
Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1264

ANALYSIS OF DIFFERENT ACTIVATION FUNCTIONS
USING BACK PROPAGATION NEURAL NETWORKS

1 P.SIBI, 2 S.ALLWYN JONES, 3 P.SIDDARTH

1,2,3 Student, SASTRA University, Kumbakonam, India

E-mail: 1sibi@psibi.in, 2sallwynjones@gmail.com, 3psiddarthkey2008@gmail.com

ABSTRACT

The Back propagation algorithm allows multilayer feed forward neural networks to learn input/output
mappings from training samples. Back propagation networks adapt itself to learn the relationship between
the set of example patterns, and could be able to apply the same relationship to new input patterns. The
network should be able to focus on the features of an arbitrary input. The activation function is used to
transform the activation level of a unit (neuron) into an output signal. There are a number of common
activation functions in use with artificial neural networks (ANN). Our paper aims to perform analysis of the
different activation functions and provide a benchmark of it. The purpose is to figure out the optimal
activation function for a problem.
Keywords: Artificial Neural Network (ANN), Back Propagation Network (BPN), Activation Function

1. INTRODUCTION

A neural network is called a mapping network if
it is able to compute some functional relationship
between its input and output. For example, if the
input to a network is the value of an angle, and the
output is the cosine of the angle, the network
performs the mapping θ→ cos(θ). Suppose we have
a set of P vector pairs () () ()pp y,x,,yx,yx ...22,11,
which are examples of a functional mapping

() MN Ry,Rxxφ=y ∈∈: . We have to train
the network so that it will learn an approximation

()xφ=y=o '' . It should be noted that learning
in a neural network means finding an approximate
set of weights.

Function approximation from a set of input-
output pairs has numerous scientific and
engineering applications. Multilayer feed forward
neural networks have been proposed as a tool for
nonlinear function approximation [1], [2], [3].
Parametric models represented by such networks
are highly nonlinear. The back propagation (BP)
algorithm is a widely used learning algorithm for
training multilayer networks by means of error
propagation via variational calculus [4], [5]. It
iteratively adjusts the network parameters to
minimize the sum of squared approximation errors
using a gradient descent technique. Due to the
highly nonlinear modeling power of such networks,
the learned function may interpolate all the training
points. When noisy training data are present, the

learned function can oscillate abruptly between data
points. This is clearly undesirable for function
approximation from noisy data.

2. BACK PROPAGATION NETWORK

MECHANISM

Apply the input vector to the input units. Input
vector is

()tpNp2p1p x,,x,x=X

where pX is the input vector.

Calculate the net input values to the hidden layer
units:

()
h
jpi

h
jiΣ

N

=i

h
pj θ+xw=net

1

where h
pjnet is the net input to hidden layer , h

jiw

is the weight on the connection from thi input unit
h
jθ is the bias term and “h” refers to quantities on

the hidden layer.

Calculate the outputs from the hidden layer:

()h
pj

h
jpj netf=i

where pji is the output from hidden layer and

h
jf is the activation function.

http://www.jatit.org/
mailto:sibi@psibi.in
mailto:sallwynjones@gmail.com

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1265

Move to the output layer. Calculate the net-input
values to each units:

()
o
kpj

o
kjΣ

L

=j

o
pk θ+iw=net

1

 where o
pknet is the net input to the output layer ,

o
kjw is the weight in the connection from thj

hidden unit, o
kθ is the bias term and “o” refers to

quantities on the output layer.

Calculate the outputs:

()o
pk

o
kpk netf=O where pkO is the output got

from the output layer

Calculate the error terms for the output units

() ()o
pk

o
jpkpk

o
pk net'fOy=δ − where o

pkδ is
the error at each output unit,

pkpk
o
pk oy=δ − where pky is the desired

error and pko is the actual error

Calculate the error terms for hidden units:

() o
kj

o
pkΣ

k

h
pj

h
j

h
pj wδnet'f=δ where h

pjδ is the

error at each hidden unit

Notice that the error terms on the hidden units are
calculated before the connection weights to the
output-layer units have been updated.

Update weights on the output layer:

 () () pj
o
pk

o
kj

o
kj iηδ+tw=+tw 1

Update weights on the hidden layer:

 () () i
h
pj

h
ji

h
ji xηδ+tw=+tw 1

where η is the learning rate parameter. The order of
the weight updates on an individual layer is not
important. Be sure to calculate the error term

()

2

1
2/1 pkΣ

M

=kp δ=E

since this quantity is the measure of how well the
network is learning. When the error is acceptably
small for each of the training-vector pairs, training
can be discontinued [6]. The network for back
propagation is illustrated in Figure 1.

