, if 
and only if there exists a subgraph G’ of G2 such 
that G1 is isomorphic to G’. 

Definition 2: Maximum Common Subgraph.  
A graph G is the maximum common subgraph 

(MCS) of two graphs G1 andG2, denoted as 
mcs(G1, G2), if G is a common subgraph of G1 and 
G2, and there is no other common subgraph G’, 
such that G’ is larger than G. 

The MCS of two graphs can be disconnected, and 
there are two kinds of MCSs, namely maximum 
common node induced subgraph (MCSv) and 
maximum common edge induced subgraph 
(MCSe). The former requires the MCS to be the 
node induced subgraph of both G1 and G2, and G’ 
is larger than G iff |V(G’)| > |V(G)|. The latter 
requires the MCS to be the edge induced subgraph 
of both G1 and G2, and G’is larger than G iff 
|E(G’)| >|E(G)|. Figure 1 shows the difference 
between MCSv and MCSe. Figure 1a shows the 
MCSv of G1 and G2, whereas Fig. 1b shows the 
MCSe of G1 and G2. 

G1 G2

 
G1 G2

 

 (A)                           (B) 
Figure 1 (A) Mcsv And (B) Mcse 

As can be seen from this example, MCSe can 
possibly get more common substructure for the 
given two graphs. In this paper, we adopt MCSe 
since it can possibly get more common substructure 
for the given two graphs, and we use MCS (mcs) to 
denote MCSe. Finding the MCS of two graphs is 
NP-hard. 

Definition 3: Graph Matching.  

Given two graphs G1 and G2, a matching M 
between G1 and G2 is a set of vertex pairs M 
={(u,v)|u∈V(G1), v∈V(G2)}, such that for any 
two pairs (u1,v1) ∈ M and (u2,v2)∈M, u1≠u2 
and v1≠v2. The optimal matching M of two graphs 
is the one with the largest number of matched 
edges. Finding the optimal matching M is the same 
as finding the MCS. 

Problem Statement: We aim to compute the 
optimal matching M for two given graphs G1 and 
G2. For a given matching M, we evaluate its quality 
by computing score(M) as follows. 

score(M) = 1, 2 , 2( 1, 1) ( 2, 2)

2
u u vi vu v M u v M

e e
∈ ∈

×∑ ∑  (1) 

where eu,v = 1 if there is an edge between u and v, 
and eu,v = 0, otherwise. Obviously, finding the 
optimal matching M is actually to find a matching 
with the maximum score(M), and the maximum 
score(M) is |E(mcs(G1, G2))|. 

It is known that the MCS problem is NP-hard, 
and it is also known that it is very difficult to obtain 
a tight, or even useful, approximation bound, 
because finding a maximum common subgraph of 
two graphs is equivalent to finding a maximum 
clique in their association graph, which cannot be 
approximated with ratio nεfor any constant ε> 0 
unless P=NP. For the quality of the MCS result, [16] 
give a bound of O(n2) based on the number of 
mismatched edges, where n is the size of the larger 
graph. This means that it may mismatch all the 
edges. [19] provide an upper bound for the size of 
the MCS, which is computed by sorting the degree 
sequences of two graphs separately followed by 
summarizing the corresponding smaller degrees. 
The bound is almost the smaller graph, without 
considering any structural information of the two 
graphs, which does not provide much information. 
For the time complexity, in [15], it is O(n6 L), 
where n is the size of the graph and L is the size of 
an LP model formulated for graph matching (at 
least n). It cannot handle graphs with more than 100 
nodes. 

4. ANCHOR-SELECTION/EXPANSION 
MATCHING APPROACH 

 
In this paper, we propose a novel approach to 

solve the graph matching problem. We construct 
the initial matching M by identifying anchors of 
two graphs G1 and G2 followed by expanding from 
the anchors. We do so based on a new similarity 
between nodes in the two different graphs, which 
combines both global and local information of 
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nodes. The framework of the algorithm is shown in 
Algorithm 1. 

