
Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1191

RESEARCH ON CAN BUS AUTOMATED TEST
ENVIRONMENT

 FENG LUO, CHU LIU
Clean Energy Automotive Engineering Center, College of Automotive Engineering,

 Tongji University, Shanghai 201804, China, +86-021-69583892

E-mail: luo_feng@tongji.edu.cn , liuchu1985@126.com

ABSTRACT

Test and validation are so important that each type of automotive ECU (Electronic Control Unit) should be
qualified before entering the market. In this article, a fully scaled and customized automotive CAN Bus test
environment is introduced, including a test hardware, a driver and its software platform, in which a test
kernel is implemented, which is able to parse CAN databases and automatically executes test cases
generated by the test case generator. Programming for a specific test case is also supported. Log files are
created during the test execution to log test steps as well as CAN Bus messages, which are used by the test
report generator to generate the final test report. Problems are detected during the whole test process and
reproduced later in the laboratory environment, which enhances the debugging process. With the help of
the testing environment, the quality assurance of the ECU can be better achieved.
Keywords: CAN Bus, Automated Testing, Database Engine, Test Cases

1. INTRODUCTION

With the increasing demands on automotive
CAN Bus application, problems regarding the
stability and reliability of in-vehicle software
should be considered [1]. According to the report
published by ADAC (Germany and Europe’s
largest automobile club), the primary cause of
automotive breakdown (41.2%) was directly due to
electronics [2]. Nowadays most developments of
automotive ECUs are model based, such as
traditional V-model development [3] or AUTOSAR
[4]. The internal behaviors of the software-
components are required to be tested during the
whole development process, from the initial
simulation, HIL (Hardware in the Loop) simulation,
to the final validation. These tests are typically
performed on a PC [5]. However, to build such test
equipment may encounter problems due to the
complexity of the system and the performance limit
of the computer. The objective of this study is to
introduce a solution for the testing of CAN network
devices based on PC with high efficiency, the steps
and components required to build up such a test
environment are discussed.

A test can be performed by two methods: the
“White Box” method and the “Black Box” method;
while “White Box” method requires a connection to
the ECU with debugging tools, which is used
mainly by the developer of the ECU, thus bugs and
malfunctions are solved at an early age during the

development. Compared with “White Box” method,
“Black Box” is also indispensable; the behaviors of
the DUT such as the functionality, response and
timing are checked. The test environment discussed
in this paper is built based on the “Black Box”
method.

The test environment involves two parts: the
hardware communicating with the ECU to be tested
(DUT, the device under test) on the CAN Bus; and
the test tool (Tester) running on Windows for test
case creation, test sequence execution and report
generation. Windows platform is adopted due to its
wide-spread usage all over the world and rich
development tools support.

The flow of the upcoming sections is presented
in the following manner:

• The concept of the automated testing
• Requirements to build a testing environment
• The structure of the whole test environment
• The realization of each software component
• The conclusion and validation

2. RESEARCH METHOD

2.1. Research Design of the Test Environment
2.1.1. Test development stages
The development of CAN Bus automated test
environment is made up of the following four
important stages, please see figure 1.

http://www.jatit.org/
mailto:luo_feng@tongji.edu.cn
mailto:liuchu1985@126.com

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1192

Figure 1. CAN Bus Test stages

Test specification design is the first stage, in
which the ECU specific testing requirements are
defined. This is usually provided by the
manufacturer of the ECU.

In the second stage, test cases are developed
according to the previously defined test
specification, which can be generated using the
graphical interface of the test case generator, or
programmed by the test engineers. Various
validations should be made on the test cases, so as
to ensure that these test cases are fully consistent
with the specifications.

The execution of the test engine requires
hardware with at least two CAN channels, so that
regular test including gateway test requirements is
met. Test cases are read out by the test engine one
after another, which generates test sequences on the
CAN Bus, reactions of the DUT are compared with
the corresponding pre-defined values in real-time.
All related messages are stored into log files at the
meantime.

 The result of a test case is marked with “OK” if
it passes the testing criteria; otherwise, “NOK” (not
OK) is marked instead. Results are stored into an
XML file during the test process, which can be used
to generate the final test report.

2.1.1. Testing requirements
To ensure the ease of use of the test environment,

as well as the performance and scalability, the
following features are required:

2.1.1.1. Graphical user interface of the test case
generator

The generator should be able to create pre-
defined test cases without one line of code based on
the built-in test module, take a test case named
“Signal Value Range Check” for example, which
automatically checks the signal value according to
the min-max value defined in the CAN database,
and does not require coding.

