
Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

816

A BASED RULES APPROACH FOR DISTRIBUTED TEST

1MY El HASSAN CHARAF, 2MOHAMMED BENATTOU, 3SALMA AZZOUZI
Laboratory of Research in Computer Science and Telecommunication

Faculty of Science Ibn Tofail University
Kenitra, Morocco

ABSTRACT

Since testing is a continuous activity throughout the entire development process, it is important to take into
account the inherent complexity of the distributed systems architecture that require special testing
techniques. In fact, in the distributed test context where a set of parallel testers exchange I/O messages to
perform the test, some potential problems of coordination can arise amongst remote testers. These problems
are usually known as controllability and Observability issues. The emphasis of recent works is focused on
the use of rules based systems that describe the system behavior by simple rules which increase the
flexibility and easiness of programming. In this paper, we introduce some technical issues for testing
distributed frameworks using rules based systems to overcome such problems.

Keywords: Rules-based system; Distributed test; Rules; Controllability and Observability Problems;
Synchronization.

1. INTRODUCTION

Unlike the centralized test where the entire
activity of the test (injection of stimulis and
observing reactions of the implantation under test)
is performed by a single entity, this activity is
performed by a set of parallel testers called PTCS
(Parallel Test Components) in the distributed
context. The difficulty is in ensuring coordination
between such PTCs. The coordination between the
PTCs produces some problems known as
controllability and observability issues that have
great influence on several aspects of the testing
activity, such as the execution of the test sequences,
the fault detectability in the test system and the
interpretation of testing results.

As ANSWER to these difficulties, a significant
tendency is focused on the use of rules based
systems. This kind of systems permits the
implementation of highly flexible systems capable
of adapting themselves to different situations by
seeking to express an automatism in a similar way
to as would make it a human being: “IF antecedents
THEN consequents”. Additionally, the testers -in
such systems- are able to take decisions concerning
possible malfunctions and decided if the process of
test returns a failed verdict or an accepted one.

In THIS article, we explore the benefits of rule-
based multi-agent systems to concept
communication between different components of

the distributed test application. We also explain
how such systems can avoid the use of the
coordination messages and resolve the
synchronization problems. By the way, the testers
will exchange only some messages called
observation messages which will reduce
significantly I/O operations and the use of external
messages.

This article is organized as follows: The second
section describes the architecture, the concept of
distributed testing, and the test procedure while
referring to the problem of synchronization.

We introduce then in the third section an
example of rules generation from a global test
sequence. In the fourth section, we present rules
and facts as components of a petri net to benefit of
its formalism.

The last section describes our rule-based multi-
agent system prototype for testing distributed
applications.

A. Architecture
The basic idea is to coordinate parallel testers

using a communication service in conjunction with
the (IUT)1. Each tester interacts with the IUT
through a port called the Point of Control and

1 IUT : Implementation Under Test

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

817

Observation (PCO)2 and communicates with other
testers through a multicast channel (Fig.1).

Figure 1. Test Architecture

An IUT (Implementation Under Test) is the
implementation of the distributed application to
test. It can be considered as a "black-box", its
behavior is known only by interactions through its
interfaces with the environment or other systems.

B. Modeling by automaton
To approach the testing process in a formal way,

the specification and the IUT must be modeled
using the same concepts. The specification of the
behavior of a distributed application is described by
an automaton with n-port (FSM Finite State
Machine) [1] defining inputs and the results
expected for each port called PCO.

We denote Σk the input alphabet OF the port k
(PCO number k) and Γk the output alphabet of the
port k. Fig. 2 gives an example of 3p-FSM with Q
= {q0, q1, q2,q3}, q0 is the initial state, Σ1 = {x1},
Σ2 = {x2}, Σ3 = {x3}, and Γ1 = {a1,a2,a3 }, Γ2 =
{ b1,b2,b3}, Γ3 = { c1,c2,c3}.