Algorithm 1: match(G1, G2) 
Require: two graphs, G1 and G2; 
Ensure: a graph matching between G1 and G2; 
1: A ← anchor-selection (G1, G2); {refer to 

Algorithm 2} 
2: M ←anchor-expansion (G1, G2, A); {refer to 

Algorithm 3} 
3: M ← refine(G1, G2, M);  
4: return M; 
In this section, we discuss how to select anchors 

and how to expand from the selected anchors to 
obtain the initial matching M for two graphs G1 and 
G2, using a new node similarity matrix S. The node 
similarity between u ∈ G1 and v ∈ G2 is very 
important because it indicates how likely the two 
nodes will be matched when computing the 
matching M. 

 
4.1 Global And Local Node Similarity 

Let G1 and G2 be two graphs. The new node 
similarity matrix S we propose takes both global 
and local node similarities into consideration when 
matching nodes in two graphs.  

S[u,v]= Sg[u,v]× Sl [u,v]                  (2) 
Here, S is a |V(G1)|×|V(G2)|matrix, in which the 

element S[u,v]∈[0, 1] represents the similarity of 
two nodes, u in G1 and v in G2. S is based on Sg 
and Sl, where Sg measures global similarity 
between u and v in the entire graphs G1 and G2, 
and Sl measures local similarity between u and v in 
their neighborhoods.  

We will introduce an existing global similarity 
below followed by the discussion on our new local 
similarity in this section. 

Global node similarity: In the literature, the 
global similarity for nodes in two graphs can be the 
spectral-based similarity. The representative study 
is Umeyama’s work [21] which is improved by 
[11]. Suppose G1 and G2 are two undirected graphs 
with the same number of nodes n. The Laplacian 
matrix Ln×n of graph G with n nodes is defined as L 
= D− A, where A is the adjacency matrix and D is 
the diagonal degree matrix. A[u1, u2]= 1 if (u1, u2) 
∈  E(G), and 0 otherwise. D[u1, u1]= ∑ (u1,u2) ∈

E(G)A[u1, u2].  We denote the Laplacian matrices of 
G1 and G2 as L1 and L2,  respectively. Suppose the 
eigenvalues of L1 and L2 are α1≥α2 ≥···

≥  α n and β 1 ≥  β 2 ≥···≥  β n, 
respectively. Since L1 and L2 are symmetric and 
positive-semidefinite, we have L1 = U1Λ1U1T and 
L2 = U2Λ2U2T , where U1 and U2 are orthogonal 
matrices, andΛ1 = diag(αi ) andΛ2 = diag(βi ). If 

G1 and G2 are isomorphic, there exists a 
permutation matrix P such that PU1Λ1U1TPT = U2
Λ2U2T . Let P = U2D’ U1T where D’ = diag(d1,..., 
dn) and di ∈  {+1;−1} accounts for the sign 
ambiguity in the eigende-composition. When G1 
and G2 are isomorphic, the optimum permutation 
matrix is P, which maximizes tr ( 2 1

T TP U U ), where 
1U  and 2U  are matrices that have the absolute value 

of each element of U1 and U2, respectively. When 
the numbers of nodes in G1 and G2 are not the 
same, we only choose the largest c eigenvalues [7]. 
Let c = min{|V(G1)|, |V(G2)|}, and '

1U  and '
2U  be 

the first c columns of 1U  and 2U , respectively, the 
global similarity matrix can be computed with Eq. 
(3).  

Sg = ' '
1 2

T
U U                               (3) 

 Here, Sg[u,v] ∈ [0, 1] is the global node 
similarity between the node u in V(G1) and the 
node v in V(G2). Example 1 shows an example of 
matching two graphs using the global node 
similarity.  

