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ABSTRACT 
 
Inverted formin 2 (INF2) is an essential gene that is expressed in glomerular podocyte in kidney.  
Malfunction in INF2 will result in kidney diseases, which could be avoided if the mechanisms of its 
transcription and translation are well-studied.  This research aims to use a computational approach to 
understand the tandem repeats, which is a phenomenon closely linked with diseases, in this gene.  A 
genome database, web server, and a computational motif model were primarily used in this research.  The 
results of this study provide insights that will guide biologists and biomedical practitioners in molecular 
studies and drug designs for the INF2-implicated diseases.     
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1.  INTRODUCTION 
  

Glomerular podocytes are unique renal cell with 
a complex cytoarchitecture.  Coupled with 
glomerular basement membrane, they form the 
glomerular filtration barrier which prevents protein 
leakage into urine filtrates [1].  Though it was 
postulated that glomerular podocytes play an 
essential role in establishing the specific 
permeability properties and cleaning of the 
glomerular filter, the detailed mechanisms are 
remained unknown [2].  However, there is a 
common understanding that the aberration and 
failure of glomerular podocytes may culminate in 
the renal diseases, such as collapsing 
glomerulopathy [3] and focal-segmental 
glomerulosclerosis [4].  The common 
characteristics of the pathobiology of glomerular 
podocytes include the alteration in the molecular 
composition of the slit diaphragm and the 
reorganization of the foot processes [5].  
Understanding of the molecular mechanisms of the 
pathogenesis of glomerular podocytes is important 
for the prevention and diagnosis of the renal 
diseases.     

 
In this study, a bioinformatics approach has been 

carried out to investigate the genetic characteristics 
of glomerular podocyte.  Computational tools that 
have been applied include database, web server, 
and a computational motif model which was 
executed in Java programming.   

 

Inverted formin 2 (INF2) gene, which is located 
on chromosome 14 of human genome, is the most 
crucial gene that is expressed in glomerular 
podocyte.  The tandem repeats of mono-, di-, and 
trinucleotide of INF2 will be analyzed to study the 
potential aberration of the glomerular podocyte.  
Tandem repeats are gene motifs that occur in a 
repeating fashion, which is ubiquitous in organisms 
and they can occur at any location on a gene [6].  
Computational methods represent an efficient 
approach in the analysis of tandem repeats because 
of the enormous volume of genetic data.  It is not 
surprising that computational tools such as genome 
software [7-10], computational simulation [11-18], 
graphical representation [19-23], databases [24-28], 
web servers [29-32] and computer modeling [33-35] 
have been used extensively by computer scientists 
and geneticists in the studies of genetic data.  These 
computational tools allow scientists to understand 
dynamic biological processes [36], and have 
practical applications in the biomedical sectors, 
such as microarray analysis of genes in medical 
informatics [37] and the identification of gene 
expression signatures in clinical settings [38-41]. 

 
2.  METHODS 

 
The nucleotide sequences of the studied gene, 

INF2, were retrieved in the FASTA format from 
the GenBank of NCBI.  The UCSC Genome 
Browser database [47] was used to visualize the 
loci of INF2 gene on the chromosome.  KOBAS 
2.0 web server [48] was used to search for the 
structural motifs of INF2 gene and the annotated 
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disease pathway.  A combinatorial-based mreps 
algorithm [42] was used to identify the repeated 
nucleotides.  A motif model [43] was used to 
identify the repeating motif ( MΘ ) and non-motif 
( BΘ ).  This computational motif model was 
executed using Java Programming. 
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Let Sij be the subsequence of length W at position 

j in a sequence i.  Let a be the symbol that occurs at 
a position k of either MΘ  or BΘ ; let the position 
k be 1 Wk ≤≤ , and L be the set for the length of 
nucleotide sequence.  The conditional probabilities 
that Sij is found using the motif model are 
computed as such [43]: 
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Whereas the conditional probabilities that Sij is 

found using the non-motif model are computed by 
[43]: 
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Let λ  be the prior probability of motif 

occurrence in the gene sequences.  The motif 
occurrence probability Z at position j in sequence i 
is derived from [43]: 
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In this research, Sij is taken to be a genuine motif 

hit when the following is fulfilled [43]: 
 
( ) ]/)1log[()(/)(log λλ−≥ij

B
ij
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Because of the complexity of motif, the pseudo-
count of motif is likely to happen.  We identified 
pseudo-count as [43]: 
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Where Pa/b is the BLOSUM substitution 

probability for amino acid a (triplet) from the 
observed amino acid b (triplet).  Mono-, di-, and 
trinucleotide tandem repeat motifs with the 
minimum repeat number of 6, 2, 2, respectively, 
was analyzed.  Relative frequency was used to 
analyze the total repeat per kilobase (kb) in the 
nucleotide sequence of INF2 gene.  A triplet 
classification system [44] was used to categorize 
the trinucleotide tandem repeats.  Besides, DNA 
Analysis Server [46] was used to validate the 
structural parameters of INF2 gene. 
 