Figure 2. An example of 3p-FSM

A test sequence of an np-FSM automaton is a
sequence in the form: !x1? y1!x2? y2…! xt?yt that
for i = 1,..,t : xi є Σ , yi Γk and for each
port k |yi ∩Γk| ≤ 1.

• !xi :Denotes sending the message xi to IUT.

2 PCO : Point of Control and Observation

• ?yi :Denotes the reception of messages
belonging to the yi from the IUT.

An example of a TEST sequence of 3p-FSM
illustrated in Fig. 2 is:

!x1?{a1,b1,є}!x2?{a2,b3,c2}!x2?{a2,b2,c2}!x1?{є,
b2, є}!x3 ?{a1,є,c3}. (1)

Generally, test sequences are generated from the
specification of the IUT and characterized by fault
coverage. Several methods exist for generating test
sequences from I/O FSM specifications. They are
mainly for detecting the following types of fault:
output faults, transfer faults or combination of both
of them [2].

C. Distributed Test Problems
Many kinds of problems can arise in the

distributed test context, we define these notions by
referring [3].

1) Controllability Problem

It can be defined from Test System view as
capability of a Test System to force the IUT to
receive inputs in the given order. Controllability
problem arises when Test cannot guarantee that
IUT will receive event of transition(i) before event
of transition (i+1).

2) Observability Problem

It can be defined from Test System view as
capability of a Test System to observe the outputs
of the IUT and decide which input is the cause of
each output.

For distributed test architecture where a transition
contains at most single output for each output,
observability problem arises when two consecutive
transition (i) and transition(i+1) occurs on the same
port k but only one of the transitions has an output
in port k and the other one is an empty transition
with no output. In this case the Test System cannot
decide whether transition(i) or transition(i+1) is the
cause of output.

To resolve such problems, authors in [3] propose
an algorithm to generate local test sequences from
the global test sequence. We will get the following
local test sequences by applying the algorithm
mentioned above to the global test sequence (1):

 w1=!x1?a1?a2?a2!O3!x1?a1,
 w2=?b1!O3!x2?b3!x2?b2?b2!C3, (2)
 w3=?O2?c2?c2?O1?C2!x3?c3 .

q2

x3/(a1,є,c3)

x1/(є,b2, є)

x3/(є, є,c3)

q1 x2/(a2,b3,c2)

q0

x1/(a1,b1,є)

x2/(a2,b2,c2)

Multicast
channel

IUT

PCO

PCO

Tester

Tester

Tester

PCO

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

818

As shown in the obtained local test sequences,
some coordination messages (Ck) are added to the
projections of the global test sequence in each port
to avoid both the controllability and observability
problems when using the complete test sequence.
We notice two kinds of coordination messages:

• C coordination messages for guaranteeing
controllability

• O coordination messages for guaranteeing
observability. We denote:

• !C{t1,,tr}(!O{t1,,tr} resp.) the sending of a
coordination message (observation
message resp.) to the testers t1..tr.

• ?Ct(?Ot resp.) the receipt of a coordination
message (observation message resp.) from
the tester t.

3) Synchronization Problem

As explained above, the algorithm in [3] allows
the generation of local test sequences to be
performed by each tester.

Figure 3. (a) Figure 3. (b)

Each tester is running its local test sequence
produced from the global test sequence of the IUT.
Thus, the testers are working together but
independently, which leads us to manage the
problem of synchronization of testers. We will run
the first fragments of the local test sequences w1,
w2 and w3 defined as follows:

 wf1=!x1?a1,
 wf2= ?b1!O3!x2, (3)
 wf3=?O2?c2 .

Running wf1, wf2 and wf3 should give the result
shown in Fig. 3(a) but the execution of our
prototype provides an incorrect result given in Fig.
3 (b). Indeed, in the last diagram the second tester
sends the message x2 to the IUT before the first
tester receives the message a1 from the IUT.

So, the execution of local testing is not conform
with the specification in (1), where the message
‘x2’ must be sent only if all messages due to the
sending of ‘x1’ by the tester-1 are received by the
IUT.

