
Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

222

AN ANCHOR-SELECTION/EXPANSION APPROACH FOR
LARGE GRAPHS APPROXIMATE MATCHING

1,2ANLIANG NING, 1XIAOJING LI, 1CHUNXIAN WANG

1Center of Engineering Teaching Training, Tianjin Polytechnic University, Tianjin 300387, China
2Department of Computer, Tianjin Polytechnic University, Tianjin 300387, China

ABSTRACT

How to match two large graphs by maximizing the number of matched edges, which is known as maximum
common subgraph matching and is NP-hard. A new anchor-selection / expansion approach to compute an
initial matching is presented in the paper. We give heuristics to select a small number of important anchors
using a new similarity score, which measures how two nodes in two different graphs are similar to be
matched by taking both global and local information of nodes into consideration. And then by expanding
from the anchors selected we work out a good initial matching. The expansion is based on structural
similarity among the neighbors of nodes in two graphs. The approach that can efficiently match two large
graphs over thousands of nodes with high matching quality is proved in theorized.
.

Keywords: Large Graph Match, Maximum Common Subgraph (MCS), Global Node Similarity, Anchor
Selection And Expansion.

1. INTRODUCTION

Graph proliferates in a wide variety of
applications, including social networks in psycho-
sociology, attributed graphs in image processing,
food chains in ecology, electrical circuits in
electricity, road networks in transport, protein
interaction networks in biology, topological
networks on the Web. Graph processing has
attracted great attention from both research and
industrial communities. Graph matching is an
important type of graph processing, which aims at
finding correspondences between the nodes/edges
of two graphs to ensure that some substructures in
one graph are mapped to similar substructures in
the other. Graph matching plays an essential role in
a large number of concrete applications.

The graph matching literature is extensive, and
many different types of approaches have been
proposed, which mainly focus on approximations
and heuristics for the quadratic assignment
problem. An incomplete list includes spectral
methods, relaxation labeling and probabilistic
approaches, semi-definite relaxations, replication
equations, tree search, graduated assignment, and
RKHS methods [3]. A number of algorithms have
been proposed for graph matching including exact
matching [1] and approximate matching [17]. The
exact approaches are able to find the optimal
matching at the cost of exponential running time,

while the approximate approaches are much more
efficient but can get poor matching results. More
importantly, most of them can only handle small
graphs with tens to hundreds of nodes. As an
indication, exactly matching two undirected graphs
with 30 nodes may take time about 100,000s. It is
important to note that real-world networks
nowadays can be very large. The existing
approaches cannot efficiently match graphs even
with thousands of nodes with high quality.

In this paper, we study the problem of matching
two large graphs, which is formulated as follows.
Given two graphs G1 and G2, we find a one-to-one
matching between the nodes in G1 and G2 such that
the number of the matched edges is maximized. The
optimal solution to the problem corresponds to the
maximum common subgraph (MCS) between G1
and G2, which is an NP-hard problem, and has been
studied in decades. It is known to be very difficult
to find a high-quality approximate matching
efficiently even for small graphs. In order to meet
the needs of handling large graphs for graph
matching and analysis, we propose a novel
approximate solution with polynomial time
complexity while still attaining high matching
quality. The rest of the paper is organized as
follows. Section 2 discusses some related work.
Section 3 gives the problem statement. Section 4
gives the anchor-selection/expansion approach and
its application examples. Section 5 shows the
performance results with synthetic datasets, and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

223

confirmed the quality and efficiency of the
approach. Section 6 concludes this paper.

2. RELATED WORKS

We discuss exact graph matching and
approximate graph matching, according to whether
(sub) graph isomorphism problem or maximum
common subgraph problem is involved. For exact
graph matching problems most of the algorithms
use backtracking (refer to Ullmann’s algorithm for
subgraph and graph isomorphism [1]). Existing
solutions on finding the maximum common
subgraph mainly focus on the maximum common
node induced subgraph, and most techniques can
hardly be used for the maximum common edge
induced subgraph. Among them, [4] proposes a
backtracking search method for finding the
maximum common subgraph. An improved
backtracking algorithm is given in [4] with time
complexity O(mn+1·n), where n and m are the
numbers of vertices of G1 and G2, respectively. [1]
propose an algorithm that combines backtracking
and vertex cover enumeration to solve the
maximum common node induced subgraph
problem. There are also some other studies to
calculate the maximum common node induced
subgraph by finding the maximum clique in the
association graph [8,]. The complexity of the
maximum clique approach is no better than
backtracking. For approximate graph matching,
there are three categories: propagation-based
method, spectral-based method, and optimization-
based method.

The propagation-based method is mainly based
on the intuition that two nodes are similar if their
respective neighborhoods are similar. In [2], a
similarity flooding approach is proposed, which
starts from string-based comparison of the vertices
labels to obtain an initial alignment between nodes
of two graphs and refines it by an iterative fix-point
computation. [8] construct a similarity measure
between any two nodes in any two graphs based on
Kleinberg’s hub and authority idea of HITS
algorithm [6]. This procedure will, in general,
converge to different even and odd limits which
will depend upon the initial conditions. Recently,
[18] extends the propagation-based method by
adding the weight of propagation into the iteration
process.

