
Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

702

A FLEXIBLE VITERBI DECODER FOR SOFTWARE
DEFINED RADIO

LI ZHOU, MIN TANG, DONGPEI LIU, HENGZHU LIU
Institute of Microelectronics & Microprocessor, School of Computer Science, National University of

Defense Technology, Changsha 410073, Hunan, China

ABSTRACT

Modern wireless communication standard varies a lot from each other and is evolving rapidly. Flexibility
becomes the dominate consideration of software defined radio (SDR) system design. Reconfigurable
platform is preferred in the SDR due to the reuse of hardware. Convolutional code is widely adopted in
many wireless protocols but the code parameter differs. In order to support multi-standard service, a
decoder compatible for different protocols is needed. In this paper, we designed a flexible Viterbi decoder
which is compatible with WiMAX, UMB and LTE’s channel coding scheme. High efficient cascaded Add-
compare-select unit architecture and sliding window method for trace back are presented. Meanwhile,
conflict free memory access model is also given. FPGA prototype shows our design is highly flexible while
maintaining a high throughput with low area cost compared to others.

Keywords: Viterbi Decoder, Flexible Architecture, Software Defined Radio

1. INTRODUCTION

In recent years, many wireless protocols have
been widely applied and new standards are
emerging increasingly. The incompatibility of these
standards increases the cost of seamless
communication both on user and service provider.
Thus, flexibility is required in future mobile
communication system and the concept of software
defined radio (SDR) becomes popularity. SDR
supports implementing multi-mode communication
on a general hardware platform [1]. Usually, SDR is
composed by reconfigurable hardware which can be
reprogrammed to gain flexibility for various
wireless protocols. Compared to tradition systems,
SDR satisfies the requirement of multifunctional in
different time and context by upgrading
configuration running on the hardware platform.
SDR also shortens time to market of new product.

Channel coding is a significant part in the
wireless protocols. It protects information from
impairments during transfer. Convolutional code is
an efficient coding scheme due to its low latency
and better performance compared to block code [2].
It has been commonly used in the 3G and 4G
wireless standards. However, different code
parameter is selected in different standards for the
consideration of channel characteristic, code rate
and bit error rate requirement. As showed in Table
1, the constraint length, code rate and polynomial of
convolutional code various a lot. So, the decoder in

SDR itself should accommodate for the
reconfigurability to support the standards desired.

Table 1: Code Parameters Of Different Standards

Standard
Code parameters

Constraint
length Code rate Polynomial

WiMax 7 1/2 (171, 133)oct
UMB 9 1/3 (577, 633, 711)oct
LTE 7 1/3 (133, 171, 165)oct

In this paper, we present a Viterbi decoder with
highly flexibility which can deal with convolutional
code of constraint length from 5 to 9, code rate 1/2,
1/3, 1/4 and user defined polynomials.

2. VITERBI DECODER REVIEW

The Viterbi algorithm for decoding convolutional
code is a maximum likelihood algorithm applied on
the coding trellis [2]. It searches the most likely
path through the trellis according to the received
signal from channel. Figure 1 is an example of
convolutional encoder and its corresponding trellis.
Viterbi algorithm finds the path whose output has
the least Euclidean distance with received signal in
each stage. The algorithm holds a most likely path
for each state, known as the survival path, other
paths are eliminated.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

703

Figure 1: (A) A Convolutional Encoder (B) Trellis Of

The Code

Generally, a Viterbi decoder consists three parts
[3]:

(1) Branch Metric Calculation Unit (BMCU). It
computes the Euclidean distance of received signal
and the output data of corresponding branch in
trellis. The distance is also called branch metric.

(2) Add Compare Select Unit (ACSU). It
operates the ‘butterfly’ computation (the black line
in Fig 1b) and finds survival path. There is a metric
for state i at time t , denote by i

tS . It is calculated
by adding branch metric to the metric of its
previous state, and then the path which has smallest
metric that entered into the state is selected.

(3) Survival Path Management Unit (SPMU). It
stores the result of survival path selection and
generates the path’s output from the selection.

