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ABSTRACT 

 
Modern wireless communication standard varies a lot from each other and is evolving rapidly. Flexibility 
becomes the dominate consideration of software defined radio (SDR) system design. Reconfigurable 
platform is preferred in the SDR due to the reuse of hardware. Convolutional code is widely adopted in 
many wireless protocols but the code parameter differs. In order to support multi-standard service, a 
decoder compatible for different protocols is needed. In this paper, we designed a flexible Viterbi decoder 
which is compatible with WiMAX, UMB and LTE’s channel coding scheme. High efficient cascaded Add-
compare-select unit architecture and sliding window method for trace back are presented. Meanwhile, 
conflict free memory access model is also given. FPGA prototype shows our design is highly flexible while 
maintaining a high throughput with low area cost compared to others. 
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1. INTRODUCTION  
 

In recent years, many wireless protocols have 
been widely applied and new standards are 
emerging increasingly. The incompatibility of these 
standards increases the cost of seamless 
communication both on user and service provider. 
Thus, flexibility is required in future mobile 
communication system and the concept of software 
defined radio (SDR) becomes popularity. SDR 
supports implementing multi-mode communication 
on a general hardware platform [1]. Usually, SDR is 
composed by reconfigurable hardware which can be 
reprogrammed to gain flexibility for various 
wireless protocols. Compared to tradition systems, 
SDR satisfies the requirement of multifunctional in 
different time and context by upgrading 
configuration running on the hardware platform. 
SDR also shortens time to market of new product.  

Channel coding is a significant part in the 
wireless protocols. It protects information from 
impairments during transfer. Convolutional code is 
an efficient coding scheme due to its low latency 
and better performance compared to block code [2]. 
It has been commonly used in the 3G and 4G 
wireless standards. However, different code 
parameter is selected in different standards for the 
consideration of channel characteristic, code rate 
and bit error rate requirement. As showed in Table 
1, the constraint length, code rate and polynomial of 
convolutional code various a lot. So, the decoder in 

SDR itself should accommodate for the 
reconfigurability to support the standards desired. 

Table 1: Code Parameters Of Different Standards 

Standard 
Code parameters 

Constraint  
length Code rate Polynomial 

WiMax 7 1/2 (171, 133)oct 
UMB 9 1/3 (577, 633, 711)oct 
LTE 7 1/3 (133, 171, 165)oct 

 

In this paper, we present a Viterbi decoder with 
highly flexibility which can deal with convolutional 
code of constraint length from 5 to 9, code rate 1/2, 
1/3, 1/4 and user defined polynomials. 

2. VITERBI DECODER REVIEW 
 

The Viterbi algorithm for decoding convolutional 
code is a maximum likelihood algorithm applied on 
the coding trellis [2]. It searches the most likely 
path through the trellis according to the received 
signal from channel. Figure 1 is an example of 
convolutional encoder and its corresponding trellis. 
Viterbi algorithm finds the path whose output has 
the least Euclidean distance with received signal in 
each stage. The algorithm holds a most likely path 
for each state, known as the survival path, other 
paths are eliminated. 
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Figure 1: (A) A Convolutional Encoder (B) Trellis Of 

The Code 

Generally, a Viterbi decoder consists three parts 
[3]: 

(1) Branch Metric Calculation Unit (BMCU). It 
computes the Euclidean distance of received signal 
and the output data of corresponding branch in 
trellis. The distance is also called branch metric. 

(2) Add Compare Select Unit (ACSU). It 
operates the ‘butterfly’ computation (the black line 
in Fig 1b) and finds survival path. There is a metric 
for state i  at time t , denote by i

tS . It is calculated 
by adding branch metric to the metric of its 
previous state, and then the path which has smallest 
metric that entered into the state is selected. 

(3) Survival Path Management Unit (SPMU). It 
stores the result of survival path selection and 
generates the path’s output from the selection. 

The BMCU is quite simple and does not have 
much influence on the performance. Thus, our 
decoder does not contain BMCU and takes the 
calculated branch metric as input. The constraint 
length varies from 5 to 9, which means the number 
of states at each stage varies from 16 to 256. This 
makes code trellis and the computation pattern on 
ACSU more complex [11]. We designed a fast 
cascaded ACSU with delicate scheme of access 
state metric memory to sustain various code 
parameters. For the SPMU, either ‘register 
exchange’ or ‘trace back’ method can be adopted 
[4] [10]. The register exchange method is suitable 
for low complexity, fixed trellis. In the 
configuration of our parameter, the large number of 
state and user defined polynomial make code trellis 
too complicated and variable. It will consume a lot 
of wire resource and increase power consumption in 
register exchange method. So the SPMU of 
proposed Viterbi decoder is based on the trace back 
method. We apply a sliding window scheme to 
exploit parallelism between ACSU and SPMU to 
decrease decode latency.  