Example 1: Consider the two graphs in Fig. 2. 
We first compute their global node similarity matrix 
Sg. We construct a bipartite graph Gb with 
|V(G1)|+|V(G2)| nodes, and for any u ∈ V(G1) and 
v ∈ V(G2), we add an edge (u,v) ∈ E(Gb) with 
weight Sg[u,v].  

u1 u2

u11

u10

u9

u8

u7u6

u5
u4

u3

u16 u15

u14

u13

u12

 
(a) 

 

u1 u2

u11

u10

u9

u8

u7u6

u5
u4

u3

u16 u15

u14

u13

u12

u17  
(b) 

Figure 2: Two Graphs. (A) Graph G1, (B) Graph G2 

We compute the maximum weighted bipartite 
matching of Gb and get the matching as M 
={(u1,v1), (u2,v2), (u3,v7), (u4,v4), (u5,v5), 
(u6,v12), (u7,v13), (u8,v8), (u9,v17), (u10,v10), 
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(u11,v3), (u12,v6), (u13,v14), (u14,v15), (u15,v16), 
(u16,v9)}. In this way, the number of matched 
edges is 10, which is far away from the optimal 
solution mcs(G1, G2), 21 (bold edges in Fig. 2). 
Comparing to the optimal solution, u3 is 
mismatched to v7 because they have a high global 
similarity, but obviously, the local structure near u3 
and the local structure near v7 differ much. 

Alternative global node similarity measures: 
Besides the global node similarity based on eigende 
composition, there are other global similarity 
measures based on the node importance in the 
graph in the literature, such as Katz score [9] and 
random walk with restart (RWR) [3]. A Katz score 
is a weighted count of the number of walks 
originating (or terminating) at a given node. The 
walks are weighted inversely by their length so that 
long and highly indirect walks count less, while 
short and direct walks count larger. The Katz score 
is given by the formula r = (I − bA)−1bAu, where r 
is the N × 1 column vector containing Katz score 
for each node, I is the N×N identity matrix, u is a 
N×1 column vector with all entries equal to 1, and b 
∈ (0, 1) is the attenuation factor, which is 1/(d+1) 
by default in [4],where d is the maximum degree of 
the graph. The extent to which the weights attenuate 
with length is controlled by b. The RWR score is 
given by the formula r = (1−c)(I −cW)−1u, where W 
is a transmit matrix where W(i, j ) = A(i, j)∑i A(i, 
j), and c ∈[0, 1] is the positive probability, which 
means a surfer at a node will jump to a random 
node with probability 1 − c. Under this random 
walk, the importance of a node v is the expected 
sum of the importance of all the nodes u that link to 
v. For two nodes, u in graph G1 and v in graph G2, 
they are considered highly similar if both have a 
high Katz/RWR score. The similarity matrix of two 
graphs becomes S’g = r1r2 T. In Sect. 8, we report 
the effectiveness of these global node similarity 
measures. 

The global node similarity gives a node similarity 
measure from the global point of view. However, 
when G1 and G2 are not sufficiently similar to each 
other, using global node similarity only is not 
sufficient to get a good matching because the global 
node similarity does not consider the local 
information for nodes in two graphs. We need a 
local node similarity. 

Local node similarity: For any node v in graph 
G and k≥ 0, we define the k-neighborhood of 
v, ( )kN v , as the set of nodes in V(G) such that v/ ∈

( )kN v  and for any u ∈ ( )kN v , the shortest distance 
from v to u is no more than k. The shortest distance 
is defined as the number of edges in the shortest 
path from v to u. The k-neighborhood subgraph of v 

in G, denoted as k
vG , is defined as the induced 

subgraph over ( )kN v  ∪{v} in G. For two nodes u 
∈ V(G1) and v ∈ V(G2), we measure their local 
node similarity by comparing the k-neighborhood 
subgraphs of them. Suppose d(u) and d(v) are the 
degrees of node u and v in G1 and G2, respectively, 
and suppose d1,1, d1,2,... is the degree sequence of 
node set kN (u)  in k

uG sorted in non-increasing order, 
and d2,1, d2,2,... is the degree sequence of node set 

( )kN v  in k
vG  sorted in non-increasing order. Let nmin 

= min{| ( )kN u |, | ( )kN v |}.We define a 
|V(G1)|×|V(G2)| local node similarity matrix Sl as 
follows. 