The BMCU is quite simple and does not have
much influence on the performance. Thus, our
decoder does not contain BMCU and takes the
calculated branch metric as input. The constraint
length varies from 5 to 9, which means the number
of states at each stage varies from 16 to 256. This
makes code trellis and the computation pattern on
ACSU more complex [11]. We designed a fast
cascaded ACSU with delicate scheme of access
state metric memory to sustain various code
parameters. For the SPMU, either ‘register
exchange’ or ‘trace back’ method can be adopted
[4] [10]. The register exchange method is suitable
for low complexity, fixed trellis. In the
configuration of our parameter, the large number of
state and user defined polynomial make code trellis
too complicated and variable. It will consume a lot
of wire resource and increase power consumption in
register exchange method. So the SPMU of
proposed Viterbi decoder is based on the trace back
method. We apply a sliding window scheme to
exploit parallelism between ACSU and SPMU to
decrease decode latency.

3. PROPOSED DECODER

The core architecture of proposed Viterbi
decoder for multi-standard is depicted in Figure 2.
The ACSU is composed by a cascaded ACS for
butterfly computation, a state metric memory and
its write/read address generation subsystem. The
SPMU is composed by a survival path memory, a
trace back logic and control logic of memory
write/read for sliding window trace back scheme.

Code parameter

Cascaded ACS

State Metric
RAM

RAM Addr Gen

Control
Trace
Back

Surviaval
Path
RAM RAM

Read/Write
Control

Branch
Metric
Input

Decode
OutputSurvival Path

Information

Data Path Control Path

 Figure 2: Architecture Of Proposed Viterbi Decoder

3.1 Add Compare Select Unit
We designed a cascaded ACSU by connecting

the state metric computation of next stage together
with current stage, which means we update state
metric for two stages once a time. The diagram of
cascaded ACS is showed in Figure 3 where

12KM −= and K is constraint length.

ACS0

ACS1 ACS3

ACS2

Si+1
t

Si
t

Si+2
t

Si+3
t

S

Si/2
t+1

i/2+M/2

Si/2+1

Si/2+M/2+1

t+1

t+1

t+1

Si/4+M/4

Si/4
t+2

S

S

t+2

t+2

t+2

i/4+M/2

i/4+3M/4

Branch Metric
Selection

Branch Metric
 Input

Code
Paramter

Branch MetricState Metric

Figure 3: Diagram Of The ACSU

We note that the output of butterfly ACS0 and
ACS1 can be directly put into next stage’s
computation by swapping one of the outputs and it
is found for all code parameters. So cascading
ACS2 and ACS3 afterwards is a feasible structure.
This structure updates state metric in two stages
once, similar to Radix-4 ACS [5]. However, we
insert registers between stages to avoid critical
path, so that the decoder can achieve a higher
throughput.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

704

The proposed architecture can reduce the
frequency of memory access because write and read
operation are needed only once per two stage. The
trace back procedure can also be accelerated for
each trace operation generates two symbols.
Although several advantages that cascaded ACS
can get, further cascading more ACS is not a good
choice because the calculation of next stage has to
be stalled until the required state metric is updated
by previous ACS. Besides, a lot of registers are
needed for storing metric that not yet used, which
brings latency in data path and complexity in
control path [6].

3.2 Conflict Free Memory Access
Another important feature of the ACSU is the

arrangement of state metric in memory and the
address generation subsystem. They ensure the
correctness of decoder for all constraint length.
Figure 4 shows the memory organization and an
example of data arrangement at 5K = .

BANK0

BANK1

BANK2

BANK3

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

0

1

2

3

7

4

5

6

9

10

11

8

14

15

12

13

S
hu
ffl
e

S
hu
ffl
e

To
Cascad
e ACS

From
Cascad
e ACS

(a) (b)
Figure 4: (A) 4 Bank State Metric Memory (B) Data

Arrangement

Due to the data supply requirement of ACSU, we
divide RAM into four banks. The in-place schedule
is applied which means updated metric will store at
the location of its previous metric [7]. The data
arrangement for each code parameter must ensure
that conflict of memory operation does not exist.
Shuffle logic is added at input and output ports of
RAM for the reason that each bank may not directly
provide data to its ACS when conflict avoided
strategy is applied. By observing the concurrently
fetched and stored data of cascaded ACS, we note
that and can be put into the same bank only if the
equation (1) is satisfied.

3mod 2 / 4 / 4Ki j i j−≠ ∧ ≠       (1)

A feasible scheme to place state 0 to 255 in state
metric memory is found by computer search. The
arrangement for 5K = is showed in Figure 4(b). A
lookup table from state id to its address in memory
is built in ROM so that we can quickly find the
location of through its state id.

