
Journal of Theoretical and Applied Information Technology 
 31st January 2013. Vol. 47 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
1264 

 

ANALYSIS OF DIFFERENT ACTIVATION FUNCTIONS 
USING BACK PROPAGATION NEURAL NETWORKS 

 
1 P.SIBI,   2 S.ALLWYN JONES, 3 P.SIDDARTH 

1,2,3 Student, SASTRA University, Kumbakonam, India 

E-mail:  1sibi@psibi.in, 2sallwynjones@gmail.com, 3psiddarthkey2008@gmail.com 
 
 

ABSTRACT 
 

The Back propagation algorithm allows multilayer feed forward neural networks to learn input/output 
mappings from training samples. Back propagation networks adapt itself to learn the relationship between 
the set of example patterns, and could be able to apply the same relationship to new input patterns. The 
network should be able to focus on the features of an arbitrary input. The activation function is used to 
transform the activation level of a unit (neuron) into an output signal. There are a number of common 
activation functions in use with artificial neural networks (ANN). Our paper aims to perform analysis of the 
different activation functions and provide a benchmark of it. The purpose is to figure out the optimal 
activation function for a problem. 
Keywords: Artificial Neural Network (ANN), Back Propagation Network (BPN), Activation Function 
 
1. INTRODUCTION  
 

A neural network is called a mapping network if 
it is able to compute some functional relationship 
between its input and output. For example, if the 
input to a network is the value of an angle, and the 
output is the cosine of the angle, the network 
performs the mapping θ→ cos(θ). Suppose we have 
a set of P vector pairs ( ) ( ) ( )pp y,x,,yx,yx ...22,11,  
which are examples of a functional mapping  

( ) MN Ry,Rxxφ=y ∈∈: . We have to train 
the network so that it will learn an approximation 

( )xφ=y=o '' .  It should be noted that learning 
in a neural network means finding an approximate 
set of weights. 

Function approximation from a set of input-
output pairs has numerous scientific and 
engineering applications. Multilayer feed forward 
neural networks have been proposed as a tool for 
nonlinear function approximation [1], [2], [3]. 
Parametric models represented by such networks 
are highly nonlinear. The back propagation (BP) 
algorithm is a widely used learning algorithm for 
training multilayer networks by means of error 
propagation via variational calculus [4], [5]. It 
iteratively adjusts the network parameters to 
minimize the sum of squared approximation errors 
using a gradient descent technique. Due to the 
highly nonlinear modeling power of such networks, 
the learned function may interpolate all the training 
points. When noisy training data are present, the 

learned function can oscillate abruptly between data 
points. This is clearly undesirable for function 
approximation from noisy data. 

 
2. BACK PROPAGATION NETWORK 

MECHANISM 
 

Apply the input vector to the input units. Input 
vector is 

( )tpNp2p1p x,,x,x=X ....  

where pX is the input vector. 

Calculate the net input values to the hidden layer 
units: 

( )
h
jpi

h
jiΣ

N

=i

h
pj θ+xw=net

1
 

where h
pjnet is the net input to hidden layer , h

jiw

is the weight on the connection from thi input unit
h
jθ is the bias term and “h” refers to quantities on 

the hidden layer. 

Calculate the outputs from the hidden layer: 

( )h
pj

h
jpj netf=i  

where pji is the output from hidden layer and  

h
jf is the activation function. 
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Move to the output layer. Calculate the net-input 
values to each units: 

( )
o
kpj

o
kjΣ

L

=j

o
pk θ+iw=net

1
 

 where o
pknet is the net input to the output layer ,

o
kjw is the weight in the connection from thj

hidden unit, o
kθ is the bias term and “o” refers to 

quantities on the output layer. 

Calculate the outputs: 

( )o
pk

o
kpk netf=O  where pkO is the output got 

from the output layer 

Calculate the error terms for the output units 

( ) ( )o
pk

o
jpkpk

o
pk net'fOy=δ −  where o

pkδ is 
the error at each output unit,   

pkpk
o
pk oy=δ − where pky is the desired 

error and pko is the actual error 

Calculate the error terms for hidden units: 

( ) o
kj

o
pkΣ

k

h
pj

h
j

h
pj wδnet'f=δ where h

pjδ is the 

error at each hidden unit 

Notice that the error terms on the hidden units are 
calculated before the connection weights to the 
output-layer units have been updated. 