Spectral-based method aims to represent and
distinguish structural properties of graphs using
eigenvalues and eigenvectors of graph adjacency
matrices. It is based on the observation that if two
graphs are isomorphic, their adjacency matrices will

have the same eigenvalues and eigenvectors. Since
the computation of eigenvalues can be solved in
polynomial time, it is used by a lot of works in
graph matching [4,]. Among these works, [18] uses
the eigende composition of adjacency matrices of
the graphs to derive a simple expression of the
orthogonal matrix that optimizes the objective
function. [15] propose a solution to the weighted
isomorphism problem that combines the use of
eigenvalues/eigenvectors with continuous
optimization techniques. These two methods are
only suitable for graphs with the same number of
nodes. In [6], the authors solve the problem to
handle graphs with different number of nodes,
using the Laplacian eigenmaps scheme to perform a
generalized eigende composition of the Laplacian
matrix. [10] propose a method of projecting vertex
into eigen-subspace for graph matching, which is
used for inexact many-to-many graph matching
other than one-to-onematching, and in [12] extend
Umeyama’s work to match two graphs of different
sizes by choosing the largest k-eigenvalues as the
projection space. [17] improve the matching result
by performing eigende composition on the
Laplacian matrix since it is positive and
semidefinite. [14] is used to embed the nodes of the
graph into vector-space based on the graph-spectral
method, and the correspondence matrix between the
embedded points of two graphs is computed by a
variant of the Scott and Longuet-Higgins algorithm.

The optimization-based method aims to model
graph matching as an optimization problem and
solve it. The representative algorithms include
PATH and GA [5]. In PATH, the graph matching
problem is formulated as a convex-concave
programming problem, and is approximately
solved. It starts from the convex relaxation and then
iteratively solves the convex-concave programming
problem by gradually increasing the weight of the
concave relaxation and following the path of
solutions thus created. GA is a gradient method
based approach, which starts from an initial
solution and iteratively chooses a matching in the
direction of a gradient objective function.

Aside from the propagation-/spectral-based
methods that compute the similarity score by
iterations of random walks or spectral
decomposition of adjacency matrix, [2] propose a
vector-based node signature that can be computed
straightforwardly from the adjacency matrix. Here,
every node is associated with a vector containing its
node degree and the incident edge weights. The
similarity between two nodes is computed based on
their signatures, and the graph matching problem is

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

224

reduced to a bipartite graph matching problem. A
survey can be found in [6].

3. PROBLEM STATEMENT

We first focus on undirected and unlabeled

graphs, since the most difficult part for graph
matching is the structural matching without any
assistance of labels. We will discuss how to handle
labeled graphs later in this paper. For a graph G(V,
E), we use V(G) to denote the set of nodes and
E(G) to denote the set of edges.

Definition 1: Graph/Subgraph Isomorphism.
Graph G1 is isomorphic to graph G2, if and only

if there exists a bijective function f: V(G1)→V(G2)
such that for any two nodes u1∈V(G1) and u2∈
V(G1), (u1, u2)∈E(G1) if and only if (f (u1), f
(u2))∈E(G2). G1 is subgraph isomorphic to G2, if
and only if there exists a subgraph G’ of G2 such
that G1 is isomorphic to G’.

Definition 2: Maximum Common Subgraph.
A graph G is the maximum common subgraph

(MCS) of two graphs G1 andG2, denoted as
mcs(G1, G2), if G is a common subgraph of G1 and
G2, and there is no other common subgraph G’,
such that G’ is larger than G.

The MCS of two graphs can be disconnected, and
there are two kinds of MCSs, namely maximum
common node induced subgraph (MCSv) and
maximum common edge induced subgraph
(MCSe). The former requires the MCS to be the
node induced subgraph of both G1 and G2, and G’
is larger than G iff |V(G’)| > |V(G)|. The latter
requires the MCS to be the edge induced subgraph
of both G1 and G2, and G’is larger than G iff
|E(G’)| >|E(G)|. Figure 1 shows the difference
between MCSv and MCSe. Figure 1a shows the
MCSv of G1 and G2, whereas Fig. 1b shows the
MCSe of G1 and G2.

G1 G2

G1 G2

 (A) (B)
Figure 1 (A) Mcsv And (B) Mcse

As can be seen from this example, MCSe can
possibly get more common substructure for the
given two graphs. In this paper, we adopt MCSe
since it can possibly get more common substructure
for the given two graphs, and we use MCS (mcs) to
denote MCSe. Finding the MCS of two graphs is
NP-hard.

Definition 3: Graph Matching.

Given two graphs G1 and G2, a matching M
between G1 and G2 is a set of vertex pairs M
={(u,v)|u∈V(G1), v∈V(G2)}, such that for any
two pairs (u1,v1) ∈ M and (u2,v2)∈M, u1≠u2
and v1≠v2. The optimal matching M of two graphs
is the one with the largest number of matched
edges. Finding the optimal matching M is the same
as finding the MCS.

Problem Statement: We aim to compute the
optimal matching M for two given graphs G1 and
G2. For a given matching M, we evaluate its quality
by computing score(M) as follows.

score(M) = 1, 2 , 2(1, 1) (2, 2)

2
u u vi vu v M u v M

e e
∈ ∈

×∑ ∑ (1)

where eu,v = 1 if there is an edge between u and v,
and eu,v = 0, otherwise. Obviously, finding the
optimal matching M is actually to find a matching
with the maximum score(M), and the maximum
score(M) is |E(mcs(G1, G2))|.