In the following of this paper, we will take - for
simplicity, the test sequence of 3p-FSM shown in
Fig. 2 defined as:

!x1?{a1,b1,є}!x2?{a2,b2,c2}!x3?{є,є,c3}. (4)

D. Related Works
Many works has been made to avoid the

problems described in the previous section. Indeed,
the author in [4] shows that controllability and
observability are indeed resolved if and only if the
test system respects some timing constraints. Then
the article determines these timing constraints and
other timing constraints which optimize the
duration of test execution.

In [5], the authors explain how both
controllability and observability problems can be
overcame through the use of coordination messages
among remote testers.

The work [6] proposes a new method to generate
a test sequence utilizing multiple unique
input/output (UIO) sequences. The method is
essentially guided by the way of minimizing the use
of external coordination messages and input/output
operations.

In [7], the authors suggest to construct a test or
checking sequence from the specification of the
system under test such that it is free from these
problems without requiring the use of external
coordination messages. In this context, they propose
some algorithms for constructing subsequences that
eliminate the need for external coordination
messages.

Another work [8] shows that the use of
coordination messages can introduce delays and this
can cause problems where there are timing
constraints. Thus, sometimes it is desired to
construct a checking sequence from the
specification of the system under test that will be
free from controllability and observability problems
without requiring the use of external coordination
message exchanges. To this end, the authors
suggest an algorithm that achieves this.

The main idea in [9],[10],[11] is to construct a
test sequence that causes no controllability or
observability problems during its application in a
distributed test architecture. For some
specifications, such test sequence exists where the
coordination is achieved via their interactions with
the IUT [12]. However, this case is not always true
as detailed in [13] and [9].

O O ?c

?c

!x

?b

?a

!x

?b

!x

?a

!x

T

T

T

!x2

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

819

The emphasis of recent works is to minimize the
use of external coordination message exchanges
among testers [11],[14] or to identify conditions on
a given FSM under which controllability and
observability problems can be overcome without
using external coordination messages [13], [15].

Finally, our work is mainly based on [5], [16]
and the algorithm proposed in [3] for writing test
coordination procedures in a distributed testing
architecture.

The paper can be considered as a continuity of
[17] where we propose the use of the MAS (multi-
agent system) incorporated with ontology.

2. RULES GENERATION FROM A

GLOBAL TEST SEQUENCE

The basic idea behind introducing the rule’s

concept in the distributed test context is that the
exchange of messages to perform the test is
sequential. In fact, for each transition in the test
process, the next messages to be sent to the IUT
depend mainly on the previous messages received
even from the IUT or from other testers. The idea is
to write algorithm to deduce -from the global test
sequence- the rules to be respected by the testers to
guarantee their coordination. In fact, each rule is
composed by two parts, conditions and results.
These components are shared between the IUT and
the testers as facts.

To communicate with the IUT, the testers follow
some instructions described through these rules.
When the necessary conditions (facts) have arisen,
the tester proceeds in applying results as described
in its local rules. Let us take the global test
sequence!x1?{a1,b1,є}!x2?{a2,b2,c2}!x3?{є,є,c3}
defined in (4). It can be translated on a set of rules
as follow:

 If the tester T1 send a message x1 to the IUT
(!x1.T1) then the tester T1 will receive a message
a1 from the IUT (?a1.T1) and the tester T2 will
receive a message b1 from the IUT (?b1.T2).

 If the message a1 is received in the tester T1

(?a1.T1) and the message b1 is received in the
tester T2 (?b1.T2). Then the tester T2 will apply
the message x2 to the IUT (!x2.T2).

At this stage, we have an observability problem
so we will introduce an observation message O3 to
be sent by tester T2 to the tester T3. In this case, the
next rule is as follow:

 If the tester T2 send a message x2 to the IUT
(!x2.T2) then the tester T1 will receive a message
a2 from the IUT (?a2.T1) and the tester T2 will
receive a message b2 from the IUT (?b2.T2) and
the tester T3 will receive a message c2 from the
IUT (?c2.T3) and the tester T2 will send an
observation message O3 to tester T3 (!O3.T2).