3.  RESULTS AND DISCUSSION 
 

INF2 gene is constituted by 11112 base pairs (bp) 
of nucleotides with 19.51% Adenine, 15.35% 
Thymine, 30.84% Guanine, and 34.30% Cytosine.  
It is apparently a GC-rich gene.  However, in 
general there is no correlation between the gene 
motif’s GC nucleotide percentage and its length 
[45].   

 
Using the UCSC Genome Browser database [47], 

INF2 gene was visualized on the locus of 
Chromosome 14.  Figure 1 illustrates the graphical 
position of INF2 gene. 
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Figure 1. The Position Of INF2 On Chromosome 14. 
 
We queried INF2 gene using KOBAS 2.0 web 

server [48] for the structural motifs and the disease 
pathways.  Figure 2 illustrates the sample query 
result for 3 transcript variants of INF2.  The results 

show that INF2 is implicated in the urinary and 
reproductive diseases.  Glomerulosclerosis, which 
is a kidney disease, is INF2-implicated. 

 
 

   
Figure 2. Query Result For INF2 Gene 

 
 
Besides, the structural motifs (which are also 

functional motifs) of INF2 were identified using 
KOBAS 2.0.  It was found that the four motifs of 
INF2 are located at the vicinity of 5’ region of the 
gene.  These motifs are listed in Table 1. 
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Table 1.  Motifs Of INF2 

Motif ID From  To Definition  E-value 

pf:Drf_GBD 23 152 Diaphanous GTPase-binding Domain 5.2e-17 
pf:Drf_FH3 156 343 Diaphanous FH3 Domain 1.2e-38 
pf:FH2 556 920 Formin Homology 2 Domain 7.9e-75 
pf:WH2 974 989 WH2 motif 8e-5 
 
 
A total of 482 tandem repeats were identified for 

mono-, di-, and trinucleotide motifs.  The 
interspersed repeats span a length of 657 bp, which 
is equivalent to 5.91% of the total length of INF2 
gene.  The length of simple repeat is 54 bp, which 
is equivalent to 0.49% of the total length of INF2 
gene.  The distribution of tandem repeats of INF2 
gene is given in Table 2.  

 
Table 2. Distribution Of Tandem Repeats Of  INF2 

Repeat motif No. of occurrence Relative 
frequency 

Mononucleotide: 
    
Dinucleotide: 
    
Trinucleotide 
 

16 
 
280 
 
186 

1.44 
 
25.20 
 
16.74 

   
 As shown in Table 2, the relative frequency of 

mononucleotide tandem repeats is quite low as 
compared to dinucleotide and trinucleotide tandem 
repeats.  None of the 16 mononucleotide tandem 
repeats is falling within the functional motifs which 
are listed in Table 1, neither does any one of the 
mononucleotide tandem repeat is found in the 
vicinity of the functional motifs.  The vicinity is 
defined as 100 bp upstream and downstream of the 
functional motifs.  Of 280 dinucleotide tandem 
repeats there are 14 repeats in vicinity, whereas 19 
repeats are falling within one of the functional 
motifs listed in Table 1.  Of 186 trinucleotide 
tandem repeats there are 5 repeats found in the 
vicinity of the functional motifs, whereas 8 repeats 
are found within the functional motifs.  Because 
the number of tandem repeats that is falling within 
the functional motifs is scarce, the impact of the 
polymorphism of these tandem repeat motifs on the 
functional motifs may not be significant.  As it is 
known that tandem repeat regions are highly 
polymorphic [49], the less abundance of mono-, di-, 
and trinucleotide tandem repeats in the functional 
motifs suggests that the mutation of these 
sequences is less likely to contribute to the 
aberration of INF2 gene.  It also implies that the 

mutation of these tandem repeats is not closely 
associated to the diseases of glomerular podocytes 
in kidney. 

 
Because trinucleotides constitute amino acids in 

the coding region, it is important to further 
examine their distribution pattern in INF2 gene.  
Table 3 displays the trinucleotide tandem repeats 
categorized according to a triplet classification 
system [44]. 