It is known that the MCS problem is NP-hard,
and it is also known that it is very difficult to obtain
a tight, or even useful, approximation bound,
because finding a maximum common subgraph of
two graphs is equivalent to finding a maximum
clique in their association graph, which cannot be
approximated with ratio nεfor any constant ε> 0
unless P=NP. For the quality of the MCS result, [16]
give a bound of O(n2) based on the number of
mismatched edges, where n is the size of the larger
graph. This means that it may mismatch all the
edges. [19] provide an upper bound for the size of
the MCS, which is computed by sorting the degree
sequences of two graphs separately followed by
summarizing the corresponding smaller degrees.
The bound is almost the smaller graph, without
considering any structural information of the two
graphs, which does not provide much information.
For the time complexity, in [15], it is O(n6 L),
where n is the size of the graph and L is the size of
an LP model formulated for graph matching (at
least n). It cannot handle graphs with more than 100
nodes.

4. ANCHOR-SELECTION/EXPANSION
MATCHING APPROACH

In this paper, we propose a novel approach to

solve the graph matching problem. We construct
the initial matching M by identifying anchors of
two graphs G1 and G2 followed by expanding from
the anchors. We do so based on a new similarity
between nodes in the two different graphs, which
combines both global and local information of

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

225

nodes. The framework of the algorithm is shown in
Algorithm 1.

Algorithm 1: match(G1, G2)
Require: two graphs, G1 and G2;
Ensure: a graph matching between G1 and G2;
1: A ← anchor-selection (G1, G2); {refer to

Algorithm 2}
2: M ←anchor-expansion (G1, G2, A); {refer to

Algorithm 3}
3: M ← refine(G1, G2, M);
4: return M;
In this section, we discuss how to select anchors

and how to expand from the selected anchors to
obtain the initial matching M for two graphs G1 and
G2, using a new node similarity matrix S. The node
similarity between u ∈ G1 and v ∈ G2 is very
important because it indicates how likely the two
nodes will be matched when computing the
matching M.

4.1 Global And Local Node Similarity

Let G1 and G2 be two graphs. The new node
similarity matrix S we propose takes both global
and local node similarities into consideration when
matching nodes in two graphs.

S[u,v]= Sg[u,v]× Sl [u,v] (2)
Here, S is a |V(G1)|×|V(G2)|matrix, in which the

element S[u,v]∈[0, 1] represents the similarity of
two nodes, u in G1 and v in G2. S is based on Sg
and Sl, where Sg measures global similarity
between u and v in the entire graphs G1 and G2,
and Sl measures local similarity between u and v in
their neighborhoods.

We will introduce an existing global similarity
below followed by the discussion on our new local
similarity in this section.

Global node similarity: In the literature, the
global similarity for nodes in two graphs can be the
spectral-based similarity. The representative study
is Umeyama’s work [21] which is improved by
[11]. Suppose G1 and G2 are two undirected graphs
with the same number of nodes n. The Laplacian
matrix Ln×n of graph G with n nodes is defined as L
= D− A, where A is the adjacency matrix and D is
the diagonal degree matrix. A[u1, u2]= 1 if (u1, u2)
∈ E(G), and 0 otherwise. D[u1, u1]= ∑ (u1,u2) ∈

E(G)A[u1, u2]. We denote the Laplacian matrices of
G1 and G2 as L1 and L2, respectively. Suppose the
eigenvalues of L1 and L2 are α1≥α2 ≥···

≥ α n and β 1 ≥ β 2 ≥···≥ β n,
respectively. Since L1 and L2 are symmetric and
positive-semidefinite, we have L1 = U1Λ1U1T and
L2 = U2Λ2U2T , where U1 and U2 are orthogonal
matrices, andΛ1 = diag(αi) andΛ2 = diag(βi). If

G1 and G2 are isomorphic, there exists a
permutation matrix P such that PU1Λ1U1TPT = U2
Λ2U2T . Let P = U2D’ U1T where D’ = diag(d1,...,
dn) and di ∈ {+1;−1} accounts for the sign
ambiguity in the eigende-composition. When G1
and G2 are isomorphic, the optimum permutation
matrix is P, which maximizes tr (2 1

T TP U U), where
1U and 2U are matrices that have the absolute value

of each element of U1 and U2, respectively. When
the numbers of nodes in G1 and G2 are not the
same, we only choose the largest c eigenvalues [7].
Let c = min{|V(G1)|, |V(G2)|}, and '

1U and '
2U be

the first c columns of 1U and 2U , respectively, the
global similarity matrix can be computed with Eq.
(3).

Sg = ' '
1 2

T
U U (3)

 Here, Sg[u,v] ∈ [0, 1] is the global node
similarity between the node u in V(G1) and the
node v in V(G2). Example 1 shows an example of
matching two graphs using the global node
similarity.

Example 1: Consider the two graphs in Fig. 2.
We first compute their global node similarity matrix
Sg. We construct a bipartite graph Gb with
|V(G1)|+|V(G2)| nodes, and for any u ∈ V(G1) and
v ∈ V(G2), we add an edge (u,v) ∈ E(Gb) with
weight Sg[u,v].

u1 u2

u11

u10

u9

u8

u7u6

u5
u4

u3

u16 u15

u14

u13

u12

(a)

u1 u2

u11

u10

u9

u8

u7u6

u5
u4

u3

u16 u15

u14

u13

u12

u17
(b)

Figure 2: Two Graphs. (A) Graph G1, (B) Graph G2

We compute the maximum weighted bipartite
matching of Gb and get the matching as M
={(u1,v1), (u2,v2), (u3,v7), (u4,v4), (u5,v5),
(u6,v12), (u7,v13), (u8,v8), (u9,v17), (u10,v10),

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

226

(u11,v3), (u12,v6), (u13,v14), (u14,v15), (u15,v16),
(u16,v9)}. In this way, the number of matched
edges is 10, which is far away from the optimal
solution mcs(G1, G2), 21 (bold edges in Fig. 2).
Comparing to the optimal solution, u3 is
mismatched to v7 because they have a high global
similarity, but obviously, the local structure near u3
and the local structure near v7 differ much.