2.1.1.2. Fast reaction speed of the environment
The test is usually performed based on the

hardware communication with the DUT during HIL

simulation. This requires that the Tester act the
same way as the real ECUs while communicating
with the DUT on the CAN Bus. Delay time is
critical and should be minimized during data
request of the DUT, such as diagnostics session and
so on. Take remote frame request of the DUT as an
example, in regular CAN Bus communication, the
delay time is defined in Equation 1 (considering no
arbitration on the bus):

 (1)

Where is the allowed delay time; is
the internal calculation delay of the ECU being
requested, which can be treated as 0; is the
transmit time of the requested data frame on the
CAN Bus, usually 200 microseconds under 500
kbps. However, in the test environment, the ECU
being requested is the Tester on a PC, so the delay
time is:

(2)

Where is the delay of receiving frame

data from the Tester hardware; is the internal
calculation delay on the PC, which can be treated as
0; is the data transfer time from PC to the

Tester hardware; and is the transmit time of
the requested data frame. So the additional delay
time (+) should be minimized.
Experiments show that this value should be lower
than 3ms so as to deal with all kinds of situations in
most cases.

2.1.1.3. Interfacing capability
Users are allowed to build their own test cases

based on the built-in test module using graphical
user interface, however, this is not enough under
certain circumstances. Take a test case named
“Controller Bus Off” as an example, this requires
operating on an external CAN Bus disturbance
generator, along with the error handler if the DUT
fails to react as expected, which cannot be realized
within the internal built-in test module, because the
types of CAN Bus disturbance generator may
differ; the methods dealing with the failure of the
DUT may differ, such as email notification and
SMS message transmission.

A plugin manager of the test environment is
required, which enables the third-party software
developers to create customized test modules for
the environment by any programming language,
using the “_stdcall” calling convention. The plugin

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1193

manager loads each test module plugin at startup,
collects the test cases, which can be dynamically
invoked during the test.

2.1.2. Test Environment Structure
The structure of the test environment is presented

in Figure 2.

Figure 2. CAN Test Environment Structure

There are two CAN Buses connected to the

Tester; “CAN Bus 1” is connected to the DUT at
the same time, so that all the remaining bus nodes
can be simulated by the Tester. No more real CAN
nodes are allowed to be connected on “CAN Bus 1”
because all the necessary messages of the DUT
should be transmitted by the Tester, so as to avoid
any problem introduced by other ECUs. “CAN Bus
2” is used to test gateways, or to interfere with the
DUT by other related test equipment like CAN Bus
disturbance generator, or relay boards.

Test cases can be either created using the “Test
Case Generator”, or directly created by other
programming language, which are loaded into the
test modules by the CAN Bus automated test
kernel, and executed one by one to generate test
logs during runtime and test reports at the end.

CAN databases are also loaded by the test kernel
to generate symbolic names during test runtime and
test logging.

2.2. The Realization of the Test Environment
2.2.1. The hardware and communication

The Tester hardware is required to operate at a
higher bus speed with lower latency. The Freescale
automotive controller MC9S12XEP100 is used as
the main controller, with the main processor
running at 50MHz frequency and co-processor

running at 100MHz. SJA1000 is used in this test
environment as the individual CAN Bus controller,
which communicates with the DUT or other devices
through CAN transceiver TJA1050.

To realize high-speed USB communication with
minimum latency, Cypress USB 2.0 controller
CY7C68013A is used as a FIFO to connect the
microcontroller to the PC [6]. A customized USB
driver is developed using Windows Driver
Foundation (WDF). Bulk transfer is realized in the
communication; approximately 4000 times of
transfer containing 512 bytes in each packet within
a second is achieved in this transfer type [6], which
satisfies the requirements of the communication.

2.2.2. The Database Engine
The database engine is integrated in the test

kernel, which loads the databases from local disk
and parses them to build the CAN Bus symbols in
the memory.

During runtime, the CAN database engine checks
each CAN message’s identifier, looks it up in the
symbol tree to find a proper name that matches the
identifier within the specified network. The
flowchart of the database engine is shown in Figure
3.

Figure 3. Database Engine in Runtime

Figure 4. Basic Test Method

If the identifier received during the test is not

found in the database, this could be a problem of
the DUT, because it transmits the un-defined
message, which is not allowed in the

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1194

communication. The engine automatically reports
this kind of error.