Update weights on the output layer: 

     ( ) ( ) pj
o
pk

o
kj

o
kj iηδ+tw=+tw 1  

Update weights on the hidden layer: 

     ( ) ( ) i
h
pj

h
ji

h
ji xηδ+tw=+tw 1  

where η is the learning rate parameter. The order of 
the weight updates on an individual layer is not 
important. Be sure to calculate the error term 

     
( )

2

1
2/1 pkΣ

M

=kp δ=E  

since this quantity is the measure of how well the 
network is learning. When the error is acceptably 
small for each of the training-vector pairs, training 
can be discontinued [6]. The network for back 
propagation is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 

 

3. ACTIVATION FUNCTION TYPES 

Every neuron model consists of a processing 
element with synaptic input connections and a 
single output. The signal flow of neuron inputs, xi, 
is considered to be unidirectional [7]. The neuron 
output signal is given by  the relationship o=f(∑), 
which is illustrated in Figure 2 

 
Figure 2 

 
The functions are described with parameters where 

• x is the input to the activation function, 
• y is the output, 
• s is the steepness and 
• d  is the derivation. 

3.1  Linear Activation Function 

The linear activation function will only produce 
positive numbers over the entire real number range.

∞−∞ <y<span : , sx=y ∗ , s=d ∗1 , 
Cannot be used in fixed point. 

http://www.jatit.org/
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3.2  Sigmoid Activation Function 

The sigmoid function will only produce positive 
numbers between 0 and 1. The sigmoid activation 
function is most useful for training data that is also 
between 0 and 1. It is one of the most used 
activation functions. 

10: <y<span , ( )( )xs+=y ∗∗− 2exp1/1 ,

( )yys=d −∗∗∗ 12  

3.3  Sigmoid Stepwise Activation Function 

The stepwise sigmoid activation function is a 
piecewise linear approximation of the usual 
sigmoid function with output between zero and one. 
It is faster than sigmoid but a bit less precise. 

3.4  Sigmoid Symmetric Activation Function 

The symmetrical sigmoid activation function is the 
usual tanh sigmoid function with output between 
minus one and one. It is one of the most used 
activation functions. 

11: <y<span −  

( ) ( )( ) 12exp1/2tanh −∗∗−∗ xs+=xs=y  

( )( )yys=d ∗−∗ 1 where tanh is tangent 
hyperbolic function. 

3.5  Sigmoid Symmetric Stepwise Activation 
Function 

The symmetrical sigmoid activation function is a 
piecewise linear approximation of the usual tanh 
sigmoid function with output between minus one 
and one. It is faster than symmetric sigmoid but a 
bit less precise. 

3.6  Gaussian Activation Function 

Gaussian activation function can be used when 
finer control is needed over the activation range. 
The output range is 0 to 1: 0 when x=∞ and 1 when 
x=0. 

10: <y<span , ( )sxsx=y ∗∗∗−exp , 

sysx=d ∗∗∗∗−2  

3.7  Gaussian Symmetric Activation Function 
Gaussian symmetric activation function can be used 
when finer control is needed over the activation 
range. The output range is -1 to 1:  -1 when x= -∞, 
1 when x=0, 0 when x=∞. 

11: <y<span − , 

( ) 12exp −∗∗∗∗− sxsx=y ,

( ) s+ysx=d ∗∗∗∗− 12   

3.8  Elliot Activation Function 
The Elliott Activation Function is higher-speed 
approximation of the Hyperbolic Tangent 
Activation Function. The output range is   0 to 1. 

10: <y<span  , 

( )( ) ( ) 0.51/2/ +|sx|+sx=y ∗∗ , 

( ) ( )( )|sx|+|sx|+s=d ∗∗∗∗∗ 112/1  
3.9  Elliot Symmetric Activation Function 
The Elliot symmetric activation function is higher 
speed approximation of Sigmoid activation 
functions. The output range is   -1 to 1. 

11: <y<span − , ( ) ( )|sx|+sx=y ∗∗ 1/ , 

( ) ( )( )|sx|+|sx|+s=d ∗∗∗∗ 11/1  
3.10  Linear Piecewise Activation Function 
This activation function is also called saturating 
linear function and can have either a binary or 
bipolar range for the saturation limits of the output. 
the output range is 0 to 1. 

10: <y<span , sx=y ∗ , s=d ∗1  
3.11 Linear Piece Symmetric Activation 

Function 
This activation function is also called saturating 
linear function and can have either a binary or 
bipolar range for the saturation limits of the output. 
the output range is -1 to 1. 