Alternative global node similarity measures:
Besides the global node similarity based on eigende
composition, there are other global similarity
measures based on the node importance in the
graph in the literature, such as Katz score [9] and
random walk with restart (RWR) [3]. A Katz score
is a weighted count of the number of walks
originating (or terminating) at a given node. The
walks are weighted inversely by their length so that
long and highly indirect walks count less, while
short and direct walks count larger. The Katz score
is given by the formula r = (I − bA)−1bAu, where r
is the N × 1 column vector containing Katz score
for each node, I is the N×N identity matrix, u is a
N×1 column vector with all entries equal to 1, and b
∈ (0, 1) is the attenuation factor, which is 1/(d+1)
by default in [4],where d is the maximum degree of
the graph. The extent to which the weights attenuate
with length is controlled by b. The RWR score is
given by the formula r = (1−c)(I −cW)−1u, where W
is a transmit matrix where W(i, j) = A(i, j)∑i A(i,
j), and c ∈[0, 1] is the positive probability, which
means a surfer at a node will jump to a random
node with probability 1 − c. Under this random
walk, the importance of a node v is the expected
sum of the importance of all the nodes u that link to
v. For two nodes, u in graph G1 and v in graph G2,
they are considered highly similar if both have a
high Katz/RWR score. The similarity matrix of two
graphs becomes S’g = r1r2 T. In Sect. 8, we report
the effectiveness of these global node similarity
measures.

The global node similarity gives a node similarity
measure from the global point of view. However,
when G1 and G2 are not sufficiently similar to each
other, using global node similarity only is not
sufficient to get a good matching because the global
node similarity does not consider the local
information for nodes in two graphs. We need a
local node similarity.

Local node similarity: For any node v in graph
G and k≥ 0, we define the k-neighborhood of
v, ()kN v , as the set of nodes in V(G) such that v/ ∈

()kN v and for any u ∈ ()kN v , the shortest distance
from v to u is no more than k. The shortest distance
is defined as the number of edges in the shortest
path from v to u. The k-neighborhood subgraph of v

in G, denoted as k
vG , is defined as the induced

subgraph over ()kN v ∪{v} in G. For two nodes u
∈ V(G1) and v ∈ V(G2), we measure their local
node similarity by comparing the k-neighborhood
subgraphs of them. Suppose d(u) and d(v) are the
degrees of node u and v in G1 and G2, respectively,
and suppose d1,1, d1,2,... is the degree sequence of
node set kN (u) in k

uG sorted in non-increasing order,
and d2,1, d2,2,... is the degree sequence of node set

()kN v in k
vG sorted in non-increasing order. Let nmin

= min{| ()kN u |, | ()kN v |}.We define a
|V(G1)|×|V(G2)| local node similarity matrix Sl as
follows.

2
min(1 (,))[,]

(| () | | () |)(| () | | () |)l k k k k
u u v v

n D u vS u v
V G E G V G E G

+ +
=

+ +
 (4)

min

1, 2,1
min{ (), ()} min{ , }

[,]
2

n
i ii

d u d v d d
D u v =

+
= ∑ (5)

Here, D(u,v) consists of two parts. The first part
min{d(u), d(v)} is the ideal contribution of edges
when matching u with v, and the second part

min

1, 2,1
min{ , }n

i ii
d d

=∑ is the ideal contribution of edges
when matching nodes in ()kN u with nodes in ()kN v .
We show that Sl has the following properties.
1. 0 < Sl [u,v]≤ 1.

2.
2(| ((,)) | | ((,)) |)[,]

(| () | | () |)(| () | | () |)

k k k k
u v u v

l k k k k
u u v v

V mcs G G E mcs G GS u v
V G E G V G E G

+
=

+ +

3. If k
uG and k

vG are isomorphic, and u matches v
in the optimal matching of k

uG and k
vG , then Sl

[u,v]= 1.
4. If k

uG is subgraph isomorphic to k
vG , and u

matches v in the optimal matching of k
uG and

k
vG , we have Sl [u,v]= | () | | () |

| () | | () |

k k
u u
k k
v v

V G E G
V G E G

+
+

For (1), it is obvious that Sl [u,v] >0 holds,
because both (nmin+1+D(u,v))2>0 and
(| () | | () |)(| () | | () |)k k k k

u u v vV G E G V G E G+ + > 0. Sl [u,v]≤1
can be showed as follows. Since min{d(u), d(v)}≤
d(u) and min{d1,i , d2,i } ≤ d1,i ,

min

1,1
()

[,]
2

n
ii

d u d
D u v =

+
≤ ∑ =|E(k

uG)|. Similarly, D(u,v) ≤

|E(k
vG)|. By combining such two inequations with

the fact that nmin + 1 ≤|V(k
uG)| and nmin + 1 ≤

|V(k
vG)|,we have Sl [u,v]≤ 1. For (2), since the

node number of either k
uG or k

vG appearing inmcs
can never exceed the minimum node number of k

uG
and k

vG , |V(mcs(k
uG , k

vG))|≤n min + 1. Also, D(u,v)
is known to be an upper bound of |E(mcs(k

uG , k
vG))|,

which is proved in [17]. Thus, this inequation holds.
Here, Sl [u,v] is an upper bound of such similarity,
if we treat the right side of the equation in the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

