
Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

138

GENERAL AND SPECIAL-PURPOSE
METHODOLOGIES FOR AGENT ORIENTED

SOFTWARE ENGINEERING

1MOHAMMAD SHKOUKANI, 2RAWAN ABU LAIL
1Asstt Prof., Department of Computer Information Systems, Applied Science University, Jordan

2Asstt. Prof., Department of Computer Information Systems, Philadelphia University, Jordan

E-mail: 1m.shkokani@asu.edu.jo, 2r_abulail@philadelphia.edu.jo

ABSTRACT

This paper provides a summary of software engineering process and its importance in open system
industry. It describes the agent oriented software engineering development lifecycle. It also focuses on
orientation of multi agent systems and on some representative agent oriented software engineering
methodologies such as Gaia, ROADMAP, Tropos, and MaSE which are general purpose methodologies.
Then it describes some special purpose methodologies such as ADELFE and SADDE. It also presents the
phases for each methodology with its strengths and weaknesses. Finally it proposes the development of a
new model that combines the features of two of the existing methodologies which are Gaia and Tropos by
concentrating on their strengths and avoiding their weaknesses.

Keywords: Agent Oriented Software Engineering Methodologies, Multi Agent Systems, Software
Engineering Process.

1. INTRODUCTION

 There are many differences between software
development and product development such as
software produces an intangible product but
product development and other engineering
disciplines produce tangible products. Software
engineering addresses all aspects of software
production, it concerned with all phases of System
Development Life Cycle (SDLC) from system
requirement elicitation through maintenance, so it
can be defined as the application of a systematic,
disciplined, quantifiable approach to the
development, operation, and maintenance of
software [22]. It depends on many processes
including stakeholders with their different point of
view, tools, and methods that are used to produce
an automated solution [9].

When a large set of agents interact in a
heterogeneous environment, many problems will
appear such as management and coordination will
be more difficult, probability of exceptional
situations will increase, increases security holes,
and unexpected global effects. So a successful open
agent-based application will require software
engineering methodologies [3].

Many methods and approaches have been
suggested for developing agent-based systems, but
none of these methods have been accepted as a
standard, since there is a gap between agent
oriented methods and the modeling needs of agent-
based systems. Another problem of agent oriented
software engineering methodologies that there is no
agreement on how to identify roles in the analysis
phase and how to identifies agent types in the
design phase [1], [20].

2. MOTIVATION

Software development can be considered as a
smart activity which needs high skills of planning,
analysis, design, coding, testing and evaluation.
These activities integrate different tools, methods,
approaches, and methodologies; the coordination
between these activities requires knowledge based
reasoning, diagnosing, and adopting which is
supported by the agent paradigm. Software is so
important and it is present in every aspect in our
life, pushing us to the world of distributed, context-
aware computing systems. Multi-agent systems
(MASs) are primary technology to model and

http://www.jatit.org/
mailto:m.shkokani@asu.edu.jo
mailto:r_abulail@philadelphia.edu.jo

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

139

develop context-aware computing systems, because
MAS consists of large number of cooperating
entities that consider their context in performing
their tasks. So context can be defined as any
information about the objects, circumstances, or
conditions by which an agent is surrounded that is
related to the interaction between computer
environment and agent. Furthermore software will
become more intelligent and adaptive in the future
and should have the ability to integrate with smart
applications that have not been designed to work
together [10].

The traditional software engineering approaches
like structured approach or even object oriented
approach offer limited support for the development
of intelligent systems, electronic commerce, and
enterprise resource planning. These new systems, in
turn, call for new concepts, tools and techniques for
engineering and managing software, for these
reasons agent oriented software engineering
development is gaining popularity over traditional
development techniques [1], [2], [4].