11: <y<span − , sx=y ∗  , s=d ∗1  
 
4. EXPERIMENTAL RESULTS 
 
A dataset was chosen for evaluation of the 
activation network. A simulator was specially 
developed for testing the  activation function using 
an open source library fann (Fast Artifical Neural 
Network). The simulator was written in Python and 
language bindings for fann was used which itself 
was created using SWIG (Simplified Wrapper 
Interface Generator). The dataset chosen for  
analysis is mushroom data. The mushroom 
classification problem is to determine whether a 
mushroom is edible or poisonous based on its 
observable features . The 22 input features were 
converted into 125 binary attributes. The input 
features of the dataset is represented in Table 1. 
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Table 1 
Features  Values 
Cap-shape bell/conical/convex/flat/         

knobbed/sunken 
Cap-
surface 

fibrous/grooves/scaly/smooth 

Cap-color brown/buff/cinnamon/gray/green/ 
pink/purple/red/white/yellow 

Bruises true/false 
Odor almond/anise/creosote/fishy/foul/         

musty/none/pungent/spicy 
Gill-
attachment 

attached/descending/free/notched 

Gill-
spacing 

close/crowded/distant 

Gill-size broad/narrow 
Gill-color black/brown/buff/chocolate/gray/   

green/orange/pink/purple/red/whit
e/yellow 

Stalk-
shape 

enlarging/tapering 

Stalk-root bulbous/club/cup/equal/ 
rhizomorphs/rooted/missing 

Stalk-
surface-
above-ring 

fibrous/scaly/silky/smooth 

Stalk-
surface-
below-ring 

fibrous/scaly/silky/smooth 

Stalk-
color-
above-ring 

brown/buff/cinnamon/gray/ 
orange/pink/red/white/yellow 

Stalkcolor
-below-
ring 

brown/buff/cinnamon/gray/ 
orange/pink/red/white/yellow 

Veil-type partial/universal 
Veil-color brown/orange/white/yellow 
Ring-
number 

none/one/two 

Ring-type cobwebby/evanescent/flaring 
/large/none/pendant/sheathing/zon
e 

Spore-
print-color 

black/brown/buff/chocolate/green 
/orange/purple/white/yellow 

Population  abundant/clustered/numerous/ 
scattered/several/solitary 

Habitat grasses/leaves/meadows/paths/  
urban/waste/woods 

 
5. PERFORMANCE EVALUATION 
 
Training activity was carried out in mushroom 
dataset with an expected error of 0.0999. The 
algorithm used for training was RPROP (Resilient 

Propagation). The increase factor and decrease 
factor for the algorithm was chosen the optimal 
value of 1.2 and 0.5 respectively. The delta min 
value was taken as 0 and the delta max value as 50. 
The number of hidden layers for the network was 3 
with 4, 5 and 5 neurons in each layer respectively. 
The result obtained by the simulation is illustrated 
in Table 2. 

Table 2 
Evaluation of Mushroom dataset 

Activation 
Function 

Total 
Number 
of Epochs 

Error at Last 
Epoch 

Bit Fail at 
Last 
Epoch 

LINEAR 47 0.0063356720 21 
SIGMOID 30 0.0003930641 4 
SIGMOID 
STEPWISE 

41 0.0007385524 6 

SIGMOID 
STEPWISE 
SYMMETRIC 

26 0.0095451726 50 

GAUSSIAN 50 0.0079952301 24 
GAUSSIAN 
SYMMETRIC 

21 0.0063603432 8 

ELLIOT 22 0.0096499957 6 
ELLIOT 
SYMMETRIC 

42 0.0090665855 125 

LINEAR 
PIECE 

71 0.0095399031 90 

LINEAR 
PIECE 
SYMMETRIC 

28 0.0084868055 110 

SIN 
SYMMETRIC 

33 0.0087634288 64 

COS 
SYMMETRIC 

49 0.0061022025 48 

 

6. CONCLUSION: 

Activation function is one of the essential 
parameter in a Neural Network. The performance 
evaluation of different activation functions shows 
up that there is a not a huge difference between 
them. When a network gets trained up successfully, 
every activation function has approximately the 
same effect on it.  The paper clearly shows up to 
which extent an activation function is important. 
Selection of an activation function for a network or 
it's specific nodes is an important task. But as the 
results show, if a network gets trained up 
successfully with a particular activation function, 
then there is a high probability that other activation 

http://www.jatit.org/
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functions will also lead to proper training of the 
neural network. 
  

We emphasize that although selection of 
an activation function for a neural network or it's 
node is an important task, other factors like training 
algorithm, network sizing and learning parameters 
are more vital for proper training of the network as 
the results by the simulator shows us that there is 
only a trivial differences between training when 
configured with different activation functions. 
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