227

property (2) as an accurate similarity of two nodes
based on their MCS. For (3), this can be obtained
based on the illustration of the first property, since
when they are isomorphism, we have nmin + 1
=|V(k

uG)|=|V(k
vG)| and D(u,v)

=
min

1,1
()

2

n
ii

d u d
=

+∑ =|E(k
uG)|, while leads to St[u,v]=

| () | | () |
| () | | () |

k k
u u
k k
v v

V G E G
V G E G

+
+ . Note that our local similarity [Eq.

(4)] is different from the vector-based node
signature [5] which deals with edge weights. For an
undirected and unweighted graph, the edge weights
for all its incident edges are 1. This means that the
node signature in [5] is merely its node degree, and
measuring the similarity of two nodes by their
degrees is not sufficient, because there might be
many pairs of nodes, which share the same degree
but are with different structures. In our local
similarity measure, we do not only consider the
degrees of two nodes but also consider their k-
neighborhoods. [15] is one specific case of our local
similarity when k = 0 for undirected and
unweighted graphs.

Example 2 Reconsider the two graphs in Fig. 2.
Let k = 2. The similarity matrix S of G1 and G2 is
shown in Fig. 3b.We construct a bipartite graph Gb
with |V(G1)|+|V(G2)| nodes, and for any u ∈
V(G1) and v ∈ V(G2), we add an edge (u,v) ∈
E(Gb) with weight S[u,v] (instead of Sg[u,v]). We
compute the maximum weighted bipartite matching
of Gb and get the matching M ={(u1,v1), (u2,v2),
(u3,v3), (u4,v4), (u5,v5), (u6,v12), (u7,v13),
(u8,v8), (u9,v17), (u10,v10), (u11,v14), (u12,v6),
(u13,v11), (u14,v15), (u15, v9), (u16,v16)}. The
number of matched edges is 13, which is better than
10 when only using the global similarity. But it is
still much less than the optimal solution, 21.

4.2 A Problematic Approach To Compute M

Using S:
 [2] computes a matching M by applying the

Hungarian algorithm to the node similarity matrix,
which can be with S we newly proposed or Sg
given in [12]. Using all the similar node pairs
computed, a matching M can be found. In order to
compute a matching, [2] constructs a bipartite graph
Gb that includes |V(G1)|+|V(G2)| nodes. For any
node u ∈ V(G1) and node v ∈ V(G2), an edge
(u,v) is added to Gb with weight S[u,v] (or Sg[u,v]).
The maximum weighted bipartite matching of Gb
leads to a matching M of graphs G1 and G2. Such
an approach has two drawbacks.

– Similarity optimality does not mean matched
edge optimality, while our aim is to maximize the
number of matched edges in two graphs. It is

possible that two nodes are very similar in terms of
S (or Sg) but the two nodes do not have many
incident edges that help to increase the number of
matched edges. As an example, suppose node u1 ∈
V(G1) and node v1 ∈ V(G2) all have degree 1, and
S[u1,v1]= 1.0, and node u2 ∈ V(G1) and node v2
∈ V(G2) all have degree 10, and S[u2,v2]= 0.9.
Suppose (u1,v1) is in conflict with (u2,v2) when
computing the maximum weighted bipartite
matching. In constructing the initial matching, the
algorithm may give up (u2,v2) because it has a
lower similarity. But obviously, giving up (u1,v1) is
a better solution because (u2,v2) can contribute a
larger number of matched edges, although u2 and
v2 have lower node similarity.

– This approach only considers the matching of
individual nodes in two graphs, and does not
consider whether the nodes around them can be
well matched when it matches two nodes. In other
words, matching u ∈ V(G1) with v ∈ V(G2) does
not consider whether the nodes around u and v can
be matched using the maximum weighted bipartite
matching. When the nodes around u and v are
mismatched, even if u and v are similar, it can
significantly affect the quality of the final matching
M.

4.3 Anchor Selection And Expansion

In our approach, we solve the two drawbacks as
follows. Instead of matching all the nodes, we first
match some important nodes as anchors. Every two
anchors matched have high similarity and large
degrees, and can contribute a large number of
matched edges. Then, we expand from the anchors
to match the other nodes using the local similarity
Sl as the measure. Thus, our solution consists of
two steps, namely anchor selection and anchor
expansion.

The anchors selected play two important roles in
matching construction. (1) The matching anchors
contribute a large number of edges to the matching
M. (2) The anchors are the references to start with
when matching the other nodes. For two nodes u ∈
V(G1) and v ∈ V(G2), we select (u,v) as matched
anchors, if they satisfy the following two
conditions.

(1) min{d(u), d(v)}≥ δ,where δ is the larger
average degree of the two graphs, that is,

δ = max 1 2

1 2

2 | () | 2 | () |,
| () | | () |

E G E G
V G V G

 × ×
 
 

.

 (2) S[u,v]≥τ , where τ is a threshold and
generally τ> 0.5, and is one sensitive threshold
that has impacts on graph matching.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

228

The algorithm for anchor selection is shown in
Algorithm 2. Given two graphs G1 and G2, it
outputs a list of anchor pairs, denoted asA. In the
algorithm,S1 and S2 denote the sets of matched
nodes in V(G1) and V(G2), respectively.

