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ABSTRACT 
 

In this paper, we present a new compressed sensing implementation process for one dimension signal 
reconstruction. Firstly, one level wavelet decomposition of the one dimensional signal was finished. For 
using the adaptive wavelet transform based on lifting wavelet transforms, we can achieve the detail signals 
being zero (or almost zero) at big probability, so the signal has the better linear approximation. Secondly, 
the signal can be reconstructed using compressed sensing method. Because the length of the low frequency 
coefficients is half of the original signal length, the measurement matrix can be reduced. The redundancy of 
overcomplete dictionary can make it effectively capture the characteristics of the signals. The overcomplete 
dictionary which combined the DCT base with the unit matrix can be used for the compressed sensing. 
Thirdly, using the inverse adaptive wavelet transform, the signal can be reconstructed with the low 
frequency coefficients. Finally experimental results demonstrate the application effectiveness for this 
scheme in compressed sensing fields. 
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1. INTRODUCTION  
 

A theory called compressed sensing (CS) was 
proposed by Candes, Tao and Romberg [1]-[3], 
and Donoho[4]. The theory showed that a signal 
having a sparse or compressible representation in 
one basis can be recovered from projections onto a 
small set of measurement vectors that are 
incoherent with the sparsity basis. The number of 
measurements is smaller in compressed sensing, 
the computational complex is lower. The 
measurement matrix size usually was decided by 
the length of the signal, so we hope that the signal 
can be shorten with some methods when the signal 
precision meet the demand of some application. It 
is well known that wavelet linear approximation 
(i.e. truncating the high frequencies) can 
approximate smooth functions very efficiently: it 
can achieve arbitrary high accuracy by selecting 
appropriate wavelet basis, it can concentrate the 
large wavelet coefficients in the low frequencies, 
and it has a multiresolution framework and 
associated fast transform algorithms. Considering 
the signal approximation reconstruction in some 
applications, adaptive wavelet transform based on 
lifting scheme was used in this paper. After 
finishing the one level wavelet decomposition, the 
length of the signal can be shorten the half of 

original signal length. Because the adaptive 
wavelet transform have better linear 
approximation, the high frequency coefficients can 
be discarded in some application. Then signal can 
be recovered with the low frequency coefficients. 
At the same time, measurement matrix size can be 
reduced for only using the low frequency 
coefficients in compressed sensing. 

 
The signal sparse representation is the 

fundamental premise of CS implementation, so the 
optimal sparse bases of the signals were widely 
researched [5]-[9].H. Rauhut et al. investigated the 
recovery performance of a signal, which is sparse 
with a redundant dictionary, from CS observation 
[7]. However, in most cases, it is hard to find a 
general complete basis dictionary that supplies the 
sparsest representation for any signal, and it also 
not easy to find such an overcomplete dictionary. 
In this paper, the overcomplete dictionary which 
combined the DCT base with the unit matrix can 
be used for the compressed sensing in this paper.  

 
According to above analyses, for reducing the 

computational complex, we proposed the new 
compressed sensing implementation processes of 
one dimension signal reconstruction. Firstly, one 
level wavelet decomposition of the one 
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dimensional signal was finished. Secondly, the low 
frequency coefficients were reconstructed using 
compressed sensing. Finally, using the inverse 
adaptive wavelet transform, the signal was 
reconstructed with the low frequency coefficients. 

 
2. COMPRESSED SENSING   

 

During last three decades, the assessment of 
potential of the sustainable eco-friendly alternative 
sources and refinement in technology has taken 
place to a stage so that economical and reliable 
power can be produced.  

The signal reconstruction system based 
compressed sensing was showed in Figure 1.For a 
signal X of size N , the nth element of the signal 
vector is referred to as )(nX , where Nn ,,1 = . 
Let us assume that the basis 

],,[ 1 Nψψ =Ψ provides a K-sparse 
representation of x : 
                        θΨ=x                                       (1) 

Where θ  is a 1×N  vector with K-nonzero 
elements. Many different basis expansions can 
achieve sparse approximations of the signal, 
including DCT, wavelets, and Gabor frames. In 
other words, a signal does not result in exactly K-
sparse representation; instead its transform 
coefficients decay exponentially to zero. 
 

Compressed sampling Transmit
/store

receive reconstruction

N M

M N
X̂

X

 

Figure 1: Signal Reconstruction Based On Compressed 
Sensing 

 
In the CS framework, it is assumed that the K-

largest )(nθ  is not measured directly. Rather, 
NM <  linear projections of the signal vector x  

onto another set of vectors ],[ ''
1 Mφφ =Φ  are 

measured: 
             θΦΨ=Φ= xy                                     

(2) 
 

Where the vector y ( 1×M ) constitutes the 
compressive samples and matrix )( NM ×Φ is 
called the measurement matrix. Since NM  , 
recovery of the signal x  from the compressive 
samples y  is underdetermined; however, the 
additional sparsity assumption makes recovery 
possible. 