All these rules can be expressed over each tester
as local rules as follows:

 ! x1.T1 ?a1.T1 ; !x1.T1 ?b1.T2 ;

 ?a1.T1 !x2.T2 ; ?b1.T2 !x2.T2 ;

 !x2.T2 ?a2.T1 ; !x2.T2 ?b2.T2 ; !x2.T2
?c2.T3 ; !x2.T2 !O3.T2

However, we can notice that the verdict of the
test over the whole system can be obtained by
calculating if all the local rules have been respected
in each tester during the test execution. Thus, in the
point of view of the Test system, the coordination is
ensured using the global rules as follows:

 ! x1.T1 ?a1.T1 ^ ?b1.T2,

 ?a1.T1 ^ ?b1.T2 !x2.T2,

 !x2.T2 ?a2.T1^ ?b2.T2 ^?c2.T3 ^ !O3.T2.

In the next subsections, we explain how we can
generate (local/global) rules from a given global
test sequence.

Let’s take the example of the global test sequence
defined in (4). The algorithm [20] generates a
matrix of local rules by browsing the‘t’ messages to
be sent to the IUT in the global test sequence.The
rules will be constructed as follows:

• Each message belonging to yi is a part of a
rule in the matrix as a consequence of
sending message xi

• Each message belonging to yi is a part of a
rule in the matrix as an antecedent of
sending message xi+1.

To avoid observation problems, each tester
receiving a message h є yi-1 should be able to
determinate that h has been sent by IUT after IUT
has received xi-1 and before IUT receives xi.

Afterwards, we introduce the observation
messages to write rules for avoiding this problem

Therefore, by applying the algorithm [20] to the
global test sequence defined in our example, the
obtained matrix is a R38 matrix composed by the
elements Rij defined as follows:

Table 1: The Matrix Of Local Rules Deduced From (4).

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

820

R11:! x1.T1?a1.T1 R21: ! x2.T2 ?a2.T1 R31: ! x3.T3?c3.T3

R12:!x1.T1 ?b1.T2 R22: ! x2.T2 ?b2.T2 R32:!x3.T3!O1.T3

R13:?a1.T1 !x2.T2 R23: ! x2.T2 ?c2.T3 R33:!x3.T3!O2.T3

R14:?b1.T2 !x2.T2 R24: ?a2.T1!x3.T3 R34:!O1.T3 ?O3.T1

R15:є R25: ?b2.T2 !x3.T3 R35:!O2.T3 ?O3.T2

R16:є R26: ?c2.T3 !x3.T3 R36:є

R17:є R27: ! x2.T2!O3.T2 R37:є
R18:є R28: !O3.T2 !O2.T3 R38:є

Then, we can deduce facts and global rules from
the obtained matrix as:

• F =:{ !x1.T1- ?a1.T1- ?b1.T2- !x2.T2-
 ?a2.T1- ?b2.T2- ?c2.T3-!O3.T2- !x3.T3-
 ?O2.T3-?c3.T3-!O1.T3- !O2.T3-?O3.T1-
?O3.T2}

• R= :{r1 - r2 - r3 - r4 - r5 - r6 -r7 -r8}

 r1 : ! x1.T1 ?a1.T1 ^ ?b1.T2
 r2 : ?a1.T1 ^ ?b1.T2 !x2.T2
 r3 : !x2.T2 ?a2.T1^ ?b2.T2 ^?c2.T3

^ !O3.T2
 r4 : ?a2.T1^ ?b2.T2 ^?c2.T3 !x3.T3
 r5 : !O3.T2 ?O2.T3
 r6 : !x3.T3 ?c3.T3 ^!O1.T3 ^ !O2.T3
 r7 : !O1.T3 ?O3.T1
 r8 : !O2.T3 ?O3.T2