Algorithm 2 anchor-selection (G1, G2)
Require: two graphs G1 and G2;
Ensure: a list of matched anchor pairs A;
1: compute the similarity matrix S;
2: A ← ∅; S1 ← ∅; S2 ← ∅;
3: for all u ∈ V(G1) and v ∈ V(G2) in

decreasing order of their similarity S[u,v] do
4: if S[u,v]≥ τ and min{d(u), d(v)}≥ δ and u

/ ∈ S1 and v/ ∈ S2 then
5: A ← A ∪{(u,v)}; S1 ← S1 ∪{u}; S2 ← S2

∪{v};
6: return A;
Line 1 computes the similarity matrix S [Eq. (2)].

Line 3 tries to match the pairs (u,v) for all u ∈
V(G1) and v ∈ V(G2) in the decreasing order of
their similarity. In this way, the most similar pairs
will have a large chance to be matched as the
anchors. Line 4 selects the nodes that satisfy the
two conditions for anchor selection that are not
matched before. If the conditions in line 4 are all
satisfied, we add the pair (u,v) into the list A and
add the matched nodes u and v into S1 and S2,
respectively in line 5. After checking all pairs, line
6 returns A as the anchor pairs.

Example 3 Consider the two graphs in Fig. 2.
Suppose τ = 0.94, using Algorithm 2, we can get
the set of anchor pairs to be A ={(u1,v1), (u8,v8)}.
Obviously, the correct matching of the two pairs is
very important in the final matching of G1 and G2.
For the pair (u9, v17), although it satisfies the
similarity constraint, it destroys the degree
constraint. Obviously, expanding from the pair
(u9,v17) to match other pairs is a bad choice.

Theorem 1 The time complexity of Algorithm 2
is O(|V(G1)|2 · (|V(G1)|+|E(G1)|) + |V(G2)|2
·(|V(G2)|+|E(G2)|)).

Proof 1 Algorithm 2 is to select anchors.
Computing the global node similarity matrix needs
O(|V (G1)|3+|V(G2)|3) time, and computing the
local node similarity matrix needs O(|V(G1)|2
·|E(G1)|+|V(G2)|2 ·|E(G2)|) time. In lines 3-5,
sorting all pairs needs
O(|V(G1)|·|V(G2)|·(log(|V(G1)|) + log(|V(G2)|)))
time. Hence, the overall time complexity of
Algorithm 2 is O(|V(G1)|2 · (|V(G1)|+|E(G1)|)
+|V(G2)|2 · (|V(G2)|+|E(G2)|)).

We illustrate the anchor expansion algorithm
(Algorithm 3) to obtain a matching M. Let A be the
anchor pairs (u,v) selected already. Initially, M = A.

Let N(u) and N(v) denote the immediate neighbors
of u and v in graphs G1 and G2, respectively. For
every matched pair (u,v) in the initial M, we put all
(N(u)× N(v)) pairs in a queue Q, where Q is the set
of candidate matching pairs sorted in decreasing
order of their local similarity. In an iterative
manner, we remove the pair (u,v) with the largest
local similarity Sl [u,v] [Eq. (4)] from Q. If both u
and v have not been matched before, we add (u,v)
to M and put their all (N(u) × N(v)) immediate
neighbor pairs into Q for further consideration. We
repeat it until Q =∅.

Algorithm 3 anchor-expansion (G1, G2, A)
Require: two graphs, G1 and G2, and the anchor

pairs A;
Ensure: a graph matching M;
1: M ← A; Q ← ∅; S1 ← ∅; S2 ← ∅;
2: for all (u,v) ∈ A do
3: S1 ← S1 ∪{u}; S2 ← S2 ∪{v}; Q ← Q ∪

(N(u) × N(v));
4: while Q≠∅ do
5: remove (u,v) from Q with the largest similarity

Sl [u,v];
6: if u ∉ S1 and v∉ S2 then
7: M ← M ∪{(u,v)}; S1 ← S1 ∪{u}; S2 ← S2

∪{v}; Q ←Q ∪ (N(u) × N(v));
8: return M;

The example of anchor expansion is given below.
Example 4 Given the two graphs in Fig. 2.After

we get the set of anchor pairs A ={(u1,v1),
(u8,v8)}. Using Algorithm 3, we can construct our
matching M ={(u1,v1), (u2,v7), (u3,v3), (u4,v4),
(u5,v5), (u6,v6), (u7,v2), (u8,v8), (u9,v9),
(u10,v10), (u11,v13), (u12,v12), (u13,v11),
(u14,v14), (u15,v15), (u16,v16)}. The number of
matched edges is 18.

Theorem 2 The time complexity of Algorithm 3
is O(|V(G1)|·|V(G2)|· min{|V(G1)|, |V(G2)|}).

Proof 2 Algorithm 3 is to expand from the
anchors selected. The dominant part of the time
complexity is line 5 and line 7. For line 5, there are
at most |V(G1)|·|V(G2)| pairs, and for each pair, it
needs O(|V(G1)|·|V(G2)|) to obtain the one with the
largest similarity. For line 7, there are at most
min{|V(G1)|, |V(G2)|} matched pairs, and for each
pair, it needs O(|V(G1)|·|V(G2)|) to compute the
cartesian product. Therefore, the overall time
complexity is O(|V(G1)|·|V(G2)|· min{|V(G1)|,
|V(G2)|}).