 
Table 3. Distribution Of Trinucleotide Tandem Repeat 
Class Repeat motifs  

(with frequency of  
occurrence) 

Total Relative 
Freq 

T1 AAT(0) 
ATA(0) 
TAA(0) 
ATT(0) 
TTA(0) 
TAT(0) 

0 0 

T2 AAG(2) 
AGA(0) 
GAA(7) 
CTT(2) 
TTC(2) 
TCT(2) 

15 1.35 

T3 AAC(2) 
ACA(2) 
CAA(0) 
GTT(0) 
TTG(0) 
TGT(0) 

4 0.36 

T4 ATG(0) 
TGA(2) 
GAT(0) 
CAT(0) 
ATC(0) 
TCA(0) 

2 0.18 

T5 AGT(0) 
GTA(0) 
TAG(0) 
ACT(5) 
CTA(0) 
TAC(0) 

5 0.45 
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T6 AGG(7) 
GGA(16) 
GAG(8) 
CCT(13) 
CTC(4) 
TCC(4) 

52 4.68 

T7 AGC(11) 
GCA(8) 
CAG(10) 
GCT(14) 
CTG(14) 
TGC(10) 

67 6.03 

T8 ACG(0) 
CGA(0) 
GAC(0) 
CGT(0) 
GTC(0) 
TCG(0) 

0 0 

T9 ACC(4) 
CCA(6) 
CAC(9) 
GGT(3) 
GTG(2) 
TGG(2) 

26 2.34 

T10 GGC(6) 
GCG(0) 
CGG(5) 
GCC(4) 
CCG(0) 
CGC(0) 

15 1.35 

 
It is striking that quite a number of trinucleotide 

classes are either exhibiting low abundance of 
tandem repeat motifs (e.g., class T2, T3, T4, T5 
and T10) or do not have motifs presented in INF2 
gene (e.g., T1 and T8).  As each class of tandem 
repeat consists of six member trinucleotide tandem 
repeat motifs, T1 and T8 which do not have any 
occurrence of motifs implies that all of their 
member repeat motifs do not present in the gene.  
Across 60 repeat motifs from class T1 to T10, there 
are 30 repeat motifs (50%) do not occur in INF2 
gene.  This explains the observed low relative 
frequency (the last column in Table 3) of 
trinucleotide tandem repeats in INF2 gene.  Class 
T7, which has the highest value of relative 
frequency, constitutes amino acid Ser (AGC), Ala 
(GCA and GCT), Gln (CAG), Leu (CTG), and Cys 
(TGC) in the coding region.  Mutations of these 
codons in the coding region may have impacts on 
the protein expression of INF2 gene. 

        
DNA Analysis Server [46] was used to validate 

the structural parameters of INF2 gene.  We used 
plot.it server of the DNA Analysis Server to 

visualize the parametric plot of physicochemical 
and statistical parameters.  The structural properties 
of trinucleotide and dinucleotide have been verified.  
The verified parameters (DNA rigidity and 
bendability) for trinucleotide is shown in Figure 3. 

 

 
Figure 3. Trinucleotide Rigidity And Bendability 
 
Figure 3 shows a normal distribution of the 

extent of nucleotide rigidity and bendability across 
INF2 gene.  In general, the diverging values are not 
very large to the extent that the interaction between 
proteins and gene would be prevented.  Similar 
distribution of the parameter values was observed 
for the roll angle and tilt angle of dinucleotide, as 
displayed in Figure 4. 

 

 
Figure 4. Roll And Tilt Angle Of Dinucleotide 
 
Although Figure 4 shows that the roll angle and 

tilt angle of dinucleotide are normal, it was 
observed that the largest diverging value of tilt 
angle occurs at 3500-4000bp.  However, we did not 
observe the aberrant patterns of tandem repeat in 
this region.  

   
4. CONCLUSION 

 
This study analyzes the mono-, di-, and 

trinucleotide tandem repeats in INF2 gene of 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 31st January 2013. Vol. 47 No.3 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
889 

 

glomerular podocyte.  It was found that the relative 
frequency of the mononucleotide tandem repeats is 
very much lower than that of dinucleotide and 
trinucleotide tandem repeats.  In addition, it was 
found that the number of tandem repeats that is 
falling within the functional motifs is scarce, 
implying that the impact of the polymorphism of 
these tandem repeat motifs may not be significant.  
The mutation of these tandem repeats is not closely 
associated to the diseases of glomerular podocytes 
in kidney.  However, the analysis on the 
distribution of trinucleotide tandem repeats 
demonstrates that the repeat motifs in class T7 may 
have implications in the protein expression of INF2 
gene in their mutated forms. 
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