3. A SURVEY ON AGENT ORIENTED
SOFTWARE ENGINEERING

Agents and multi-agent system (MAS) have

emerged as a powerful technology to face the
complexity of new software systems. AOSE gives to
the developer all the flexibility and the expressive
power of agents and it helps with the software
lifecycle management in an attempt to improve the
quality of the resultant software products [10].
Agent-based computing promotes designing and
developing applications in terms of autonomous
software agents, the main enhancement that results
from autonomy is that the agents are become
proactive rather than reactive. Agents can achieve
their objectives more flexible by interacting with
each other in terms of high-levels protocols and
languages. Agent concepts are natural to describe
intelligent adaptive systems which are able to seek
for optimal solutions for their design objectives;
they are simply computer systems that are capable of
autonomous in some environment in order to meet
their design objectives [4], [8], [11].

 An agent also called an intelligent agent, the
words intelligent and agent describe some of the
agent characteristic such as intelligent that is used
because the software can have certain types of
intelligent behavior which is the selection of actions
based on knowledge, and the term agent tells the
purpose of the software [6], [7]. The Agent oriented

approach promises the ability to develop flexible
systems with complex and sophisticated behavior by
combining highly modular components [2], [5], [7].

3.1 General Purpose Agent Oriented Software
Engineering Methodologies
There are many agent-oriented software

methodologies that have been proposed such as
GAIA, ROADMAP, MaSE and TROPOS. Gaia
was the first complete methodology proposed for
developing MAS from analysis to design. Gaia
has two versions; the first version of it
emphasizes the necessity to identify proper agent
oriented abstractions, also it includes the analysis
and design and excludes both requirement
specification and implementation, it is applied
after the requirements are collected and
identified. In general, Gaia models are aimed at
describing both the macro and the micro aspects
of a MAS, as shown in figure 1 the analysis
phase includes the role model and interaction
model which are then used as input to the design
phase which involves three type of models; agent
model, service model, and an acquaintance model
which are defined to compose a complete design
of MAS [14].

 Fig. 1. The Gaia models.

The first version of Gaia has many limitations
such as, it is appropriate only for the analysis and
design of closed MAS but unfortunately agents in
many MAS can belong to different stakeholders so
it is unsuitable for open agent systems, another
limitation is the notations that are used by Gaia in
MAS which are not suitable to the real word
systems especially the complex ones and do not
even follow the standards that are accepted by
software engineers [10], [14], [15].

The second version of Gaia is the official
extension of Gaia which had been proposed to
overcome the limitations which were exist in the
first version of Gaia, thus Gaia version two is more
oriented to design and develop complex systems in
open environments [14], [15].

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

140

The ROADMAP methodology is another
extension to Gaia but it should be noted that
ROADMAP was proposed before Gaia version two,
so ROADMAP was an attempt to extend the first
version of Gaia as a way to address its limitations
by adding the followings: a dynamic role hierarchy
in order to deal with open agent systems, additional
models to describe the environment more explicitly,
and the agent knowledge which so important in
intelligent systems and that is not used in both
versions of Gaia. Another advantage of
ROADMAP over Gaia is the using of standard
notations.

In ROADMAP, the system is viewed as an
organization of agents consisting of role hierarchy
which is the specification of the system and agent
hierarchy which is the implementation of the
system. As shown in figure 2 the environmental
model and the knowledge model contain reusable
high level domain information. The use case model,
interaction model, role model, agent model, and
acquaintance model application specific. The
protocol model and service models describes
reusable low level software components [14], [15].

 Fig. 2. Structure of ROADMAP models.

Tropos is a novel agent-oriented software
development methodology that is based on two key
features: First the notions of agent and related
mentalistic notions are used in all software
development phases from the early analysis phase
to the implementation phase. Second it emphasizes
on the phase that precedes the requirement
specification that is early requirement analysis [17],
[18], [19]. Tropos’s software development life
cycle consists of four phases: first phase is early
requirement analysis which is concerned with
understanding the problem, in this phase the
intension of stakeholders are focused and modeled
as goals, through the analysis the functional and
non-functional requirements can be derived from
the these goals [10], [24].