4.4 Discussion On Τ For Anchor Selection

In the matching process, the threshold τ used in
anchor-selection (Algorithm 2) is an important

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

229

factor for the matching quality. It should be neither
too large nor too small. When τ is too large, very
few nodes will be selected as anchors, which lead to
more nodes to be mismatched in anchor-expansion.
The reason is that anchor-expansion is designed as
a greedy algorithm and can only achieve local
optimum. For a node in a graph, the more steps it
needs to be expanded from an anchor, the higher
the probability to be mismatched. When τ is too
small, a large number of anchor pairs may be
selected, and many mismatched anchors are thus
involved. Expanding from these mismatched
anchors will hardly lead to a good matching result.
We explain it using an example.

Example 5 Reconsider Example 3 in Sect. 5.
Suppose we set τ to a very small value, that is, τ =
0.78, for graphs in Fig. 2. A large set of anchor
pairs is obtained: A = {(u1,v1), (u4,v4), (u5,v5),
(u6,v12), (u7,v13), (u8,v8), (u10,v10), (u12,v6)}. If
we then run anchor-expansion based on this A, we
obtain the matching result M ={(u1,v1), (u2,v2),
(u3,v3), (u4,v4), (u5,v5), (u7,v13), (u8,v8),
(u9,v17), (u10,v10), (u12,v6), (u13,v11), (u14,
v14), (u15,v16), (u16,v15)}. The number of
matched edges is 16, which is not as good as the
matching result in Example 4 (The number of
matched edges is 18). This is because a small τ
makes several mismatched anchor pairs {(u6,v12),
(u7,v13), (u12,v6)} included in A. Expanding from
such mismatched anchor pairs will make the
matching result ineffective. On the other hand,
suppose we set τ to a very high value, that is, τ =
0.98. No anchor pair will be selected. Under such
circumstances, one node will be randomly selected
from each graph to form an anchor pair, and
expanding from such a random anchor pair is
unlikely to lead to a good matching.

It is difficult to determine an appropriate τ for
graph matching, because τ is not related to graph
sizes or degree distributions. One attempt we made
is to collect some statistics from the similarity
matrix S to see whether there is certain relationship
between S and τ . First, we set τ to be a small value
0.5 and select an initial list of anchor pairs AI using
Algorithm 2. Then, we divide the interval [0.5, 1] to
disjoint small intervals (bins) with equal length l ,
and count the number of anchor pairs (u,v) in a bin
if S[u,v] is in its interval. We take τ to be used as
the middle value of the bin, which has the smallest
number of anchor pairs. This means that we choose
a significant gap as threshold τ to be used.
However, in our extensive experimental studies, the
matching results obtained by using such a τ are not
necessarily guaranteed to be good. In order to
ensure a good initial graph matching, we select the

best τ by exploring all τ with every step of l in [0.5,
1], for example, 0.5, 0.5 + l, 0.5 + 2l,..., and
choosing the τ value that results in the best graph
matching M (the output of anchor-expansion). Such
process is shown in Algorithm 4.With Algorithm 4,
Algorithm 1 can be modified by replacing line (1–
2) with construct-opt(G1, G2). In order to further
reduce the cost, as a heuristics, we adopt a hill
climbing method. We set the default value of τ =
0.9, and set the step length l to 0.02, and choose the
direction by comparing the matching result for τ =
0.9−l and τ = 0.9+l to start climbing. The climbing
will stop when the current value is less than the best
value we have obtained or the value of τ is out of
range [0.5, 1]. Such a hill climbing method stops
within several steps and achieves good results, as
can be seen in our testing.

Algorithm 4 construct-opt (G1, G2)
Require: two graphs, G1 and G2;
Ensure: a graph matching between G1 and G2;
1: τ ← 0.5; Mopt ← ∅;
2: AI ←anchor-selection (G1, G2); {Algorithm

2}
3: for all τi = 0.5 + i × l such that τi ∈[0.5,

1] do
4: A ←{(u,v)|(u,v) ∈ AI, S[u,v]≥ τi };
5: M ← anchor-expansion (G1, G2,A);

{Algorithm 3}
6: if score(M)> score(Mopt) then
7: Mopt ← M;
8: return Mopt ;

Theorem 3 The time complexity of Algorithm 4

is O(|V(G1)|2 · (|V(G1)|+|E(G1)|) +|V(G2)|2 ·
(|V(G2)|+|E(G2)|)).

Proof 3 The dominant part of Algorithm 4 is line
2 and lines 3–7. For line 2, the time complexity of
anchor-selection is shown to be O(|V
(G1)|2·(|V(G1)|+|E(G1)|)+ |V(G2)|2 ·(|V(G2)|+
|E(G2)|)) in Theorem1. For lines 3–7, since the time
complexity of anchor-expansion is shown to be O(
|V(G1)|·|V(G2)|· min {|V(G1)|, |V(G2)|}) in
Theorem 2, the total complexity of lines 3–7 is
O(c·|V(G1)|·|V(G2)|· min {|V(G1)|,|V(G2)|}) where
c is the steps that we need in the loop. Usually, c =
0.5/l is a small constant for a given l . So the total
complexity of Algorithm 4 is O(|V(G1)|2 ·
(|V(G1)|+|E(G1)|) + |V(G2)|2 ·(|V(G2)|+|E(G2)|)).