 
The sparsity can be used to recover a signal that 

is a solution of the following minimization 
      0minarg θ  subject to  y=ΦΨθ                  

(3) 
The minimization (3) is however combinatorial 
and thus intractable. It is relax by using 1  norm 

1θ  of the coefficients of x  inΨ . The recovered 

signal ∗x  is a solution of the following convex 
problem 

  1minarg θ∈∗x   subject to y=ΦΨθ            
(4) 

 
This optimization problem, also known as 

Basis Pursuit, can be efficiently solved using 
polynominal time algorithms. The CS literature 
has mostly focused on problems involving single 
sensors, one dimensional (1-D) signals, or 2-D 
images. Until now the theory of compressed 
sensing has only been developed for classes of 
signals that have a very sparse representation in an 
orthogonal basis (ONB). This is a rather stringent 
restriction. Indeed, allowing the signal to be sparse 
with respect to a redundant dictionary adds a lot of 
flexibility and significantly extends the range of 
applicability. 
 
3. ADAPTIVE WAVELET TRANSFORM   

 

Compressed sensing includes three parts: sparse 
representation, measurement, reconstruction. If the 
signal length is bigger, the measurement matrix 
size is bigger, so the computational complex of the 
signal reconstruction is higher.  
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Figure 2: Update-Then-Prediction Scheme 

 
For reducing the size of the measurement 

matrix in compressed sensing, we hope that the 
signal length can be shortened. It is well known 
that the wavelet transforms can concentrate the 
large wavelet coefficients in the low frequencies of 
the signal, so when the precision meets the demand 
of application, the high frequency coefficient can 
be discarded in signal reconstruction processes, 
and then the signal length in compressed sensing is 
smaller. 

Wavelet transforms based on lifting schemes 
[10] have achieved large recognition in the last 
years. In general, lifting splits a signal into two sub 
samples, followed by at least two lifting steps, 
Prediction and Update. A general lifting scheme 
may comprise any sequence of basic lifting steps 
being alternatively of prediction and update type. 
For the adaptive wavelet transform based on lifting 
scheme, the wavelet transform framework (Figure 
2)  by first updating and then predicting has been 
presented in [11], so the update-then-predict lifting 
scheme has been adopted in this paper. In order to 
implement adaptive prediction algorithm, there are 
two crucial points in designing wavelet transform 
scheme:  The first is to detect the jumps in the 
signal. The second is how to use one-sided data 
near jumps to avoid oscillations. Assuming that 

12 +iβ is the jump (predicted point), i2α  is its 
left side data (updated data) and 22 +iα  is its right 
side data (updated data). The adaptive prediction 
algorithm consists of the following steps [12]: 

For each index i: 
(1)  Calculate the linear error ie2  sequence of the 

update data i2α sequence from 
2/)( 222222 +− +−= iiiie ααα

 
(2) For the ie2  sequence, the multiplying 
value of the two adjacent numbers is calculated, 

that is the value of      222 +× ii ee .  
If this value is negative, 12 +iβ  are the 

jumps, 
             Then the next step will be performed. 

Else  
2/)( 22212

'
12 +++ +−= iiii ααββ , we 

get the high frequency coefficient sequence. 
(3) If the i2α  is the jump of the updated data, the 
value of 22 −ie  is larger. Otherwise, the value of 

42 +ie  is larger. Comparing with the value 
between 22 −ie and 42 +ie , the prediction 
algorithm using the left side data or the right side 
data of the jump can be determined.    

If 4222 +− > ii ee  then 

iii 212
'

12 αββ −= ++  
Else If 4222 +− > ii ee  then 

2212
'

12 +++ −= iii αββ  
Else 

2/)( 22212
'

12 +++ +−= iiii ααββ  
 
Through the previous discussion, we know that 

the adaptive prediction algorithm can be 
reconstructed without using extra additional 
information. The inverse transform algorithm is 
the inverse process of the forward wavelet 
transform.   

 
4. OVERCOMPLETE DICTIONARY   

 

Most work on compressed sensing so far 
assumes sparsity with respect to the canonical 
basis, or at least with respect to an orthogonal 
basis. However, this can be a rather stringent 
restriction in practice. A recent direction of interest 
in compressed sensing concerns problems where 
signals are sparse in an over-complete dictionary D 
instead of a basis.  

Let NKD KN ≥ℜ∈ × , , be a over-complete 
dictionary, i.e., its columns span Nℜ . A vector 
x is said to be K-sparse with respect to θDx =  
for a K-sparse Kℜ∈θ . Given a suitable 
measurement matrix Nn×ℜ∈Φ  our task is then to 
reconstruct x  from xy Φ= . This is accomplished 
if the coefficients x are recovered. Writing 

NnD ×ℜ∈Φ=Ψ we have 

       θθ Ψ=Φ=Φ= Dxy                                
(5) 

split 

update 

prediction 

][nX  

][nxe

 

][nxo  

Low frequency 

High frequency 
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An important observation on dictionaries is 
that given an overcomplete KND ×ℜ∈ with 

NK   and a signal x of length N, representations 
of signal x in D in terms of linear combinations of 
some atoms are not unique. This is to say that if D 
contains more than K nonzero atoms and if D is of 
full row rank, then the underdetermined system of 
linear equations xD =θ  admits infinitely many 
solutions. Among these representations of x, we 
are particularly interested in finding the most 
economical one *θ , that is the sparsest[13].  
However, in most cases, it is hard to find a general 
complete basis dictionary that supplies the sparsest 
representation for any signal, and it also not easy 
to find such an over complete dictionary. The base 
using orthogonal transforms for 1-D and 2-D 
signals main include Wavelets, DCT and FFT 
matrix. Because overcomplete dictionary can 
acquire the sparser signal presentation, and can be 
used for the compressed sensing systems. In this 
section, through combing transform bases and 
units matrix, we design the implicit overcomplete 
dictionaries. In order to acquire signal sparser 
presents, the different bases must be inconherent in 
the compressed sensing system.  