2
min( 1 ( , ))[ , ]

(| ( ) | | ( ) |)(| ( ) | | ( ) |)l k k k k
u u v v

n D u vS u v
V G E G V G E G

+ +
=

+ +
 (4) 

min

1, 2,1
min{ ( ), ( )} min{ , }

[ , ]
2

n
i ii

d u d v d d
D u v =

+
= ∑   (5) 

Here, D(u,v) consists of two parts. The first part 
min{d(u), d(v)} is the ideal contribution of edges 
when matching u with v, and the second part 

min

1, 2,1
min{ , }n

i ii
d d

=∑  is the ideal contribution of edges 
when matching nodes in ( )kN u with nodes in ( )kN v . 
We show that Sl has the following properties. 
1. 0 < Sl [u,v]≤ 1. 

2. 
2(| ( ( , )) | | ( ( , )) |)[ , ]

(| ( ) | | ( ) |)(| ( ) | | ( ) |)

k k k k
u v u v

l k k k k
u u v v

V mcs G G E mcs G GS u v
V G E G V G E G

+
=

+ +
 

3. If k
uG  and k

vG  are isomorphic, and u matches v 
in the optimal matching of k

uG  and k
vG , then Sl 

[u,v]= 1. 
4. If k

uG  is subgraph isomorphic to k
vG , and u 

matches v in the optimal matching of k
uG  and 

k
vG , we have Sl [u,v]= | ( ) | | ( ) |

| ( ) | | ( ) |

k k
u u
k k
v v

V G E G
V G E G

+
+  

For (1), it is obvious that Sl [u,v] >0 holds, 
because both (nmin+1+D(u,v))2>0 and 
(| ( ) | | ( ) |)(| ( ) | | ( ) |)k k k k

u u v vV G E G V G E G+ +  > 0. Sl [u,v]≤1 
can be showed as follows. Since min{d(u), d(v)}≤ 
d(u) and min{d1,i , d2,i } ≤ d1,i , 

min

1,1
( )

[ , ]
2

n
ii

d u d
D u v =

+
≤ ∑ =|E( k

uG )|. Similarly, D(u,v) ≤

|E( k
vG )|. By combining such two inequations with 

the fact that nmin + 1 ≤|V( k
uG )| and nmin + 1 ≤ 

|V( k
vG )|,we have Sl [u,v]≤ 1. For (2), since the 

node number of either k
uG  or k

vG  appearing inmcs 
can never exceed the minimum node number of k

uG  
and k

vG , |V(mcs( k
uG , k

vG ))|≤n min + 1. Also, D(u,v) 
is known to be an upper bound of |E(mcs( k

uG , k
vG ))|, 

which is proved in [17]. Thus, this inequation holds. 
Here, Sl [u,v] is an upper bound of such similarity, 
if we treat the right side of the equation in the 
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property (2) as an accurate similarity of two nodes 
based on their MCS. For (3), this can be obtained 
based on the illustration of the first property, since 
when they are isomorphism, we have nmin + 1 
=|V( k

uG )|=|V( k
vG )| and D(u,v) 

=
min

1,1
( )

2

n
ii

d u d
=

+∑ =|E( k
uG )|, while leads to St[u,v]= 

| ( ) | | ( ) |
| ( ) | | ( ) |

k k
u u
k k
v v

V G E G
V G E G

+
+ . Note that our local similarity [Eq. 

(4)] is different from the vector-based node 
signature [5] which deals with edge weights. For an 
undirected and unweighted graph, the edge weights 
for all its incident edges are 1. This means that the 
node signature in [5] is merely its node degree, and 
measuring the similarity of two nodes by their 
degrees is not sufficient, because there might be 
many pairs of nodes, which share the same degree 
but are with different structures. In our local 
similarity measure, we do not only consider the 
degrees of two nodes but also consider their k-
neighborhoods. [15] is one specific case of our local 
similarity when k = 0 for undirected and 
unweighted graphs. 