Figure 1

3. ACTIVATION FUNCTION TYPES

Every neuron model consists of a processing
element with synaptic input connections and a
single output. The signal flow of neuron inputs, xi,
is considered to be unidirectional [7]. The neuron
output signal is given by the relationship o=f(∑),
which is illustrated in Figure 2

Figure 2

The functions are described with parameters where

• x is the input to the activation function,
• y is the output,
• s is the steepness and
• d is the derivation.

3.1 Linear Activation Function

The linear activation function will only produce
positive numbers over the entire real number range.

∞−∞ <y<span : , sx=y ∗ , s=d ∗1 ,
Cannot be used in fixed point.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1266

3.2 Sigmoid Activation Function

The sigmoid function will only produce positive
numbers between 0 and 1. The sigmoid activation
function is most useful for training data that is also
between 0 and 1. It is one of the most used
activation functions.

10: <y<span , ()()xs+=y ∗∗− 2exp1/1 ,

()yys=d −∗∗∗ 12

3.3 Sigmoid Stepwise Activation Function

The stepwise sigmoid activation function is a
piecewise linear approximation of the usual
sigmoid function with output between zero and one.
It is faster than sigmoid but a bit less precise.

3.4 Sigmoid Symmetric Activation Function

The symmetrical sigmoid activation function is the
usual tanh sigmoid function with output between
minus one and one. It is one of the most used
activation functions.

11: <y<span −

() ()() 12exp1/2tanh −∗∗−∗ xs+=xs=y

()()yys=d ∗−∗ 1 where tanh is tangent
hyperbolic function.

3.5 Sigmoid Symmetric Stepwise Activation
Function

The symmetrical sigmoid activation function is a
piecewise linear approximation of the usual tanh
sigmoid function with output between minus one
and one. It is faster than symmetric sigmoid but a
bit less precise.

3.6 Gaussian Activation Function

Gaussian activation function can be used when
finer control is needed over the activation range.
The output range is 0 to 1: 0 when x=∞ and 1 when
x=0.

10: <y<span , ()sxsx=y ∗∗∗−exp ,

sysx=d ∗∗∗∗−2

3.7 Gaussian Symmetric Activation Function
Gaussian symmetric activation function can be used
when finer control is needed over the activation
range. The output range is -1 to 1: -1 when x= -∞,
1 when x=0, 0 when x=∞.

11: <y<span − ,

() 12exp −∗∗∗∗− sxsx=y ,

() s+ysx=d ∗∗∗∗− 12

3.8 Elliot Activation Function
The Elliott Activation Function is higher-speed
approximation of the Hyperbolic Tangent
Activation Function. The output range is 0 to 1.

10: <y<span ,

()() () 0.51/2/ +|sx|+sx=y ∗∗ ,

() ()()|sx|+|sx|+s=d ∗∗∗∗∗ 112/1
3.9 Elliot Symmetric Activation Function
The Elliot symmetric activation function is higher
speed approximation of Sigmoid activation
functions. The output range is -1 to 1.

11: <y<span − , () ()|sx|+sx=y ∗∗ 1/ ,

() ()()|sx|+|sx|+s=d ∗∗∗∗ 11/1
3.10 Linear Piecewise Activation Function
This activation function is also called saturating
linear function and can have either a binary or
bipolar range for the saturation limits of the output.
the output range is 0 to 1.

10: <y<span , sx=y ∗ , s=d ∗1
3.11 Linear Piece Symmetric Activation

Function
This activation function is also called saturating
linear function and can have either a binary or
bipolar range for the saturation limits of the output.
the output range is -1 to 1.

11: <y<span − , sx=y ∗ , s=d ∗1

4. EXPERIMENTAL RESULTS

A dataset was chosen for evaluation of the
activation network. A simulator was specially
developed for testing the activation function using
an open source library fann (Fast Artifical Neural
Network). The simulator was written in Python and
language bindings for fann was used which itself
was created using SWIG (Simplified Wrapper
Interface Generator). The dataset chosen for
analysis is mushroom data. The mushroom
classification problem is to determine whether a
mushroom is edible or poisonous based on its
observable features . The 22 input features were
converted into 125 binary attributes. The input
features of the dataset is represented in Table 1.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1267

