
Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

792

HONEYPOT BASED INTRUSION MANAGEMENT SYSTEM:
FROM A PASSIVE ARCHITECTURE TO AN IPS SYSTEM

1ELMEHDI BENDRISS, 2BOUBKER REGRAGUI

1SI3M, ENSIAS
2 SI3M, ENSIAS

E-mail: 1bendriss@gmail.com , 2regragui@ensias.ma

ABSTRACT

In this paper, we are presenting an Intrusion Prevention System (IPS) based on multiple sensors in the
network. These sensors are in fact honeypots built using honeyd. Honeyd is a high level honeypot which is
very light and which is offering a lot of possibilities to get the most of information gathered about attackers
in general. In fact, we are presenting a solution to go from passive and isolated sensors to a collaborative
platform to help prevent intrusions by analyzing all collected data. To be able to do this, honeyd2db module
was developed to enable honeyd to log its data into a database instead of a local file to the sensor. This
aggregation of data from all sensors give us the possibility to analyze all collected logs as a hole and come
out with a decision (deny network traffic on a firewall for example) using any of the known methods of
data analysis.
Keyword: Intrusion Prevention System (IPS), Honeypots, Honeyd, Network Sensors, Distributed System

1. INTRODUCTION

In nowadays, Intrusion Prevention has
become more important than intrusion detection, as
at this level, if an intrusion is already made into a
network, the network, data, business …etc. are
already at risk. Many vendors are trying to build
their “in the box” IPS system, but as it is a “black
box” in general, security admins are not very
confident of what kind of behavior they’ll have to
deal with. In our study we are trying to change an
open source honeypot tool, which is Honeyd, and
come out with an IPS system which is efficient and
open enough to suite all needs.

The development of honeyd started on
2003. It is a high level honeypot, which means that
it does only use scripts to emulate regular services
(FTP, IIS, router shell, Unix shell…etc) versus low
level honeypots that emulate an entire operating
system. This makes it easy to extend to whatever
service we need to monitor in real life. In fact, any
use of a service offered by a honeypot sensor means
an attack, as this sensor will never be presented as a
public service available for every normal user.
From another hand, honeyd is powerful enough to
simulate complex networks and be integrated into
real networks without and drawbacks to real
servers’ usage.

As said in the Abstract, many vendors
have their in the box IPS solution, and here we are
presenting a new IPS based on honeyd that will
give more freedom to the security administrator to
set decision method, add or remove sensors without
impact on results. Of course, the more sensors we
have in a network the more data we may gather,
and thus less chances to have “false positive”.

For the method of decision, we will stick
to a basic method, which is based on thresholds, but
as said, the architecture is open enough to change
decision method without any change on other parts
of the IPS.[1]

2. IPS ARCHITECTURE

Honeyd logs all its network traffic into a
local log file: this is not suitable for our need so a
first method was to schedule data transfer to a
centralized DB server on fixed time interval using a
Perl script:

http://www.jatit.org/
mailto:1bendriss@gmail.com
mailto:2regragui@ensias.ma

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

793

Figure 1. Logs to DB scheduled task

This solution gave as a good proof of
concept and from this point the module honeyd2db
was developed to patch Honeyd source code to add
direct logging to database, which happens to be
more suitable for real-time need.

The final IPS architecture is shown below:

Figure 2. IPS Architecture

1. Database server
2. Administration station
3. Firewall
4. Router
5. Internet, all network traffic between

elements is encrypted
6. Honeyd based sensors
7. Internal LAN.

Sensors can be placed anywhere in the
network, inside or outside the organization in case
of multisite network for example. OpenVPN is used
to link all sensors to the central server so that all
network flow will be encrypted end-to-end.

An additional DB server, not shown in the
figure, can be used in a cluster mode to allow high
availability of the database. If it is not the case, and
in case of DB failure, all sensors must store logs
locally until DB is back online. From another hand,
the attacker cannot “see” the virtual IP of the VPN
so the sensors, based on Linux, will be only
reachable using SSH protocol on their VPN
interface from central server. So there’s no way the
attacker can get inside the server.
3. HONEYD2DB MODULE

By default Honeyd stores all its logs to a
plain text file on the server it is running on. The
need of having all data in the same place is obvious
if we need to analyze, correlate and come out with a
decision for the IPS. So the idea is to have a hook
in the logging function of honeyd that will redirect
all logs to a DB instead of the file if the module is
enabled.