Example 2 Reconsider the two graphs in Fig. 2. 
Let k = 2. The similarity matrix S of G1 and G2 is 
shown in Fig. 3b.We construct a bipartite graph Gb 
with |V(G1)|+|V(G2)| nodes, and for any u ∈ 
V(G1) and v ∈ V(G2), we add an edge (u,v) ∈ 
E(Gb) with weight S[u,v] (instead of Sg[u,v]). We 
compute the maximum weighted bipartite matching 
of Gb and get the matching M ={(u1,v1), (u2,v2), 
(u3,v3), (u4,v4), (u5,v5), (u6,v12), (u7,v13), 
(u8,v8), (u9,v17), (u10,v10), (u11,v14), (u12,v6), 
(u13,v11), (u14,v15), (u15, v9), (u16,v16)}. The 
number of matched edges is 13, which is better than 
10 when only using the global similarity. But it is 
still much less than the optimal solution, 21. 

 
4.2 A Problematic Approach To Compute M 

Using S:  
 [2] computes a matching M by applying the 

Hungarian algorithm to the node similarity matrix, 
which can be with S we newly proposed or Sg 
given in [12]. Using all the similar node pairs 
computed, a matching M can be found. In order to 
compute a matching, [2] constructs a bipartite graph 
Gb that includes |V(G1)|+|V(G2)| nodes. For any 
node u ∈ V(G1) and node v ∈ V(G2), an edge 
(u,v) is added to Gb with weight S[u,v] (or Sg[u,v]). 
The maximum weighted bipartite matching of Gb 
leads to a matching M of graphs G1 and G2. Such 
an approach has two drawbacks. 

– Similarity optimality does not mean matched 
edge optimality, while our aim is to maximize the 
number of matched edges in two graphs. It is 

possible that two nodes are very similar in terms of 
S (or Sg) but the two nodes do not have many 
incident edges that help to increase the number of 
matched edges. As an example, suppose node u1 ∈ 
V(G1) and node v1 ∈ V(G2) all have degree 1, and 
S[u1,v1]= 1.0, and node u2 ∈ V(G1) and node v2 
∈ V(G2) all have degree 10, and S[u2,v2]= 0.9. 
Suppose (u1,v1) is in conflict with (u2,v2) when 
computing the maximum weighted bipartite 
matching. In constructing the initial matching, the 
algorithm may give up (u2,v2) because it has a 
lower similarity. But obviously, giving up (u1,v1) is 
a better solution because (u2,v2) can contribute a 
larger number of matched edges, although u2 and 
v2 have lower node similarity. 

– This approach only considers the matching of 
individual nodes in two graphs, and does not 
consider whether the nodes around them can be 
well matched when it matches two nodes. In other 
words, matching u ∈ V(G1) with v ∈ V(G2) does 
not consider whether the nodes around u and v can 
be matched using the maximum weighted bipartite 
matching. When the nodes around u and v are 
mismatched, even if u and v are similar, it can 
significantly affect the quality of the final matching 
M. 

 
4.3 Anchor Selection And Expansion 

In our approach, we solve the two drawbacks as 
follows. Instead of matching all the nodes, we first 
match some important nodes as anchors. Every two 
anchors matched have high similarity and large 
degrees, and can contribute a large number of 
matched edges. Then, we expand from the anchors 
to match the other nodes using the local similarity 
Sl as the measure. Thus, our solution consists of 
two steps, namely anchor selection and anchor 
expansion. 

The anchors selected play two important roles in 
matching construction. (1) The matching anchors 
contribute a large number of edges to the matching 
M. (2) The anchors are the references to start with 
when matching the other nodes. For two nodes u ∈ 
V(G1) and v ∈ V(G2), we select (u,v) as matched 
anchors, if they satisfy the following two 
conditions. 

(1) min{d(u), d(v)}≥ δ,where δ is the larger 
average degree of the two graphs, that is,  

δ = max 1 2

1 2

2 | ( ) | 2 | ( ) |,
| ( ) | | ( ) |

E G E G
V G V G

 × ×
 
 

. 

 (2) S[u,v]≥τ , where τ  is a threshold and 
generally τ> 0.5, and is one sensitive threshold 
that has impacts on graph matching.  