 

3. PROPOSED DECODER 
 

The core architecture of proposed Viterbi 
decoder for multi-standard is depicted in Figure 2. 
The ACSU is composed by a cascaded ACS for 
butterfly computation, a state metric memory and 
its write/read address generation subsystem. The 
SPMU is composed by a survival path memory, a 
trace back logic and control logic of memory 
write/read for sliding window trace back scheme. 

Code parameter 
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 Figure 2: Architecture Of Proposed Viterbi Decoder 

3.1 Add Compare Select Unit 
We designed a cascaded ACSU by connecting 

the state metric computation of next stage together 
with current stage,  which means we update state 
metric for two stages once a time. The diagram of 
cascaded ACS is showed in Figure 3 where 

12KM −= and  K  is constraint length. 
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Figure 3: Diagram Of The ACSU  

We note that the output of butterfly ACS0 and 
ACS1 can be directly put into next stage’s 
computation by swapping one of the outputs and it 
is found for all code parameters. So cascading 
ACS2 and ACS3 afterwards is a feasible structure. 
This structure updates state metric in two stages 
once, similar to Radix-4 ACS [5]. However, we 
insert registers between stages to avoid critical 
path, so that the decoder can achieve a higher 
throughput.  
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The proposed architecture can reduce the 
frequency of memory access because write and read 
operation are needed only once per two stage.  The 
trace back procedure can also be accelerated for 
each trace operation generates two symbols. 
Although several advantages that cascaded ACS 
can get, further cascading more ACS is not a good 
choice because the calculation of next stage has to 
be stalled until the required state metric is updated 
by previous ACS. Besides, a lot of registers are 
needed for storing metric that not yet used, which 
brings latency in data path and complexity in 
control path [6].  

3.2 Conflict Free Memory Access 
Another important feature of the ACSU is the 

arrangement of state metric in memory and the 
address generation subsystem. They ensure the 
correctness of decoder for all constraint length. 
Figure 4 shows the memory organization and an 
example of data arrangement at 5K = . 
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Figure 4: (A) 4 Bank State Metric Memory (B) Data 

Arrangement 

Due to the data supply requirement of ACSU, we 
divide RAM into four banks. The in-place schedule 
is applied which means updated metric will store at 
the location of its previous metric [7]. The data 
arrangement for each code parameter must ensure 
that conflict of memory operation does not exist. 
Shuffle logic is added at input and output ports of 
RAM for the reason that each bank may not directly 
provide data to its ACS when conflict avoided 
strategy is applied.   By observing the concurrently 
fetched and stored data of cascaded ACS, we note 
that   and   can be put into the same bank only if the 
equation (1) is satisfied.  

3mod 2 / 4 / 4Ki j i j−≠ ∧ ≠                    (1) 

A feasible scheme to place state 0 to 255 in state 
metric memory is found by computer search. The 
arrangement for 5K =  is showed in Figure 4(b). A 
lookup table from state id to its address in memory 
is built in ROM so that we can quickly find the 
location of   through its state id. 

The address generation logic is implemented by 
circular shift of state id. The procedure can be 
exemplified by Figure 5.  
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Figure 5: State Metric Memory Address Generation 

Example 
According to the code trellis, state 0, 1, 2 and 3 

generate state 0, 4, 8 and 12 after butterfly 
operation. The in-place schedule makes the location 
of state 0, 1, 2 and 3 stores the state 0, 4, 8 and 12 
afterwards. Other transformations can be derived 
similarly. The data map of state memory after 
calculation is depicted in Fig 5. In next two stages, 
the read address of state 0, 1, 2, and 3 can be 
generated by look 0, 4, 8, 12 at lookup table before 
fetching. A shifter completes this task at the end of 
every two stages by right circular shifting the state 
id. Then shifted state id is sent to lookup table to 
generate the correct address for next memory read 
operation.  