After obtaining the lists of facts and rules, we

describe in the next section our test model using the
Petri Net formalism

3. FORMAL DEFINITION AND BASIC
TERMINOLOGY

A Petri net (also known as a place/transition net

or P/T net) is one of several mathematical
modelling languages for the description of
distributed systems. A Petri net is a directed
bipartite graph, in which the nodes represent
transitions (i.e. events that may occur, signified by
bars) and places (i.e. conditions, signified by
circles). [18]

In our case, the places represent facts and
transitions represent rules. Let’s define the
following structures:

• A: matrix of antecedents, Aij =1 if the fact
fj is antecedent in rule ri else Aij =0

• C: matrix of consequents, Cij =1 if the fact
fj is consequent in rule ri else Cij =0

• M: The state (marking) of a Petri net is
defined as:

 M: P-> N, i.e., a function mapping the set
of places onto {0,1,2, … }.

 In our case, this function M is defined as follows:

 M: F-> {0,1}, i.e., a function mapping the
set of facts onto {0,1}.M0 is the initial state
;

 M0= (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

The next diagram represents facts and rules
deduced from the global test sequence (4) by
applying the algorithm explained in the previous
section.

Figure 4: The Petri Net Representation Associated To (4)

http://www.jatit.org/
http://en.wikipedia.org/wiki/Mathematical
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Distributed_systems
http://en.wikipedia.org/wiki/Bipartite_graph

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

821

In our case, the matrices A and C are defined as:

We denote A(.,rj) (respectively C(.,rj)) the row

associated to the rule rj in the matrix of antecedents
A (resp. matrix of consequents C).

Sensitized rules: In a Petri net, a rule rj is
sensitized for a marking M if and only if M
A(.,rj). The is a vectors comparison and it will
be done fact by fact as follows:

In our example, let’s take a marking
M=(1,1,1,0,0,0,0,0,0,0,0,0,0,0,0) and calculate if the
rules r2 and r3are sensitized for this marking or
not. We have A(.,r2) =
(0,1,1,0,0,0,0,0,0,0,0,0,0,0,0) and
A(.,r3)=(0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0). By
comparing M with the rows above: M A(.,r2)
and A(.,r3) M , we can deduce that the rule r2 is
sensitized for the marking M but the rule r3 is not.

Fired rules: In a Petri net, a sensitized rule rj for
a marking M can be fired and the next marking M is
defined as:

The marking vector M is composed by positive
or null values because M A(.,rj) for the
sensitized rule rj. In the example above if the rule
rj is fired the next marking will be
M=(1,0,0,1,0,0,0,0,0,0,0,0,0,0,0)

As conclusion, when we have the facts and rules
list represented in a matrix form (A,C) and the
initial state of the system M0, we can then deduce
using simple arithmetic operations the state of the
system and decide if some rules can be enabled. In
the next section we introduce a rule-based multi
agent system that will implement rules and facts
described previously.

4. TEST PROTOTYPE

A. Terminology
1) Rule-Based Expert System

A rule based expert system is typically composed

of at least three primary components. These are the

knowledge base which is a collection of rules, the
inference engine that enables the expert system to
draw deductions from the rules in the KB and
finally the working memory which contains the data
that is received from the user during the expert
system session.

2) Rule-Based Multi-Agent System MAGSY

As detailed in [19], the kernel of an agent in
MAGSY is a forward-chaining rule interpreter.
Therefore, each agent has the problem solving
capacity of an expert system. The knowledge of the
agents is structured in an object-oriented knowledge
representation scheme. There is a global knowledge
base which contains the knowledge that may be
accessed by all of the agents.

B. Architecture
A rule-based multi-agent system has been

proposed to avoid the synchronization problem
described above. It’s mainly based on the use of
some agents in the distributed nodes connected to
the IUT. Each agent executes only a part of the
global reasoning, and diffuses through the network
the obtained results. By the way, other agents can
use these results to participate in the reasoning.