The address generation logic is implemented by
circular shift of state id. The procedure can be
exemplified by Figure 5.

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

0

1

2

3

7

4

5

6

9

10

11

8

14

15

12

13

S

S

S

S

S

S

S

S

S

S

S

S

1

5

9

6

10

14

2

11

15

3

7

13After 2
stage

caculation

S

S

S

S

0

4

8

12

S

S

S

S

0

1

2

3

S

S

S

S

0

8

1

9

S

S

S

S

0

4

8

12

Figure 5: State Metric Memory Address Generation

Example
According to the code trellis, state 0, 1, 2 and 3

generate state 0, 4, 8 and 12 after butterfly
operation. The in-place schedule makes the location
of state 0, 1, 2 and 3 stores the state 0, 4, 8 and 12
afterwards. Other transformations can be derived
similarly. The data map of state memory after
calculation is depicted in Fig 5. In next two stages,
the read address of state 0, 1, 2, and 3 can be
generated by look 0, 4, 8, 12 at lookup table before
fetching. A shifter completes this task at the end of
every two stages by right circular shifting the state
id. Then shifted state id is sent to lookup table to
generate the correct address for next memory read
operation.

3.3 Survival Path Management Unit
Usually, the trace back operation starts when the

whole frame ACS completed, and the latency
grows with frame length. Splitting the frame into
sliding windows will reduce latency and exploit
parallelism between neighboring windows. Trace
back operation will start from where sliding
window ends. Thus, the survival path memory is
composed of two RAM, each RAM stores a
window. One can receive survival path information
from ACSU while the other one is providing data
for trace back in a ping-pong way.

The trace from the middle of a frame may cause
errors. However, there is a fact that survival path of
all states usually convergent if the trace back length
is enough (more than 5 times of constraint length).
The decode result will become reliable until several
symbols have been processed Based on the
principle, each window is divided into two parts in
our design: the reliable part and convergent part
(the length of two parts is denoted by R and C ,
which can be defined by user (R C). The
convergent part does not generate decode output, it
is only used for converging survival path, see in
Figure 6.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

705

Window
Length

R C

ACS operation Traceback operation
Figure 6: The Sliding Window Method

The convergent part in previous window belongs
to the reliable part in next window. So, the survival
path information of each convergent part must be
written into both RAM for it will be used in two
neighboring windows. The ping-pong RAM for
survival path must have a special status when
convergent part is written.

The whole procedure is described as follows:
(1) Write reliability part of window 1 to RAM A.
(2) Write convergent part of window 1 to both

RAM A and RAM B.
(3) Switch RAM A and B so that RAM B

receives reliable part of window 2 from ACSU
meanwhile RAM A provides data for trace back
operation of window 1.

(4) Write left reliable part of window 2 to RAM
B and then write convergent part of window 2 in
both A and B when trace back of window 1 is
finished.

(5) Switch RAM A and B for next window.

Figure 7(a) shows the survival path memory
architecture and Fig 7(b) illustrate the procedure of
how ACSU and SPMU work in parallel.

We can see that the sliding window method
greatly reduced the decoding latency because
parallelism between ACSU and SPMU is utilized.

W
rit
e
C
on
tr
ol

R
ea
d
C
on
tr
ol

RAM A

RAM B

From
ACSU

To
Traceback

C CR - C

R
R+C

2R+C

3R+C

Symbol

Time

(a)

(b)

Convergent traceback

ACS
operation

Reliable traceback

W1
W2

Figure 7: (A) Survival Path Memory Architecture (B)
ACS And Trace Back Operations With Sliding Window

4. IMPLEMENTATION AND EVALUATION
After designing the decoder architecture, we

implemented it with Verilog HDL and done a fast
prototype on FPGA. This section will show the
implementation and evaluation result.

We have implemented the Viterbi decoder in
FPGA to verify the correctness and evaluate the
performance of decoder. All FPGA experiments are
done in Xillinx Virtex II XCV2000 FPGA. Table 2
shows the FPGA implementation comparison of the
proposed decoder and other design. The results of
our decoder are generated for ISE tools after place
and route process.