3.3 Survival Path Management Unit 
Usually, the trace back operation starts when the 

whole frame ACS completed, and the latency 
grows with frame length. Splitting the frame into 
sliding windows will reduce latency and exploit 
parallelism between neighboring windows. Trace 
back operation will start from where sliding 
window ends. Thus, the survival path memory is 
composed of two RAM, each RAM stores a 
window. One can receive survival path information 
from ACSU while the other one is providing data 
for trace back in a ping-pong way.  

The trace from the middle of a frame may cause 
errors. However, there is a fact that survival path of 
all states usually convergent if the trace back length 
is enough (more than 5 times of constraint length). 
The decode result will become reliable until several 
symbols have been processed Based on the 
principle, each window is divided into two parts in 
our design: the reliable part and convergent part 
(the length of two parts is denoted by R  and C , 
which can be defined by user ( R C ). The 
convergent part does not generate decode output, it 
is only used for converging survival path, see in 
Figure 6. 
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Figure 6: The Sliding Window Method 

The convergent part in previous window belongs 
to the reliable part in next window. So, the survival 
path information of each convergent part must be 
written into both RAM for it will be used in two 
neighboring windows. The ping-pong RAM for 
survival path must have a special status when 
convergent part is written.  

The whole procedure is described as follows: 
(1) Write reliability part of window 1 to RAM A. 
(2) Write convergent part of window 1 to both 

RAM A and RAM B. 
(3) Switch RAM A and B so that RAM B 

receives reliable part of window 2 from ACSU 
meanwhile RAM A provides data for trace back 
operation of window 1. 

(4) Write left reliable part of window 2 to RAM 
B and then write convergent part of window 2 in 
both A and B when trace back of window 1 is 
finished. 

(5) Switch RAM A and B for next window. 

Figure 7(a) shows the survival path memory 
architecture and Fig 7(b) illustrate the procedure of 
how ACSU and SPMU work in parallel. 

We can see that the sliding window method 
greatly reduced the decoding latency because 
parallelism between ACSU and SPMU is utilized.  

W
rit
e 
C
on
tr
ol

R
ea
d 
C
on
tr
ol

RAM A

RAM B

From 
ACSU

To
Traceback

C CR - C

R
R+C

2R+C

3R+C

Symbol

Time

(a)

(b)

Convergent traceback

ACS 
operation

Reliable traceback

W1
W2  

Figure 7: (A) Survival Path Memory Architecture (B) 
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4. IMPLEMENTATION AND EVALUATION 
After designing the decoder architecture, we 

implemented it with Verilog HDL and done a fast 
prototype on FPGA. This section will show the 
implementation and evaluation result. 

We have implemented the Viterbi decoder in 
FPGA to verify the correctness and evaluate the 
performance of decoder. All FPGA experiments are 
done in Xillinx Virtex II XCV2000 FPGA. Table 2 
shows the FPGA implementation comparison of the 
proposed decoder and other design. The results of 
our decoder are generated for ISE tools after place 
and route process. 

 
Table 2 : Table Parameters 

 
[8] [9] Proposed 

decoder 
Supported 

code 
parameter 

Only support 
K=7,rate =1/2 UMTS,GPRS WiMAX, 

UMB, LTE 

FPGA type XC3SD3400A XCV2000 XCV2000 
Slices 983 3501 3444 
4 input 
LUTs 1378 8170 6303 

Block 
RAMS 2 33 8 

Maximum 
frequency 172MHz 32.256MHz 65.933MHz 

Maximum 
decode bit 

rate at 
7K =  

15Mbps 8.064Mbps 8.242Mbps 

 
According to table II, our design is highly 

flexible while maintaining a high throughput. The 
area consumption is also reduced compared to [9]. 
Two reasons may contribute to this performance: 
first, the structure of our cascaded ACSU is very 
efficient for different code parameter; second, we 
applied sliding window method to reduce the 
latency. Figure 8 is the layout of proposed Viterbi 
decoder in FPGA XCV2000. 

 
Figure 8: FPGA Layout Of Proposed Viterbi Decoder 

5. CONCLUSION 
 

In this paper, we presented flexible and low area 
cost architecture for Viterbi decoder in wireless 
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communication. The decoder can deal the 
convolutional code in wireless standard WiMAX, 
UMB, LTE and etc. It is reconfigurable and 
suitable for software define radio platform. The 
proposed architecture is highly efficient when 
handling different code parameter. The strategy we 
applied in ACSU and SPMU made a good trade off 
between performance and flexibility. Further 
optimization and implementation in ASIC design 
will meet the data rate in future mobile systems. 
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