Figure 5. Architecture Of The Distributed Test System

As shown in fig. 5, the system is composed of the
following components:

• The IUT (Implementation Under Test) is the
implementation to be tested.

• Some agents RBATi (Rule-Based Agent
Testers) connected to the IUT using a PCOi
(Point of Control and Observation) to
exchange inputs/outputs messages.

 f F, M(f) A(f, rj)

M= M - A(.,rj) + C(.,rj)

KNOWLEDGE
BASE

IUT

RBAT

RBAT

RBAT

INFERENCE
ENGINE 1

INFERENCE
ENGINE 2

INFERENCE
ENGINE 3

WORKING
MEMORY1

WORKING
MEMORY2

WORKING
MEMORY3

FACTS ,
RULES,
Marking Vector …

PCO1 PCO2 PCO3

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

822

• A global KB (Knowledge Base) that store
facts, global rules, RBAT identification and
the Marking vector.

Each RBATi uses its inference engine and its
working memory to communicate with the KB for
making a global reasoning.

C. Test procedure
1) Description

• For sending an input to the IUT, the Rule-

Based Agent Tester (RBATi) checks the
knowledge base to test if the rule is
sensitized using the marking M.

• When an RBATi apply an input to the IUT,
the IUT sends some outputs messages to the
concerned RBATj.

• After receiving the outputs messages from
the IUT, each RBATj check using its
forward-chaining rule interpreter (IEj) and
its Working Memory (WMj) if the message
received is the expected one.

 If the result is OK => The RBATj
notifies the Knowledge Base (rule fired).
 Else => Test Failed.

• The rules Ri of testers concerned by
validating a rule ri must be fired to decide if
the next rule can be sensitized.

2) Flow Diagram

Let’s take F and R the lists of facts and global
rules respectively deduced from the global sequence
test (4) and M0 the initial marking.

Since M0 is the initial state, the tester RBAT1
will apply input x1 to the IUT, by the way r1 is
fired and the marking will be M1. M1= M0 - A(.,r1
) + C(.,r1) ; M1= (0,1,1,0,0,0,0,0,0,0 ,0,0,0,0,0).
When other agent testers receives outputs -induced
by applying x1 - from the IUT, each RBATi
calculates if the message received is the expected
one by checking its local rules. If so, the local rule
is fired. Else, the test fails.

While all local rules (R11,R12) participating in
the global one r2 are fired then the global rule r2 is
fired too and the marking is updated to M2=M1-
A(.,r2)+C(.,r2). We have A(.,r2)=
(0,1,1,0,0,0,0,0,0,0,0,0,0,0,0) and C(.,r2) =
(0,0,0,1,0,0,0,0,0,0,0,0,0,0,0). In this case M1=
(0,1,1,0,0,0,0 ,0,0,0,0,0,0,0,0) will change to
M2=(0,0,0,1,0,0 ,0,0,0,0,0,0,0,0,0) as described in
Fig. 6.

Figure 6. The Flow’s Diagram For Exchanges Between
Rbati And IUT

Finally, compared to other works that attempt to
deduce local test sequences and including some
coordination and observation messages to ensure
coordination between testers, we suggest in this
paper to deduce some rules to be fulfilled by each
agent tester to guarantee their coordination.

5. CONCLUSION

The distributed computing becomes the key issue
in modern system design. It provides new high
possibilities for Internet-based applications.
However, in practice the development of distributed
component systems is more complex especially
where the implementation must take into account
some synchronization rules, and the coordination of
distributed components. In this article, we present a
way to avoid the exchange of the external
coordination messages between various components
of the distributed test platform.

As explained, this has done by introducing the
notions of rule-based multi-agent system to propose
an architecture, a model and a method that
guarantee the principles of coordination and
synchronization in the distributed test context.