Table 1
Features Values
Cap-shape bell/conical/convex/flat/

knobbed/sunken
Cap-
surface

fibrous/grooves/scaly/smooth

Cap-color brown/buff/cinnamon/gray/green/
pink/purple/red/white/yellow

Bruises true/false
Odor almond/anise/creosote/fishy/foul/

musty/none/pungent/spicy
Gill-
attachment

attached/descending/free/notched

Gill-
spacing

close/crowded/distant

Gill-size broad/narrow
Gill-color black/brown/buff/chocolate/gray/

green/orange/pink/purple/red/whit
e/yellow

Stalk-
shape

enlarging/tapering

Stalk-root bulbous/club/cup/equal/
rhizomorphs/rooted/missing

Stalk-
surface-
above-ring

fibrous/scaly/silky/smooth

Stalk-
surface-
below-ring

fibrous/scaly/silky/smooth

Stalk-
color-
above-ring

brown/buff/cinnamon/gray/
orange/pink/red/white/yellow

Stalkcolor
-below-
ring

brown/buff/cinnamon/gray/
orange/pink/red/white/yellow

Veil-type partial/universal
Veil-color brown/orange/white/yellow
Ring-
number

none/one/two

Ring-type cobwebby/evanescent/flaring
/large/none/pendant/sheathing/zon
e

Spore-
print-color

black/brown/buff/chocolate/green
/orange/purple/white/yellow

Population abundant/clustered/numerous/
scattered/several/solitary

Habitat grasses/leaves/meadows/paths/
urban/waste/woods

5. PERFORMANCE EVALUATION

Training activity was carried out in mushroom
dataset with an expected error of 0.0999. The
algorithm used for training was RPROP (Resilient

Propagation). The increase factor and decrease
factor for the algorithm was chosen the optimal
value of 1.2 and 0.5 respectively. The delta min
value was taken as 0 and the delta max value as 50.
The number of hidden layers for the network was 3
with 4, 5 and 5 neurons in each layer respectively.
The result obtained by the simulation is illustrated
in Table 2.

Table 2
Evaluation of Mushroom dataset

Activation
Function

Total
Number
of Epochs

Error at Last
Epoch

Bit Fail at
Last
Epoch

LINEAR 47 0.0063356720 21
SIGMOID 30 0.0003930641 4
SIGMOID
STEPWISE

41 0.0007385524 6

SIGMOID
STEPWISE
SYMMETRIC

26 0.0095451726 50

GAUSSIAN 50 0.0079952301 24
GAUSSIAN
SYMMETRIC

21 0.0063603432 8

ELLIOT 22 0.0096499957 6
ELLIOT
SYMMETRIC

42 0.0090665855 125

LINEAR
PIECE

71 0.0095399031 90

LINEAR
PIECE
SYMMETRIC

28 0.0084868055 110

SIN
SYMMETRIC

33 0.0087634288 64

COS
SYMMETRIC

49 0.0061022025 48

6. CONCLUSION:

Activation function is one of the essential
parameter in a Neural Network. The performance
evaluation of different activation functions shows
up that there is a not a huge difference between
them. When a network gets trained up successfully,
every activation function has approximately the
same effect on it. The paper clearly shows up to
which extent an activation function is important.
Selection of an activation function for a network or
it's specific nodes is an important task. But as the
results show, if a network gets trained up
successfully with a particular activation function,
then there is a high probability that other activation

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1268

functions will also lead to proper training of the
neural network.

We emphasize that although selection of
an activation function for a neural network or it's
node is an important task, other factors like training
algorithm, network sizing and learning parameters
are more vital for proper training of the network as
the results by the simulator shows us that there is
only a trivial differences between training when
configured with different activation functions.

REFERENCES:

[1] K. Homik, M. Stinchcombe, and H. White,
“Multilayer feed forward networks are
universal approximators”,� Neural Networks,
vol. 2, pp.359-366, 1989.

[2] C. Ji, R. R. Snapp, and D. Psaltis,
“Generalizing smoothness constraints from
discrete samples”, Neural Computation, vol.
2, pp. 188-197, 1990.

[3] T. Poggio, and F. Girosi, “Networks for
approximation and learning.” Proc. IEEE. vol.
78, no. 9, pp. 1481-1497. 1990.

[4] Y. Le Cun, “A theoretical framework for back
propagation”, in Proc.1988 Connectionist
Models Summer School, D. Touretzky, G.
Hinton, and T. Sejnowski, Eds. June 17-26,
1988. San Mateo, CA: Morgan Kaufmann, pp.
21-28.

[5] D. E. Rummelhart, G. E. Hinton. and R. J .
Williams. “Parallel Distributed Processing:
Explorations in the Microstructure of
Cognition”, vol. I. MIT Press, ch. 8.

[6] James A. Freeman and David M. Skapura.
“Neural Networks Algorithms, Applications
and Programming Techniques”, pp 115-116,
1991.

[7] Jacek M. Zurada, "Introduction to Artificial
Neural Systems", pp 32-36, 2006.

http://www.jatit.org/

	P1 PP.SIBI, P 2 PS.ALLWYN JONES, P3 PP.SIDDARTH