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th February 2013. Vol. 48 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
228 

 

The algorithm for anchor selection is shown in 
Algorithm 2. Given two graphs G1 and G2, it 
outputs a list of anchor pairs, denoted asA. In the 
algorithm,S1 and S2 denote the sets of matched 
nodes in V(G1) and V(G2), respectively. 

Algorithm 2 anchor-selection (G1, G2) 
Require: two graphs G1 and G2; 
Ensure: a list of matched anchor pairs A; 
1: compute the similarity matrix S; 
2: A ← ∅; S1 ← ∅; S2 ← ∅; 
3: for all u ∈  V(G1) and v ∈  V(G2) in 

decreasing order of their similarity S[u,v] do 
4: if S[u,v]≥ τ and min{d(u), d(v)}≥ δ and u 

/ ∈ S1 and v/ ∈ S2 then 
5: A ← A ∪{(u,v)}; S1 ← S1 ∪{u}; S2 ← S2 

∪{v}; 
6: return A; 
Line 1 computes the similarity matrix S [Eq. (2)]. 

Line 3 tries to match the pairs (u,v) for all u ∈ 
V(G1) and v ∈ V(G2) in the decreasing order of 
their similarity. In this way, the most similar pairs 
will have a large chance to be matched as the 
anchors. Line 4 selects the nodes that satisfy the 
two conditions for anchor selection that are not 
matched before. If the conditions in line 4 are all 
satisfied, we add the pair (u,v) into the list A and 
add the matched nodes u and v into S1 and S2, 
respectively in line 5. After checking all pairs, line 
6 returns A as the anchor pairs. 

Example 3 Consider the two graphs in Fig. 2. 
Suppose τ = 0.94, using Algorithm 2, we can get 
the set of anchor pairs to be A ={(u1,v1), (u8,v8)}. 
Obviously, the correct matching of the two pairs is 
very important in the final matching of G1 and G2. 
For the pair (u9, v17), although it satisfies the 
similarity constraint, it destroys the degree 
constraint. Obviously, expanding from the pair 
(u9,v17) to match other pairs is a bad choice. 

Theorem 1 The time complexity of Algorithm 2 
is O(|V(G1)|2 · (|V(G1)|+|E(G1)|) + |V(G2)|2 
·(|V(G2)|+|E(G2)|)). 

Proof 1 Algorithm 2 is to select anchors. 
Computing the global node similarity matrix needs 
O(|V (G1)|3+|V(G2)|3) time, and computing the 
local node similarity matrix needs O(|V(G1)|2 
·|E(G1)|+|V(G2)|2 ·|E(G2)|) time. In lines 3-5, 
sorting all pairs needs 
O(|V(G1)|·|V(G2)|·(log(|V(G1)|) + log(|V(G2)|))) 
time. Hence, the overall time complexity of 
Algorithm 2 is O(|V(G1)|2 · (|V(G1)|+|E(G1)|) 
+|V(G2)|2 · (|V(G2)|+|E(G2)|)).  

We illustrate the anchor expansion algorithm 
(Algorithm 3) to obtain a matching M. Let A be the 
anchor pairs (u,v) selected already. Initially, M = A. 

Let N(u) and N(v) denote the immediate neighbors 
of u and v in graphs G1 and G2, respectively. For 
every matched pair (u,v) in the initial M, we put all 
(N(u)× N(v)) pairs in a queue Q, where Q is the set 
of candidate matching pairs sorted in decreasing 
order of their local similarity. In an iterative 
manner, we remove the pair (u,v) with the largest 
local similarity Sl [u,v] [Eq. (4)] from Q. If both u 
and v have not been matched before, we add (u,v) 
to M and put their all (N(u) × N(v)) immediate 
neighbor pairs into Q for further consideration. We 
repeat it until Q =∅. 