Second phase is late requirement analysis
where the final system is described within its
operational environment, so all functional and non-

functional requirements are described. Third phase
is architectural design where the final system’s
architecture is defined and describes how system’s
components interact and work together. Fourth
phase is detailed design where the components’
behavior is defined; it determines how the goals
assigned to each actor. Although Tropos has many
advantages over Gaia especially in its first two
phases which are emphasizing on requirements, it
has some limitations such as it still lacks tools that
supported transition between four phases, another
limitation is that it has not been used for a
development of full-fledged MAS [25], [26], [27].

MaSE was originally designed to develop
general-purpose MAS; it is a full life cycle
methodology for analysis, design, and development.
MaSE uses a number of models that is derived from
UML models such as use case diagrams, sequence
diagrams, and class diagrams. MaSE methodology is
a specialization of many software engineering
methodologies [21]. MaSE methodology consists of
two main phases each one has many steps. The
analysis phase provides a set of tasks and roles,
which shows how the system meets its overall goals.
The analysis phase consists of three steps; first step
is capturing goals whose purpose is the
transformation of system specification into set of
structured system goals. Second step is applying use
cases whose purpose is translating goals into tasks
and roles, these use case are derived from system
requirement, after that the use cases converted into
sequence diagram. Third step is Refining rule whose
purpose is to transform sequence diagrams into roles
and their tasks.

The second phase of MaSE methodology is
design phase which consists of four steps. First step
creating agent classes, classes are created from roles
that are identified in the analysis phase and identify
conversation. Second step is constructing
conversation, in the previous step the designer just
identified the conversation but in this step the goal is
define the detail of those conversations. Third step is
assembling agent classes, which is defined internal
agent architectures. Fourth step is system, in this
step the final system is identified by using
deployment diagrams [13], [16]. MaSE provides
many advantages for building MAS such as
providing a high level and top-down approach in
many cooperative robot applications, one strength of
MaSE is the ability to track changes during the
whole process so every object created during
analysis and design phase can be traced forward or
backward [20], [21].

3.2 Special Purpose Agent Oriented Software

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

141

Engineering Methodologies
Unlike general purpose methodology that is

applicable to a wide range of MAS, a special
purpose methodology is a methodology which is
dedicated to a certain field of applications such as
web based applications, telecommunication
applications, and electronic business applications.
Applications belonging to a same field share the
same features and characteristics which are taken
into account in the methodology and consequently
are predominant to choose the methodology. A
special purpose methodology improves the software
development life cycle by facilitating developers’
work and shortens time of development. Many
differences could be identified between general
purpose and special purpose methodologies but the
main differences can be noticed in the last phases
such as design, implementation, and deployment
[10].

There are many special purpose methodologies;
the first one is ADELFE which is dedicated to
software that is characterized by system’s need to
environment adaptation and openness and the need
of the system adaptation to an environment. It
guarantees that the applications are developed
according to the Adaptive Multi Agent Systems
(AMAS) theory. The AMAS theory provides a
solution to sophisticated systems which cannot be
solved by using traditional algorithms, since these
systems are open and complex [28].

The ADELFE methodology consists of six
phases. First phase is preliminary requirements
whose purpose is to define the proposed system; it
concerns the system and its environment that will be
deployed in. It also defines the functional and non-
functional requirements. Second phase is final
requirements whose aim is to transform
requirements into a use case diagram and model
system’s environment. Third phase is analysis; this
phase has to develop an understanding of the
proposed system, its components’ structure, and to
know if AMAS theory is required or not. This phase
includes the following steps: domain analysis,
adequacy of the AMAS theory, agent identification,
and adequacy of the AMAS theory at the local level.
Fourth phase is design which aims to develop
models for non-functional requirements and the
solution domain, this phase includes two steps which
are: study of interaction languages and agent design.
Fifth stage is implementation, and the final phase
will be the test [23], [28]. One of the advantages of
ADELFE is providing an interactive tool that helps
designer when following the process established in
the method which does not exist in classical object
oriented or in agent oriented methods [10].