2.2.3. The test kernel
The test kernel is realized based on the “query –

read – check” Black Box test method on the CAN
Bus. The test kernel first sends a query message to
the DUT on the CAN Bus, and wait for a certain
time for the response message; if no response
message received, time-out error occurred,
otherwise, the response value is checked against the
desired value, as shown in Figure 4.

Two high-priority threads are implemented in the
test kernel: kernel timer thread and test case thread.

The kernel timer thread plays an important role
in the whole test environment, which reads the
received CAN messages (RX messages) from USB
driver and stores them into the local message
buffer. Each RX message is processed first by the
“event callback interface”. The interaction with the
test environment is enabled through such interface;
for example: message id counting, message
selective logging, and additional signal checking.
Callback functions can be registered by external
libraries. Figure 5 shows the main steps in the
kernel timer.

Figure 5. The Kernel Timer Thread

The kernel timer ticks at an interval of 500us

under Windows system, so as to ensure the
accuracy of the simulation and test. To achieve this,
Windows kernel object – “Waitable Timer” is used,
thus the real-time requirements of a high resolution
timer is satisfied [7].

During the timer tick, an important step is to
simulate all the possible ECUs’ messages that are
received by the DUT, which is called the
“remaining bus simulation”. The scheduled time for
a message transmission is determined in this step. If
a periodical message is scheduled to be sent, it will

be first pushed into the transmit buffer. At the end
of one kernel timer tick, all the messages in the
transmit buffer are sent to the USB driver for
transmission on the CAN Bus to the DUT.

The test case thread executes each test case in a
pre-defined sequence, which runs in parallel with
the kernel timer thread. A test case is divided into
test steps. Each test step represents a “check”
against certain CAN Bus objects such as signal
value, signal range, data length. These “checks” are
represented by set of APIs (application
programming interface), which are implemented
either in the “built-in test module”, or in the
“customized test modules”. Figure 6 depicts the
API calling during the test case execution within
the thread, in which the thread first transmit
messages, then get RX message from the buffer,
and then invoke other kernel API functions.

Figure 6. The Test Case Execution Thread

2.2.4. The Logging of Test Data
2.2.4.1. The Logging of Test Steps

In order to build the test report, all steps within a
test case is required to be logged. Usually an XML
file is used to store these steps. That is because
further manipulation can be done on such file to
form a user-friendly test step sequence.

The required fields for a node in XML file are
listed below:

• Timestamp of the test step
• Name of the current operation
• Comment of the current operation

2.2.4.2. The Logging of the Message Objects

All the CAN messages transmitted or received by
the DUT are required to be logged into a file in
local disk for future analysis. ASCII file format is
used instead of binary format, so that the log file
can be opened by any tool that supports text format;
in addition, based on the principle of one message
per line, the message contained in the log file will
be easily referenced in the final test report.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1195

The required columns for a message are listed
below, which describe the properties of the
associated CAN message:

• Timestamp of the message in microsecond
• Channel index of the message
• Message direction (TX or RX)
• Message identifier
• Message type
• Message data length (DLC)
• Message data bytes
In the test environment, an individual logging

thread is implemented and running in background,
which maintains a message buffer with messages
being added from the test kernel. Messages are
stored in the disk when certain amount of messages
is filled in the buffer.

Besides, descriptions of important operations are
logged into the same log file in the meantime. By
means of log file, rich information can be provided
in the test report.

2.2.5. Test Report Generation
The test step log file is stored in XML file

format, which concentrates on the structure of the
information in a file and not its appearance. To
display the test result in a more readable file format,
these XML files should be formatted. In practice,
XSLT style sheet is used to transform the XML test
step log file into the HTML or PDF file.

An XSLT style sheet is created especially for the
test environment, during the transformation, the test
step log XML file and message log file are
combined into the destination HTML file format.
Hyperlinks are added for each test step so that the
logged messages with timestamp can be view with
ease.

2.2.6. The Design of the Test Case Generator
2.2.6.1. Test Case Generator GUI

Graphical User Interface (GUI) enables the user
to create test cases without programming. With the
interaction of the GUI, test steps are constructed in
a pre-defined order; each test step has its own
properties like “step name”, “delay time”, “timeout
value” and so on, which can be modified on the
GUI. The structure of the GUI is in Figure 7.

All the built-in functions are implemented in the
“Test Checks Repository”, which are added
dynamically into the “Test Sequence Editor”. CAN
database symbols are parsed to generate names for
signals and messages, and listed in the editor for
selection.

Figure 7. Structure of the Test Case Editor GUI

The configuration is saved into an XML file,

which can be loaded by the test kernel for
automated test, or by the GUI to edit.