Algorithm 3 anchor-expansion (G1, G2, A) 
Require: two graphs, G1 and G2, and the anchor 

pairs A; 
Ensure: a graph matching M; 
1: M ← A; Q ← ∅; S1 ← ∅; S2 ← ∅; 
2: for all (u,v) ∈ A do 
3: S1 ← S1 ∪{u}; S2 ← S2 ∪{v}; Q ← Q ∪ 

(N(u) × N(v)); 
4: while Q≠∅ do 
5: remove (u,v) from Q with the largest similarity 

Sl [u,v]; 
6: if u ∉  S1 and v∉  S2 then 
7: M ← M ∪{(u,v)}; S1 ← S1 ∪{u}; S2 ← S2 

∪{v}; Q ←Q ∪ (N(u) × N(v)); 
8: return M; 
 
The example of anchor expansion is given below. 
Example 4 Given the two graphs in Fig. 2.After 

we get the set of anchor pairs A ={(u1,v1), 
(u8,v8)}. Using Algorithm 3, we can construct our 
matching M ={(u1,v1), (u2,v7), (u3,v3), (u4,v4), 
(u5,v5), (u6,v6), (u7,v2), (u8,v8), (u9,v9), 
(u10,v10), (u11,v13), (u12,v12), (u13,v11), 
(u14,v14), (u15,v15), (u16,v16)}. The number of 
matched edges is 18. 

Theorem 2 The time complexity of Algorithm 3 
is O(|V(G1)|·|V(G2)|· min{|V(G1)|, |V(G2)|}). 

Proof 2 Algorithm 3 is to expand from the 
anchors selected. The dominant part of the time 
complexity is line 5 and line 7. For line 5, there are 
at most |V(G1)|·|V(G2)| pairs, and for each pair, it 
needs O(|V(G1)|·|V(G2)|) to obtain the one with the 
largest similarity. For line 7, there are at most 
min{|V(G1)|, |V(G2)|} matched pairs, and for each 
pair, it needs O(|V(G1)|·|V(G2)|) to compute the 
cartesian product. Therefore, the overall time 
complexity is O(|V(G1)|·|V(G2)|· min{|V(G1)|, 
|V(G2)|}).  

 
4.4 Discussion On Τ For Anchor Selection 

In the matching process, the threshold τ used in 
anchor-selection (Algorithm 2) is an important 
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factor for the matching quality. It should be neither 
too large nor too small. When τ is too large, very 
few nodes will be selected as anchors, which lead to 
more nodes to be mismatched in anchor-expansion. 
The reason is that anchor-expansion is designed as 
a greedy algorithm and can only achieve local 
optimum. For a node in a graph, the more steps it 
needs to be expanded from an anchor, the higher 
the probability to be mismatched. When τ is too 
small, a large number of anchor pairs may be 
selected, and many mismatched anchors are thus 
involved. Expanding from these mismatched 
anchors will hardly lead to a good matching result. 
We explain it using an example.  

Example 5 Reconsider Example 3 in Sect. 5. 
Suppose we set τ to a very small value, that is, τ = 
0.78, for graphs in Fig. 2. A large set of anchor 
pairs is obtained: A = {(u1,v1), (u4,v4), (u5,v5), 
(u6,v12), (u7,v13), (u8,v8), (u10,v10), (u12,v6)}. If 
we then run anchor-expansion based on this A, we 
obtain the matching result M ={(u1,v1), (u2,v2), 
(u3,v3), (u4,v4), (u5,v5), (u7,v13), (u8,v8), 
(u9,v17), (u10,v10), (u12,v6), (u13,v11), (u14, 
v14), (u15,v16), (u16,v15)}. The number of 
matched edges is 16, which is not as good as the 
matching result in Example 4 (The number of 
matched edges is 18). This is because a small τ 
makes several mismatched anchor pairs {(u6,v12), 
(u7,v13), (u12,v6)} included in A. Expanding from 
such mismatched anchor pairs will make the 
matching result ineffective. On the other hand, 
suppose we set τ to a very high value, that is, τ = 
0.98. No anchor pair will be selected. Under such 
circumstances, one node will be randomly selected 
from each graph to form an anchor pair, and 
expanding from such a random anchor pair is 
unlikely to lead to a good matching. 