The second special purpose methodology is
called Social Agents Design Driven by Equations
(SADDE) this methodology based on three main
factors. First, a certain approach to the design of
MAS by using Equation Based Models (EBM)
where equations model all the behavior of agent
society abstracting behavior from interaction
between individual agents. Second, use electronic
institutions as a way to constraint the interactions
among individual agents in order to engineer the
emergence. Third, using evolutionary computation
techniques to find out what agent structure produces
agent behavior that is specified in EBM. Based on
these main factors the SADDE methodology had
been proposed. SADDE methodology consists of
four phases. First phase is EBM, in this phase a set
of equation must be identified related to the agents
in order to identify and model desired global
properties of the MAS, this phase includes social
interaction analysis which concerns with agent’s sort
such as what sort of interactions the agent must
have, what sort of transactions they will have.
Second phase is Electronic Institution Model (EIM),
which aims to restrict interactions between agents, in
this phase an individual behavioral analysis which is
semi-automatic is used to determine if all aspects of
agent’s behavior are determined or there are some
aspects which are not completely determined. Third
phase is Agent Base Model (ABM) which aims to
decide what the most appropriate decision models to
use are. This phase includes experiments design
where the experiments should be set to explore all
possibilities and to see if the EBM is making the
right prognosis or not. Fourth phase is Multi-agent
system which is the final phase in SADDE
methodology; it focuses on design of experiment for
interaction among several agents. It includes
experiment analysis (ABM redesign) that compares
the predicted values of the global variables by EBM
and the actual values of agent variables and their
averages [10], [12].

4. THE PROPOSED MODEL

 One of the problems of using AOSE is a

formal identification and characterization of agent
roles in the analysis phase and a formal
determination of the agent type in the design phase.
In our work we will combine two of the existing
AOSE methodologies, which are Gaia and Tropos,
by concentrating on their strengths and avoiding
their weaknesses, for developing a new model
helping in solving the above problems. In our
proposed model we will combine the early

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

142

requirement phase from the Tropos methodology
with the analysis phase in the Gaia methodology.

In our proposed model we will use the i*
notations that is used in Tropos methodology to
analyze the requirements to find the functional and
non-functional requirements as the first step in the
Gaia methodology.
In i* notations actors are represented as circles;
dependums – goals, softgoals, tasks and recourses –
are respectively represented as ovals, clouds,
hexagons and rectangles ; and dependencies have
the form depender dependumdependee [25],
[26]. We can summarize the i* notations as shown
in figure 3.

Fig. 3. I*Notation

Finally in the proposed model as shown in
figure 4 we will use the strategic dependency model
from tropos as the resource for the requirement
phase in Gaia as follows :
• Resource dependency permission
• Softgoals and goals dependencies

responsibilities
• Task dependencies Protocol
• There is no task dependency activity

Fig. 4. The Proposed Model

5. CONCLUSION

Software development for enterprise systems

has been very difficult because computing
architecture have gone from centralized to
distributed to fully open especially with the
expansion of e-business, thus traditional software
development methodologies are not suitable for
such these systems.

So this paper has presented the importance of
multi-agent systems and has described the main
general purpose agent oriented software
engineering methodologies, the paper has
summarized the characteristics of original version
of the Gaia methodology and has presented it
extensions which are ROADMAP and Gaia version
two that have been proposed in order to overcome
its limitations. An overview has been presented for
both Tropos and MaSE methodologies.
A general purpose methodology applicable to a
wide range of MAS however sometimes there is
many applications that needs special purpose
methodology, so some special purpose
methodologies for agent oriented software
engineering has been discussed such as ADELFE
which is based on rational unified process and uses
unified modeling language notations, another
special purpose methodology was SADDE which is
dedicated to electronic institutions applications.
In conclusion, each methodology has its own
advantages and limitations, so it could be suitable
and very appropriate for one application but not for
all applications.