We are introducing also the firing and sensitizing
notions related to the matrix formalism of the petri
nets to calculate the state of the system by referring
to the marking vector.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

823

The implementation of this approach by writing
the kernel of the agent testers using the Prolog
formalism, and testing web services applications are
the perspectives of our approach.

REFERENCES

[1] A. Gill, “Introduction to the theory of finite-
state machines”, Mc Graw-Hill, New Yor- USA,
1962.

[2] A.Petrenko,G.v. Bochmann,M.Yao, “On fault
coverage of tests for finite state
specifications”,Computer Networks and ISDN
System 29,1996,pp.81-106.

[3] O. Rafiq and L. Cacciari, “Coordination
algorithm for distributed testing” ,The Journal
of Supercomputing,Volume 24, Number 2, pp
203-211, doi: 10.1023/A:1021759127956 ,
2003.

[4] A. Khoumsi, “A Temporal approach for testing
distributed systems”, IEEE Transactions on
Software Engineering, Nov.2002, vol. 28, no.11,
pp. 1085-1103,
doi:10.1109/TSE.,2002.1049406.

[5] M.Benattou, L. Cacciari, R. Pasini and O. Rafiq,
“Principles and tools for testing open
distributed” ,Proceedings of the IFIP TC6 12th
International Workshop on Testing
Communicating Systems. Method and
Applications, 1999. p.77-92.

[6] W. y. Liu, H. w. Zeng and H.k. Miao, “Multiple
UIO-based test sequence generation for
distributed systems” , Journal of Shanghai
University (English Edition), Volume 12,
November 2007,Number 5, pp 438-443, doi:
10.1007/s11741-008-0512-3.

[7] J. Chen, R. M. Hierons and H. Ural, “Testing in
the distributed test architecture: formal methods
and testing”,Lecture Notes in Computer Science,
2008, Volume 4949/2008, 157-183, doi:
10.1007/978-3-540-78917-8_5.

[8] R. M. Hierons and H. Ural, “Checking
sequences for distributed test architectures”,
Distributed Computing, Volume 21,April 2008,
Number 3,pp 223-238,doi: 10.1007/s00446-008-
0062-4.

[9] K.C Tai and Y.C Young: “Synchronizable test
sequences of finite state machines”,Computer
Networks 13. 1111-1134 (1998).

[10] G.Luo, R. Dssouli and G.v Bochmann:
“Generating synchronizable test sequences
based on finite state machine with distributed
ports”In the 6th IFIP workshop on protocol Test
Systems, pp.139-153. Elsevier (1993).

[11] R.M Hierons.”Testing a distributed
system:Generating minimal synchronized test
sequences that detect output-shifting faults”,
Information and Software technology,43(9):551-
560,2001.

[12] G.Luo , R. Dssouli, G.v. Bochmann, P.
Venkatram and A. Ghedamsi:”,Test generation
with respect to distributed interfaces, 16,119-
132 (1994).

[13] J.Chen,R.M. Hierons, and H.Ural. “Conditions
for resolving observability problems in
distributed testing”,In 24rd IFIP International
Conference on Formal Techniques for
Networked and Distributed Systems (FORTE
2004), volume 3731 of LNCS, pages 229-
242.Springer-Verlag, 2004.

[14] L. Cacciari and O.Rafiq. “Controllability and
observability in distributed testing”, Information
and Software technology,41:767-780,1999.

[15] J.Chen,R.M. Hierons, and H.Ural. “Resolving
observability problems in distributed test
architecture”,25rd IFIP International
Conference on Formal Techniques for
Networked and Distributed Systems (FORTE
2005), volume 3731 of LNCS, pages 219-
232.Springer-Verlag, 2005.

[16] O. Rafiq, L. Cacciari and M. Benattou,
“Coordination Issues in Distributed
Testing”,Proceeding of the fifth International
Conference on Parallel and Distributed
Processing Techniques and Applications
(PDPTA'99, USA: CSREA Press) pp: 793-799.