Table 2 : Table Parameters

[8] [9] Proposed

decoder
Supported

code
parameter

Only support
K=7,rate =1/2 UMTS,GPRS WiMAX,

UMB, LTE

FPGA type XC3SD3400A XCV2000 XCV2000
Slices 983 3501 3444
4 input
LUTs 1378 8170 6303

Block
RAMS 2 33 8

Maximum
frequency 172MHz 32.256MHz 65.933MHz

Maximum
decode bit

rate at
7K =

15Mbps 8.064Mbps 8.242Mbps

According to table II, our design is highly

flexible while maintaining a high throughput. The
area consumption is also reduced compared to [9].
Two reasons may contribute to this performance:
first, the structure of our cascaded ACSU is very
efficient for different code parameter; second, we
applied sliding window method to reduce the
latency. Figure 8 is the layout of proposed Viterbi
decoder in FPGA XCV2000.

Figure 8: FPGA Layout Of Proposed Viterbi Decoder

5. CONCLUSION

In this paper, we presented flexible and low area
cost architecture for Viterbi decoder in wireless

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th January 2013. Vol. 47 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

706

communication. The decoder can deal the
convolutional code in wireless standard WiMAX,
UMB, LTE and etc. It is reconfigurable and
suitable for software define radio platform. The
proposed architecture is highly efficient when
handling different code parameter. The strategy we
applied in ACSU and SPMU made a good trade off
between performance and flexibility. Further
optimization and implementation in ASIC design
will meet the data rate in future mobile systems.

ACKNOWLEDGEMENTS

This work was supported by National NFSC of
China (06970037).

REFERENCES:
[1] W. H. W. Tuttlebee, “Software-defined radio:

facets of a developing technology”, IEEE
Personal Communications Magazine, Vol. 6,
No. 2, 1999, pp. 38-44.

[2] G. Forney, “Convolutional codes II. Maximum-
likelihood decoding”, Information and Control,
Vol. 25, No. 3, 1974, pp. 222-266.

[3] M. Irfan, et al., “Design and Implementation of
Viterbi Encoding and Decoding Algorithm on
FPGA”, Proceedings of the 17th International
Conference on Microelectronics, December 13-
15, 2005, pp. 234-239.

[4] D.A.F. El-Dib, M.I. Elmasry, “Low-power
register-exchange Viterbi decoder for high-
speed wireless communications”, Proceedings
of IEEE International Symposium on Circuits
and Systems, IEEE Conference Publishing
Services, May 26-29, 2002, pp. 737–740.

[5] P. J. Black and T. H. Meng, “A 140-Mb/s, 32-
state, radix-4 Viterbi decoder”, IEEE Journal of
Solid-State Circuits, Vol. 27, No. 12, 1992, pp.
1877-1885.

[6] D. Yeh, et al., “RACER: a reconfigurable
constraint-length 14 Viterbi decoder”,
Proceedings of IEEE Symposium on FPGAs for
Custom Computing Machines, IEEE
Conference Publishing Services, April 17-19,
1996, pp. 60-69.

[7] W. Ching-Wen and C. Yun-Nan, “Design of
Viterbi decoders with in-place state metric
update and hybrid traceback processing”,
Proceedings of IEEE Workshop on Signal
Processing Systems, IEEE Conference
Publishing Services, September 26-28, 2001,
pp. 5-15.

[8] Xilinx Corporation, “Viterbi decoder: product
specification (v6.2)”, October, 2007.

[9] L. Bissi, et al., “A Viterbi decoder architecture
for a standard-agile and reprogrammable
transceiver”, Integration-the VLSI Journal, Vol.
41, No. 2, 2008, pp. 161-170.

[10] Y. Gang, T. Arslan, and A. T. Erdogan,
“An efficient pre-traceback approach for Viterbi
decoding in wireless communication”,
Proceedings of IEEE International Symposium
on Circuits and Systems, IEEE Conference
Publishing Services, May 23-26, 2005, pp.
5441–5444.

[11] B. Pandita and S. K. Roy, “Design and
implementation of a Viterbi decoder using
FPGAs”, Proceedings of the 12th International
Conference on VLSI Design, IEEE Conference
Publishing Services, January 10-13, 1999, pp.
611-614.

http://www.jatit.org/

	LI ZHOU, MIN TANG, DONGPEI LIU, HENGZHU LIU
	3.1 Add Compare Select Unit
	3.2 Conflict Free Memory Access
	3.3 Survival Path Management Unit
	ACKNOWLEDGEMENTS