This can be schematized as shown in the
following diagram:

Figure 3. Honeyd2DB Module

The basic DB design is based on Honeyd

logfiles structure. An excerpt of what a logfile
looks like is shown on next page:

Honeyd
Framework

Events Logging
function

Local plain-
text log file

Store logs
in DB

Is DB
Available

Yes
H

O
N

E
Y

D
2D

B

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

794

2006-10-08 04:53:40 +0000: mydoom.pl[31476]:
connection from 217.159.217.218:45771 to
192.168.2.1:1080
2006-10-08 04:53:40 +0000: mydoom.pl[31476]: socks4
connect request: dst host: 217.159.217.218, dst port: 25
2006-10-08 04:53:42 +0000: mydoom.pl[31477]:
connection from 217.159.217.218:45956 to
192.168.2.1:1080
2006-10-08 04:53:42 +0000: mydoom.pl[31477]:
unknown command: 0x05 0x01 0x00
2006-10-08 04:54:02 +0000: mydoom.pl[31478]:
connection from 217.159.217.218:48324 to
192.168.2.1:1080
2006-10-08 04:54:02 +0000: mydoom.pl[31478]: socks4
connect request: dst host: 217.159.217.218, dst port: 25
2006-10-08 04:54:03 +0000: mydoom.pl[31479]:
connection from 217.159.217.218:48502 to
192.168.2.1:1080
2006-10-08 04:54:03 +0000: mydoom.pl[31479]:
unknown command: 0x05 0x01 0x00
2006-10-08 04:54:24 +0000: mydoom.pl[31480]:
connection from 217.159.217.218:50970 to
192.168.2.1:1080

Most important fields are:

• Timestamp
• IP of connection source
• Port number of connection source
• IP of destination
• Port number of the destination service.
• The payload of the log

As we aim to centralize many sensors’ logs,

some columns and management tables are added to
handle all sensors and be able to query data by
sensor or any other criteria. For the DBMS choice,
to stay in the Open Source world, we choose
MySQL to manage all data. The final design of the
tables is presented below:

Tables:

• Sensor: gathers all information about a
sensor. A sensor is a physical or virtual
machine where Honeyd is running

• SensorLog: has basic connection
information from or to the sensor.

• Data: this table contains the effective
payload of the connection

• VirtHost: a sensor can run multiple scripts
which define profiles (iis server, ftp server
... etc.).

• Profile: is the table containing the profiles
that are available to all sensors.

With respect to design rules, some “link” tables
were added but we don’t detail them here.

4. ANALYZE OF CAPTURED DATA

At this point, we can start analyzing collected data
to come out with rules to configure on every
device. For the purpose of our article, control
against thresholds is done to decide whether the
current connections are legitimate or attacks.
Technically speaking, a trigger will be used on the
Database Management System to check at every
insert done in the SensorLog table if a threshold
(for example number of connections per second
from a specified source) is attained. If the trigger is
met, a script will be run to add a rule on all suitable
network devices.

Figure 4. IPMS DB Structure

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

795

The algorithm can be written as follows:
int Alerts_threshold← 50 ;
while (alert ← received_alert)
{

honeyd2db (alert) ;

int number_of_records_per_second ←
 select count records from db group by
Time[Min:Sec]
(
 ip_source=alert.ip_source
 port_source=alert. port_source
 ip_destination=alert.ip_destination
 port_destination=alert.port_destination
) ;

if(number_of_records_per_second >=
Alertes_threshold)
{
Rule ← buildRule() ;
ConfigureDevice(Rule) ;
}

}

As we said, this is only to evaluate the
overall architecture of the IPS. This module can be
replaced by any other method of decision: data
mining, statistical methods, neural networks…etc.
This article does not go into detailed comparison of
these methods neither is suggesting any one of
them as being the best to use.