Finally a new model has been proposed that
combines the features of two of the existing
methodologies which are Gaia and Tropos by
concentrating on their strengths and avoiding their
weaknesses, helping to formally identify and
characterize roles in the analysis phase and
determination of agent types which are recognized
as open problems in actual active researches.

In the future work authors will make simulation
for the proposed model to proof its strength over the
existing methodologies.

6. ACKNOWLEDGMENTS

The authors are grateful to the Applied Science
Private University, Amman, Jordan, for the
financial support granted to cover the publication
fee of this research article.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

143

REFERENCES:

[1] A. Sturm, D. Dori, and O. Shehory,” Single-

model method for specifying multi-agent
systems”, ACM Press, 2003, pp. 121-128.

[2] A. Garcia, R. Choren, C. Lucena, A.
Romanovsky, H. Giese, D. Weyns, T. Holvoet,
and P. Giorgini, , “Software Engineering for
Large-Scale Multi-Agent Systems”, workshop
report, ACM SIGSOFT Software Engineering
Notes, vol. 30, issue 4, Jul. 2005, pp. 1-8.

[3] R. Choren, A. Garcia, C.s Lucena, M. Griss, D.
Kung, N.y Minsky, and A. Romanovsky,
“Software Engineering for Large-Scale Multi-
agent Systems” SELMAS, ACM Press ,
International Conference on Software
Engineering Proceedings of the 26th
International Conference on Software
Engineering, 2004, pp 752-753.

[4] L. Sterling, and T. Juan ,”The software
engineering of agent-based intelligent adaptive
systems”, ACM Press , International
Conference on Software Engineering
Proceedings of the 27th international
conference on Software engineering, 2005, pp.
704-705.

[5] P. Massonet, Y. Deville, and C. Nève, “AOSE
methodology to agent implementation”, ACM
Press , International Conference on
Autonomous Agents Proceedings of the first
international joint conference on Autonomous
agents and multiagent systems: part 1, 2002,
pp. 27-34.

[6] G. Engels, W. Schäfer, R.t Balzer, and V.
Gruhn, “Process-centered software engineering
environments: academic and industrial
perspectives”, ACM Press , International
Conference on Software Engineering
Proceedings of the 23rd International
Conference on Software Engineering, 2001,
pp. 671-673.

 [7] A. Tvei., “A survey of agent-oriented Software
Engineering”, www.csgsc.org, 2001

 [8] H. Knublauch, “Extreme programming of
multi-agent systems”, ACM Press ,
International Conference on Autonomous
Agents Proceedings of the first international
joint conference on Autonomous agents and
multiagent systems: part 2, 2002, pp. 704-711.

 [9] C. Toffolon, and S. Dakhli, “A framework for
studying the coordination process in software
engineering”, ACM Press, Symposium on
Applied Computing Proceedings of the 2000
ACM symposium on Applied computing – Vol.
2, 2000, pp. 851-857.

 [10] F. Bergenti, M. Gleizes, and F. Zambonelli,
“Methodologies and software engineering for
agent system”, Kluwer Academic publishers,
2004.

[11] M. Wooldridg, and N. Jennings, “Intelligent
Agents: Theory and Practice”,
www.citeseer.ist.psu.edu, 1995

[12] C. Sierra, J. Sabater, J. Agustí, and P. Garcia,
“Integrating evolutionary computing and the
SADDE methodology”, ACM Proceedings of
the second international joint conference on
Autonomous agents and multiagent systems
2003, pp. 1116 – 1119.

[13] E.Villaplana, “A proposal for an
organizational MAS methodology”, ACM
Press , International Conference on
Autonomous Agents Proceedings of the fourth
international joint conference on Autonomous
agents and multiagent systems, 2005, pp.
1370-1370.