It is difficult to determine an appropriate τ for 
graph matching, because τ is not related to graph 
sizes or degree distributions. One attempt we made 
is to collect some statistics from the similarity 
matrix S to see whether there is certain relationship 
between S and τ . First, we set τ to be a small value 
0.5 and select an initial list of anchor pairs AI using 
Algorithm 2. Then, we divide the interval [0.5, 1] to 
disjoint small intervals (bins) with equal length l , 
and count the number of anchor pairs (u,v) in a bin 
if S[u,v] is in its interval. We take τ to be used as 
the middle value of the bin, which has the smallest 
number of anchor pairs. This means that we choose 
a significant gap as threshold τ to be used. 
However, in our extensive experimental studies, the 
matching results obtained by using such a τ are not 
necessarily guaranteed to be good. In order to 
ensure a good initial graph matching, we select the 

best τ by exploring all τ with every step of l in [0.5, 
1], for example, 0.5, 0.5 + l, 0.5 + 2l,..., and 
choosing the τ value that results in the best graph 
matching M (the output of anchor-expansion). Such 
process is shown in Algorithm 4.With Algorithm 4, 
Algorithm 1 can be modified by replacing line (1–
2) with construct-opt(G1, G2). In order to further 
reduce the cost, as a heuristics, we adopt a hill 
climbing method. We set the default value of τ = 
0.9, and set the step length l to 0.02, and choose the 
direction by comparing the matching result for τ = 
0.9−l and τ = 0.9+l to start climbing. The climbing 
will stop when the current value is less than the best 
value we have obtained or the value of τ is out of 
range [0.5, 1]. Such a hill climbing method stops 
within several steps and achieves good results, as 
can be seen in our testing.  

Algorithm 4 construct-opt (G1, G2) 
Require: two graphs, G1 and G2; 
Ensure: a graph matching between G1 and G2; 
1: τ ← 0.5; Mopt ← ∅; 
2: AI ←anchor-selection (G1, G2); {Algorithm 

2} 
3: for all τi = 0.5 + i × l such that τi ∈[0.5, 

1] do 
4: A ←{(u,v)|(u,v) ∈ AI, S[u,v]≥ τi }; 
5: M ← anchor-expansion (G1, G2,A); 

{Algorithm 3} 
6: if score(M)> score(Mopt ) then 
7: Mopt ← M; 
8: return Mopt ; 
 
Theorem 3 The time complexity of Algorithm 4 

is O(|V(G1)|2 · (|V(G1)|+|E(G1)|) +|V(G2)|2 · 
(|V(G2)|+|E(G2)|)). 

Proof 3 The dominant part of Algorithm 4 is line 
2 and lines 3–7. For line 2, the time complexity of 
anchor-selection is shown to be O( |V 
(G1)|2·(|V(G1)|+|E(G1)|)+ |V(G2)|2 ·(|V(G2)|+ 
|E(G2)|)) in Theorem1. For lines 3–7, since the time 
complexity of anchor-expansion is shown to be O( 
|V(G1)|·|V(G2)|· min {|V(G1)|, |V(G2)|}) in 
Theorem 2, the total complexity of lines 3–7 is 
O(c·|V(G1)|·|V(G2)|· min {|V(G1)|,|V(G2)|}) where 
c is the steps that we need in the loop. Usually, c = 
0.5/l is a small constant for a given l . So the total 
complexity of Algorithm 4 is O(|V(G1)|2 · 
(|V(G1)|+|E(G1)|) + |V(G2)|2 ·(|V(G2)|+|E(G2)|)).  

 
5  CONCLUSION AND FUTURE WORK 

 
The time complexity of Algorithm 4 remains 

unchanged, compared to Algorithm 2 and 
Algorithm 3, because it only repeats anchor-
expansion constant times. It is worth noting that 
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anchor-selection is the dominant factor and anchor-
expansion can be done very quickly in practice 
compared to anchor-selection. Some results are 
shown that the time of anchor-expansion means the 
total expansion time including the τ selection. 
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