5 CONCLUSION AND FUTURE WORK

The time complexity of Algorithm 4 remains

unchanged, compared to Algorithm 2 and
Algorithm 3, because it only repeats anchor-
expansion constant times. It is worth noting that

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

230

anchor-selection is the dominant factor and anchor-
expansion can be done very quickly in practice
compared to anchor-selection. Some results are
shown that the time of anchor-expansion means the
total expansion time including the τ selection.

REFERENCES:

[1] T. Plantenga, “Inexact subgraph isomorphism in
MapReduce”, Journal of Parallel and
Distributed Computing, Vol. 73, No. 2, 2013,
pp. 164-175.

[2] F. Kuhn, and M. Mastrolilli, “Vertex cover in
graphs with locally few colors”, Information
and Computation, Vol. 222, No. 0, 2013, pp.
265-277.

[3] A. Egozi, Y. Keller, and H. Guterman, “A
Probabilistic Approach to Spectral Graph
Matching”, Pattern Analysis and Machine
Intelligence, IEEE Transactions on, Vol. 35,
No. 1, 2013, pp. 18-27.

[4] T. S. Caetano, J. J. McAuley, C. Li et al.,
“Learning Graph Matching”, Pattern Analysis
and Machine Intelligence, IEEE Transactions
on, Vol. 31, No. 6, 2009, pp. 1048-1058

[5] L. Zhi-Yong, Q. Hong, and X. Lei, “An
Extended Path Following Algorithm for Graph-
Matching Problem”, Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
Vol. 34, No. 7, 2012, pp. 1451-1456.

[6] H. Xiong, D. Xiong, Q. Zhu et al., “A
Structured Learning-Based Graph Matching
Method For Tracking Dynamic Multiple
Objects”, Circuits and Systems for Video
Technology, IEEE Transactions on, Vol. PP,
No. 99, 2012, pp. 1-1.

[7] P. Doshi, R. Kolli, and C. Thomas, “Inexact
matching of ontology graphs using expectation-
maximization”, Web Semantics: Science,
Services and Agents on the World Wide Web,
Vol. 7, No. 2, 2009, pp. 90-106.

[8] T. Ersal, H. K. Fathy, and J. L. Stein,
“Structural simplification of modular bond-
graph models based on junction inactivity”,
Simulation Modelling Practice and Theory, Vol.
17, No. 1, 2009, pp. 175-196.

[9] Z. Nutov, “Survivable network activation
problems”, Theoretical Computer Science, No.
0, 2012.

[10] S. Kpodjedo, P. Galinier, and G. Antoniol,
“Using local similarity measures to efficiently
address approximate graph matching”, Discrete
Applied Mathematics, No. 0, 2012.

[11] L. Sun, and T. Chen, “Comparing the Zagreb
indices for graphs with small difference
between the maximum and minimum degrees”,
Discrete Applied Mathematics, Vol. 157, No. 7,
2009, pp. 1650-1654.

[12] J.-K. Hao, and Q. Wu, “ Improving the
extraction and expansion method for large
graph coloring ” , Discrete Applied
Mathematics, Vol. 160, No. 16, 2012, pp. 2397-
2407.

[13] A. Bhattacharjee, and H. Jamil, “WSM: a novel
algorithm for subgraph matching in large
weighted graphs”, Journal of Intelligent
Information Systems, Vol. 38, No. 3, 2012, pp.
767-784.

[14] M. Zaslavskiy, F. Bach, and J. P. Vert, “A Path
Following Algorithm for the Graph Matching
Problem”, Pattern Analysis and Machine
Intelligence, IEEE Transactions on, Vol. 31,
No. 12, 2009, pp. 2227-2242.

[15] L. Zhu, W. Keong Ng, and J. Cheng, “Structure
and attribute index for approximate graph
matching in large graphs”, Information Systems,
Vol. 36, No. 6, 2011, pp. 958-972.

[16] T. Yamada, and T. Shoudai, “Efficient Pattern
Matching on Graph Patterns of Bounded
Treewidth”, Electronic Notes in Discrete
Mathematics, Vol. 37, No. 0, 2011, pp. 117-
122.

[17] J. Lebrun, P.-H. Gosselin, and S. Philipp-
Foliguet, “Inexact graph matching based on
kernels for object retrieval in image databases”,
Image and Vision Computing, Vol. 29, No. 11,
2011, pp. 716-729.

[18] C. Jiefeng, J. X. Yu, and P. S. Yu, “Graph
Pattern Matching: A Join/Semijoin Approach”,
Knowledge and Data Engineering, IEEE
Transactions on, Vol. 23, No. 7, 2011, pp.
1006-1021.

[19] R. Erman, M. Krnc et al., “Improved induced
matchings in sparse graphs”, Discrete Applied
Mathematics, Vol. 158, No. 18, 2011, pp. 1994-
2003.

[20] D. Emms, R. C. Wilson, and E. R. Hancock,
"Graph matching using the interference of
discrete-time quantum walks," 7th IAPR-TC15
Workshop on Graph-based Representations
(GbR 2007), 2009, pp. 934-949.

[21] S. Kpodjedo, P. Galinier, and G. Antoniol, “On
the use of similarity metrics for approximate
graph matching”, Electronic Notes in Discrete
Mathematics, Vol. 36, No. 0, 2010, pp. 687-
694.

http://www.jatit.org/

	1,2ANLIANG NING, 1XIAOJING LI, 1CHUNXIAN WANG