We can schematize our IPS as following:

Figure 5. IPMS: Intrusion Prevention Management

System.

5. RULES MANAGEMENT

After decision is made about a connection
if it is legitimate or not, a rule is built to block the
source of the traffic.

As we have multiple devices in the
network, the rule is dynamically formatted
depending on target’s syntax: a rule for iptables
Linux based firewall is not written the same as a
router’s access-list. Thus, only information about
the rule is written to DB and not the full syntax.

The database’s physical structure will be
then updated by the following tables:

Figure 6. Rules Management - DB Structure

• Sensor: is the table defined previously
• Rule: is the table containing the rule to

apply on a selected device (firewall,
router, Linux server…etc.).

• Device: is the table with all devices listed,
with information about credentials to be
used to remotely connect and configure the
said device.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

796

The structure is open enough to permit
applying a rule on some devices and not to all of
them. A rule about an external source may be
implemented on border router or firewall, but
there’s no need to apply it on an internal router for
example.

6. TESTS AND RESULTS

Tests of the IPMS system were conducted
in every step of the implementation. To test the IPS
function we mass-insert data in the database using a
script and changing every time the information
about source IP and Port number.

For devices to configure, we started by
Linux boxes configured with iptables as firewall.
We will use the generic term “network device” to
refer to these machines.

In this scenario, we used Remote SHell
(RSH) to remotely configure network devices and
permanently add filtering rules.

An example of collected data for a sensor
is shown below. The link “detail” gives all the
details about the record, mainly the payload and in
case there’s any additional data (for example, for
Mydoom worm, the attacker uploads a file, a
Trojan; in this case, the path to the file is given too,
as shown in the next figure).

Figure 7. Web interface for records management and

consultation

From another hand, the rules generated are
logged into the DB; the administrator can drop the

rule or edit the rule if needed. We can also see if a
rule is enabled or not (green or red light in the first
column).

Figure 8. Filtering Management through the IPMS

As said before, these tests are made in a
lab environment but at the same time are based on
real results obtained before. It is also worth noting
that these results are enough to have a clear idea of
the efficiency of the whole solution.

A whitelist with IP addresses that should
never be blocked was put in place to minimize the
false-positive risk. Besides, a blacklist also is
integrated to the system to be able to use external
source of information about identified malicious
source of traffic.

7. CONCLUSION

In this article we tried to summarize the
work done to create an Intrusion Prevention
Management System based on Honeyd, an open
source high level honeypot.

The IPMS system is open to many
enhancements and usages, such as:

• Decision module to be enhanced to a
statistical or whatever other method
suitable to the business it will be used in

• Correlation between network events and
data gathered by the sensors can make
decisions better

• Integrate the IPMS with antispam
solutions for example and use sensors as
spam traps

• The IPMS architecture is open to handle
any size of networks, from the most basic
to the very large corporate networks

• Notification and integration with
monitoring solutions like Nagios is
feasible and can enhance in many ways
admins’ response time to attacks.

REFERENCES

[1] E.Bendriss, J. Baayer, B. Regragui,

« Architecture Distribuée pour la Prévention
d'Intrusion Basée sur Honeyd”, SITA’08, INPT,
Rabat, Maroc, Mai 5-7, 2008

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

797

[2] C. Doring. « Improving Networ Security with
Honeypots », July, 2005. Thesis. [German
Honeynet Project].

[3] L.Spitzner. « Honeypots: Tracking Hackers ».
Addison Wesley, Septembre 2002. ISBN: 0-
321-10895-7.

[4] E.Bendriss; B.Regragui. « Architecture
Distribuée pour la Prévention d'Intrusion Basée
sur Honeyd », NOTERE 2007 workshops, pg
137-142.

[5] N. Provos, T. Holz. « Virtual Honeypots »,
Addison Wesley, 2008, ISBN: 0-321-33632-1

http://www.jatit.org/

	P1PELMEHDI BENDRISS,P 2PBOUBKER REGRAGUI