 
The coherence, which is also known as mutual 

coherence in the literature, between Λ  and Θ  in 
dictionary is defined as 

       jk
njk

n ϑλµ
≤≤

=ΘΛ
,1

max),( .                         

(6) 
 
In this paper, we design the followed 

overcomplete dictionaries: 
[ ]T

nn CID ,= , where nI is the identity matrix of 

size ,nn× nC is the 1-D DCT matrix of size n*n, 

and 1),( =H
nn FIµ . 

 
For D overcomplete dictionaries, the signal 

sparse representations and the application for the 
compressed sensing system will be discussed in 
next section. 

 
5. EXPERIMENT RESULTS   

 

Next ，  we consider a piecewise smooth 
function defined by 






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Figure 3 shows the function )(xf . The length of 
the signal )(xf  is 512.  In order to study on the 
performance of the optimal adaptive wavelet 
transform, using the adaptive wavelet transform 
scheme, one level wavelet decomposition for the 
f(x) is shown in Figure 4. The left part corresponds 
to the low frequency coefficients and the right part 
the high frequency coefficients. We notice that 
there are not some large high frequency 
coefficients. This illustrates that the adaptive 
wavelet coefficients have better distribution, i.e., 
no large coefficients in the high frequencies and 
the energy is concentrated in the low frequency. 
Therefore, we can reconstruct the signal by the low 
frequency coefficients. 

 
Figure 3:  The Original Signal 

 
Figure 4: One Level Adaptive Wavelet Decomposition 

Of The Original Signal 
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Figure 5:  Reconstruction Signal(M=120, DCT) 

 
Figure 6:  Reconstruction Signal(M=180, DCT) 

 

 
Figure 7: Reconstruction Signal (M=180, Overcomplete 

Dictionary) 
 

 
Figure 8:  Reconstruction Signal (M=120, 

Overcomplete Dictionary) 
 
For the low-frequency coefficients, the signal 

can be reconstructed using compressed sensing. 
Random matrix in compressed sensing was chosen 
as Measurement matrix. When M is 120 and 180 
in the measurement matrix, and DCT was chosen 
as the sparse matrix, the low frequency 
coefficients were reconstructed. The reconstructed 
results were shown in Figure 5 and Figure 6. 

 
For studying the performance of the 

overcomplete dictionaries, the overcomplete 
dictionary [ ]T

nn FID ,=  were chosen as the sparse 
transform matrix. When measurement value 
M=120 and M=180. The reconstruction signal was 
shown Figure 7 and Figure 8.  The CVX software 
was used in the above signal reconstruction 
processes. In order to objectively evaluate the 
quality of reconstructed signals, the error can be 
calculated by the following equation. 
 

∑

∑

=

=

−
=

N

i
i

N

i
ii

x

xx
Error

1

2

1

2

~

)~(
               (7) 

 
The reconstruction signal errors using the 

different sparse basis and the measurement value 
were listed in Table 1. From the table 1 and the 
reconstruction signal using the different sparse 
bases, we can know that the reconstruct signal 
using the overcomplete dictionary can acquired 
better signal approximation.  
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Finally, when the measurement value is 180, 
according to the low frequency coefficients 
reconstructed in compressed sensing, the signal 
can be reconstructed using the inverse adaptive 
wavelet transform. The reconstruction signal can 
be shown in Figure 9. 

 
The simulation results demonstrated that the 

compressed sensing scheme proposed this paper 
can acquire better reconstruction effectiveness, and 
this compressed sensing scheme meet the demand 
of the signal reconstruction. 
 
6. CONCLUSION 
 

We know today that most of existing works in 
CS remain at the theoretical study. In particular, 
the implementation processes in compressed 
sensing have high computational complex. This 
paper presented new compressed sensing scheme 
which can reduce computational complex. This 
paper proposed the signal reconstruction scheme 
using adaptive wavelet transform and DCT. 
Taking advantage of the adaptive wavelet 
transform, the reconstruction signal length can be 
shortened. When the redundant dictionary was 
chosen as the sparse transform basis, the signal 
acquired better reconstruction precision.  

 
Figure 9:   The Reconstruction Signal 

 
Table 1:  The Signal Reconstruction Errors 

measurement 
value M 

sparse basis Reconstruction 
error 

M=120 DCT 0.4369 
M=180 DCT 0.2170 
M=120 Overcomplete 

[ ]T
nn FID ,=  

0.2343 

M=180 Overcomplete 
[ ]T

nn FID ,=  
0.0091 
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