 [14]T. Juan, A. Pearce, and L. Sterling,
“ROADMAP: extending the Gaia methodology
for complex open systems”, ACM Press,
International Conference on Autonomous
Agents Proceedings of the first international
joint conference on Autonomous agents and
multiagent systems: part 1, 2002, pp. 3-10.

 [15] T. Juan, L. Sterling, M. Martelli, and V.
Mascardi, “Customizing AOSE
methodologies by reusing AOSE features”,
ACM Press , International Conference on
Autonomous Agents Proceedings of the
second international joint conference on
Autonomous agents and multiagent systems,
2003, pp. 113-120.

[16] P. Ranjan, and A. Misra, “A hybrid model for
agent based system requirements analysis”,
ACM Press, ACM SIGSOFT Software
Engineering Notes, vol. 31, issue 3, May 2006,
pp. 1-7.

[17] F. Giunchiglia, J. Mylopoulos, and A. Perini,
“The tropos software development
methodology: processes, models and
diagrams”, ACM Press, International
Conference on Autonomous Agents
Proceedings of the first international joint
conference on Autonomous agents and
multiagent systems: part 1, 2002, pp. 35-36.

 [18] A. Perini, A. Susi, and F. Giunchiglia,
“Coordination specification in multi-agent
systems: from requirements to architecture
with the Tropos methodology”, ACM Press ,
ACM International Conference Proceeding
Series; Vol. 27 Proceedings of the 14th
international conference on Software

http://www.jatit.org/
http://portal.acm.org/results.cfm?query=author%3AP70090&querydisp=author%3ADov%20Dori&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP212200&querydisp=author%3AOnn%20Shehory&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP489796&querydisp=author%3ARicardo%20Choren&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP394666&querydisp=author%3ACarlos%20Lucena&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP14198&querydisp=author%3AAlexander%20Romanovsky&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP14198&querydisp=author%3AAlexander%20Romanovsky&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP394692&querydisp=author%3AHolger%20Giese&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP451720&querydisp=author%3ADanny%20Weyns&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP283543&querydisp=author%3ATom%20Holvoet&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP219432&querydisp=author%3APaolo%20Giorgini&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP489796&querydisp=author%3ARicardo%20Choren&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP394666&querydisp=author%3ACarlos%20Lucena&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP192212&querydisp=author%3AMartin%20Griss&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP62472&querydisp=author%3ADavid%20Kung&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP62472&querydisp=author%3ADavid%20Kung&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP206590&querydisp=author%3ANaftaly%20Minsky&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP14198&querydisp=author%3AAlexander%20Romanovsky&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP361750&querydisp=author%3AThomas%20Juan&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP244075&querydisp=author%3ARobert%20Balzer&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP292220&querydisp=author%3AVolker%20Gruhn&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP292220&querydisp=author%3AVolker%20Gruhn&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://www.csgsc.org/
http://portal.acm.org/results.cfm?query=author%3AP361830&querydisp=author%3AHolger%20Knublauch&coll=ACM&dl=ACM&CFID=1858370&CFTOKEN=56312081
http://portal.acm.org/results.cfm?query=author%3AP258700&querydisp=author%3ASalem%20Dakhli&coll=ACM&dl=ACM&CFID=3009816&CFTOKEN=12514583
http://www.citeseer.ist.psu.edu/
http://portal.acm.org/citation.cfm?id=860575.860823&coll=ACM&dl=ACM&CFID=56913855&CFTOKEN=83197898
http://portal.acm.org/citation.cfm?id=860575.860823&coll=ACM&dl=ACM&CFID=56913855&CFTOKEN=83197898

Journal of Theoretical and Applied Information Technology
 10th February 2013. Vol. 48 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

144

engineering and knowledge engineering,
20002, pp. 51-54.

 [19] P. Bresciani, A. Perini, P. Giorgini, F.
Giunchiglia, and J. Mylopoulos, “A knowledge
level software engineering methodology for
agent oriented programming”, ACM Press ,
International Conference on Autonomous
Agents Proceedings of the fifth international
conference on Autonomous agents, 2001, pp.
648-655.