2.2.6.2. Programming Support
External test cases are implemented inside a

dynamic link library (DLL), which are loaded by
the test kernel and treated as an individual test
module.

To achieve the DLL development of external test
module, a header file of the test environment is
provided for each kind of DLL. Basic system
functions in the environment can be invoked by the
user so as to perform operations like message
transmission and reception, database symbol lookup
and so on.

During the initialization of each library, test
cases are registered into the test kernel; this is done
by an API call named “Register_Testcases”. After
the process of registration, all the test cases are
visible in the test environment.

3. RESULTS AND ANALYSIS

The study presents a solution for the realization
of automated testing of CAN devices on the PC.
Experiments are performed to validate that the test
environment is able to handle the test case creation,
test case execution and test report generation with
high efficiency. The complexity and performance
issues for building such a test environment are
solved.

3.1. The Efficiency of the Test Environment
The test environment is built with the hardware,

the test kernel, the test case generator and the test
report generator; all the software components are
realized in a modular manner. To test a specific
ECU, the test case can be created by the test case
generator, and is automatically loaded by the test
kernel to generate the test report.

Users are only required to create or modify each
test case so as to perform the test. The test report
can be used by the user to detect the problems or

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st January 2013. Vol. 47 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

1196

malfunctions of the DUT. Thus the complexity to
build or maintain the test environment is
minimized, and the problems can be automatically
identified at an early stage during the development.

3.2. The Performance of the Test Kernel
A test is executed to validate the performance of

the test environment: A tool is programmed to send
a remote frame every one millisecond; a response
data frame within a test case of the environment
will be sent back when the remote frame is
received. The delay time (USBRXT + CalcT + USBTXT)
taken for reaction by the test environment is
measured on an oscilloscope, in Figure 8.

Figure 8. Response Delay of the Test Environment

From the experiment we can conclude that the

response delay time of the test environment is
around 800 ~ 1000 microseconds, which is fast
enough for ECU tests in most cases.

4. CONCLUSION AND FUTURE WORK

An automated test environment is built for ECU
testing on CAN Bus, along with a test case
generator and logging & reporting feature. With the
test cases and databases provided, the test
environment is able to configure the testing
sequences and perform the test steps automatically
with a single click on the user interface. The files
logged during test can be generated to form the test
reports in HTML or PDF file formats. The
requirements of an ECU testing are satisfied by the
test environment, which greatly enhances the
testing efficiency of the automotive CAN network.

Since the test environment is built on the PC, the
limitation is that the reaction speed of the
environment cannot be further decreased, according
to the response delay in Figure 8, the time 800 ~
1000 microseconds is wasted during the data
exchange between the PC and the hardware. The
goal for the future is to implement a script engine in

the hardware of the test environment, which parses
and executes the test scripts pre-compiled by the
PC, so as to achieve instant reaction to the CAN
messages and other events during the test.

Another improvement is to automate the test
kernel of the test environment using Windows
COM Object, with the automation interface of the
test kernel registered in the Windows system, the
test kernel can be utilized by external programs
such as VB Scripts, command line scripts to
achieve flexible scheduling of each test case.

REFERENCES

[1] Transportation Research Board. the safety

Promise and challenge of Automotive
electronics. Washington, D.C.: National
Research Council of the National Academies.
2012.

[2] Allgemeiner Deutscher Automobil-Club.
ADAC Pannenstatistik 2011. München: ADAC
Fahrzeugtechnik. 2012

[3] Dr. Richard Turner. Toward Agile Systems
Engineering Processes. CrossTalk the Journal of
Defense Software Engineering. 2007; 11-15
(April 2007).

[4] Guido Sandmann, Richard Thompson.
Development of AUTOSAR Software
Components within Model-Based Design.
Michigan. 2008 SAE World Congress. 2008;
SAE Paper 2008-01-0383.

[5] Nigel Tracey, Ulrich Lefarth, Hans-Jörg Wolff,
Ulrich Freund. ECU Software Module
Development Process Changes in AUTOSAR.
Stuttgart: ETAS GmbH. 2007.

[6] Feng Luo, Chu Liu. Implementation of CAN
bus real-time simulation kernel based on
windows platform. Advances in Computer,
Communication, Control and Automation.
Shanghai. 2012; 121: 61-68

[7] Johannes Petrus Grobler. Design and
Implementation of a High Resolution Soft Real-
Time Timer. Thesis. Pretoria: University of
Pretoria; 2006

http://www.jatit.org/

	FENG LUO, CHU LIU