[17] H. Charaf, M. Benattou, S. Azzouzi, J.
Abouchabaka, “Using an Ontology for
Modeling the Communication in the Distributed
Test” , The 3th International Conference on
Web and Information Technologies June, 2010,
Marrakech – Morocco.

[18] J.L.Peterson."Petri net theory and the modeling
of systems",Prentice Hall,Inc Englewood Cliffs,
1981.

[19] C.Bǎdicǎ, L. Braubach and A. Paschke “Rule-
based distributed and agent systems”, Rule-
Based Reasoning, Programming, and
Applications Lecture Notes in Computer
Science, 2011, Volume 6826/2011, 3-28

[20] M.H Charaf, M. Benattou, S. Azzouzi, “A
Rule-Based Multi-Agent Systemfor Test-ing
Distributed Applications”in IEEE proceedings
of The 3rd International Confer-ence on
Multimedia Computing and Systems
(ICMCS'12)2012.

http://www.jatit.org/
http://www.springerlink.com/content/?Author=Omar+Rafiq
http://www.springerlink.com/content/?Author=Leo+Cacciari
http://www.springerlink.com/content/0920-8542/
http://www.springerlink.com/content/0920-8542/
http://www.springerlink.com/content/0920-8542/24/2/
http://portal.acm.org/citation.cfm?id=747997&dl=GUIDE&coll=GUIDE&CFID=89322977&CFTOKEN=83681927
http://portal.acm.org/citation.cfm?id=747997&dl=GUIDE&coll=GUIDE&CFID=89322977&CFTOKEN=83681927
http://portal.acm.org/citation.cfm?id=747997&dl=GUIDE&coll=GUIDE&CFID=89322977&CFTOKEN=83681927
https://springerlink3.metapress.com/content/?Author=Wen-yu+Liu
https://springerlink3.metapress.com/content/?Author=Hong-wei+Zeng
https://springerlink3.metapress.com/content/?Author=Huai-kou+Miao
https://springerlink3.metapress.com/content/1007-6417/
https://springerlink3.metapress.com/content/1007-6417/
https://springerlink3.metapress.com/content/1007-6417/12/5/
https://springerlink3.metapress.com/content/1007-6417/12/5/
http://www.springerlink.com/content/?Author=Jessica+Chen
http://www.springerlink.com/content/?Author=Robert+M.+Hierons
http://www.springerlink.com/content/?Author=Hasan+Ural
http://www.springerlink.com/content/978-3-540-78916-1/
http://www.springerlink.com/content/978-3-540-78916-1/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/?Author=R.+M.+Hierons
http://www.springerlink.com/content/?Author=H.+Ural
http://www.springerlink.com/content/0178-2770/
http://www.springerlink.com/content/0178-2770/21/3/
http://www.springerlink.com/content/0178-2770/21/3/
http://www.scholarpedia.org/article/Petri_net
http://www.scholarpedia.org/article/Petri_net
http://www.springerlink.com/content/?Author=Costin+B%c7%8edic%c7%8e
http://www.springerlink.com/content/?Author=Lars+Braubach
http://www.springerlink.com/content/?Author=Adrian+Paschke
http://www.springerlink.com/content/978-3-642-22545-1/
http://www.springerlink.com/content/978-3-642-22545-1/
http://www.springerlink.com/content/978-3-642-22545-1/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/

	1MY El HASSAN CHARAF, 2MOHAMMED BENATTOU, 3SALMA AZZOUZI
	A. Architecture
	B. Modeling by automaton
	C. Distributed Test Problems
	1) Controllability Problem
	2) Observability Problem
	3) Synchronization Problem

	D. Related Works
	A. Terminology
	1) Rule-Based Expert System
	2) Rule-Based Multi-Agent System MAGSY

	B. Architecture
	INFERENCE ENGINE 1
	INFERENCE ENGINE 2
	INFERENCE ENGINE 3
	C. Test procedure
	1) Description
	2) Flow Diagram