 [20] M. Dastani, J. Hulstijn, F. Dignum, J. Jules,
and C. Meyer, “Issues in Multiagent System
Development”, ACM Press , International
Conference on Autonomous Agents
Proceedings of the Third International Joint
Conference on Autonomous Agents and
Multiagent Systems – Vol. 2, 2004, pp. 922,
929.

 [21] S. DeLoach, “Multiagent systems engineering
of organization-based multiagent systems”,
ACM Press , International Conference on
Software Engineering Proceedings of the
fourth international workshop on Software
engineering for large-scale multi-agent
systems, 2005, pp. 1-7.

[22] B. Bracken, “Progressing from student to
professional: the importance and challenges of
teaching software engineering”, Journal of
Computing Sciences in Colleges, ACM, vol. 19,
issue 2, Dec. 2003, pp. 358-368.

 [23] D. Capera, G. Picard, C. Bernon, and M.
Gleizes, “Applying ADELFE Methodology to
a Mechanism Design Problem”, IEEE
International Conference on Autonomous
Agents Proceedings of the Third International
Joint Conference on Autonomous Agents and
Multiagent Systems – Vol. 3, 2004, pp. 1508 –
1509.

[24] A. Dardenne, A. lamsweerde, and S.fixckas,
“Goal directed requirement acquisitions”,
Science of computer programming, 1993, pp.
3-50.

[25] J. Brinkkemper, and J. Castro, “Tropos: A
Framework for Requirements-Driven Software
Development”, Information Systems
Engineering: State of the Art and Research
Themes, Lecture Notes in Computer Science,
Springer-Verlag, June 2000

[26] A. Fuxman, M. Pistore, J. Mylopoulos, and P.
Traverso, “Model Checking Early
Requirements Specifications in Tropos”.

[27] R. Cervenka, “Modeling Notation Source
Tropos, Foundation for Intelligent Physical
Agents”, 2003.

[28] G. Picard, C. Bernon, and M. Gleizes,
“Cooperative Agent Model within ADELFE
Framework: An Application to a Timetabling
Problem”, IEEE International Conference on
Autonomous Agents
Proceedings of the Third International Joint
Conference on Autonomous Agents and
Multiagent Systems – Vol. 3, 2004, pp. 1506 –
1507.

http://www.jatit.org/
http://portal.acm.org/results.cfm?query=ProfileID%3A81100605326&querydisp=ProfileID%3A81100605326&coll=ACM&dl=ACM&CFID=17983048&CFTOKEN=61607543
http://portal.acm.org/results.cfm?query=ProfileID%3A81100496191&querydisp=ProfileID%3A81100496191&coll=ACM&dl=ACM&CFID=17983048&CFTOKEN=61607543
http://portal.acm.org/results.cfm?query=ProfileID%3A81100496099&querydisp=ProfileID%3A81100496099&coll=ACM&dl=ACM&CFID=17983048&CFTOKEN=61607543
http://portal.acm.org/results.cfm?query=ProfileID%3A81100342807&querydisp=ProfileID%3A81100342807&coll=ACM&dl=ACM&CFID=17983048&CFTOKEN=61607543
http://portal.acm.org/results.cfm?query=ProfileID%3A81100342807&querydisp=ProfileID%3A81100342807&coll=ACM&dl=ACM&CFID=17983048&CFTOKEN=61607543
http://portal.acm.org/results.cfm?query=ProfileID%3A81100496099&querydisp=ProfileID%3A81100496099&coll=ACM&dl=ACM&CFID=17983048&CFTOKEN=61607543
http://portal.acm.org/results.cfm?query=ProfileID%3A81100342807&querydisp=ProfileID%3A81100342807&coll=ACM&dl=ACM&CFID=17983048&CFTOKEN=61607543

	1MOHAMMAD SHKOUKANI, 2RAWAN ABU LAIL

