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ABSTRACT 
 

Applying for information theory, we present a measure of dependence for three-variable relationships: the 
three variables maximal information coefficient (3D-MIC). It is a kind of maximal information-based 
nonparametric exploration (MINE) statistics for identifying and classifying relationships in large data sets. 
3D-MIC generalized the MIC measurement. At the same time some optimal single axis partition algorithm 
(OSPA) is built to ensure the feasibility of the MIC measurement. 
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1. INTRODUCTION  

 
Data sets of large size are increasingly common 

in fields as various as genomics, physics, political 
science, and economics. Exploring large data sets to 
discover relationships among variables becomes 
important and is full of growing challenges. If you 
do not already know what kinds of relationships to 
search for, how do you efficiently identify the 
important ones? One way to begin exploring a large 
data set is to search for several pairs of variables 
that are closely associated. To do this, we could 
calculate some measures of dependence for each 
pair, rank the pairs by their scores, and examine the 
top-scoring pairs. It belongs to a larger class of 
maximal information-based nonparametric 
exploration (MINE) statistics for identifying and 
classifying relationships. 

The nonparametric methods, such as the tests, the 
Fisher exact probability test, and the Spearman rank 
correlation, have long been among the standard 
tools of the statisticians [2]. Recently, some new 
nonparametric or 'distribution-free' statistical 
methods [3-10] have gained prominence in 
statisticians. In [3] a detailed analysis of the LPA 
algorithm based on local information is done which 
improved the LPA-the SNA algorithm. In skew 
correlation Deng [4] developed a method called 
Based Skew Double Triangle algorithm to study the 

correlation between AT and CG. García [5] discuss 
some multiple comparisons nonparametric 
approaches with the computation of adjusted p-
value which improve the results offered by the 
Friedman test in some circumstances. By using 
Maximum Likelihood Tamura [8] analyze the 
molecular sequence data which improves the 
computational efficiency and the accuracy of the 
estimates. Jishnu [9] performs a systematic analysis 
of interaction dynamics across different 
technologies and shows the high-throughput yeast 
two-hybrid is the only available technology for 
detecting transient interactions on a large scale. 

Our works are derived from [1]. David N. Reshef 
and his work team detect a novel association in 
large data sets which is called the maximal 
information coefficient (MIC) measure of 
dependence for two-variable relationships. They 
have proved that the MIC of a noiseless functional 
relationship converges to 1 as sample size grows. 
And if the sample distribution (X, Y) is statistically 
independent, the MIC converges to zero. 
Intuitively, MIC is based on the idea that if a 
relationship exists between two variables, then a 
grid can be drawn on the scatter plot of the two 
variables that partitions the data to encapsulate that 
relationship. 

The organization of the study is as follows. In 
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section 2 we present some three variables mutual 
information which generalized the common mutual 
information and establish the definition of 3D-MIC 
in three statistical distributions (X, Y, Z). In section 
3 we present the single axis partition algorithm to 
approach the 3D-MIC. Based on heuristic dynamic 
programming algorithm the recurrence algorithm is 
efficiency for given parameter B(n) in practice. 

2. PRELIMINARIES AND DEFINITIONS 
 

There are some definitions and lemmas that we 
will use in the following section. Firstly, we show 
some concepts of information given in this theory 
which include entropy, joint entropy, conditional 
entropy, relative entropy, mutual information. 

2.1 Some Information Theory Conceptions 
Suppose X, Y, Z are three statistic variables in X, 

Y, Z respectively. Let ( ) Pr( )p x X x= = be the 
probability of X=x. The entropy of X is defined by 

( ) [log ( )] ( ) log ( )
x X

H X E p x p x p x
∈

= − = −∑  

The joint entropy of X, Y is defined by 

( , ) [log ( , )] ( , ) log ( , )
x X y Y

H X Y E p x y p x y p x y
∈ ∈

= − = −∑∑  

The conditional entropy is defined by 

( , )( | ) [log ( | )] ( , ) log ( | )p X Y
x X y Y

H Y X E p Y X p x y p y x
∈ ∈

= − = −∑∑  

The relative entropy is 

( , )
( ) ( )( || ) [log ] ( ) log
( ) ( )p X Y

x X

p X p xD p q E p x
q X q x∈

= = ∑  

The mutual information is defined by 

( , )( ; ) ( , ) log
( ) ( )x X y Y

p x yI X Y p x y
p x p y∈ ∈

= ∑∑  

From above one can obtain 

( ; ) ( ) ( ) ( , )I X Y H X H Y H X Y= + −  

Now, let us denote the mutual information in 
three variables  

( ; ; ) ( ) ( ) ( )
( , ) ( , ) ( , )
( ; ; )

I X Y Z H X H Y H Z
H X Y H Y Z H X Z
H X Y Z

= + +
− − −
+

      

(1) 

The symmetry of the joint entropy H(X, Y) = 
H(Y,X) implies that the mutual information in three 
variables remains symmetry. 

2.2 Main Definition on 3D-MIC 
Given a finite set {( , , ) | , , }D x y z x X y Y z Z= ∈ ∈ ∈  

of three variables, we can partition the x-value of D 
into x bins, the y-value of D into y bins and the z-
value of D into z bins allowing empty bins. We call 
such a partition an x-by-y-by-z grid G. Given a grid 
G, let |GD  be the distribution induced by the points 
in D on the boxes of G, that is, the distribution on 
the boxes of G obtained by letting the probability 
mass in each box be the fraction of points in D 
falling in that box. 

For a fixed D, different grids G result in different 
distributions |GD . To exploit this fact in defining 
3D-MIC, we first of all make the following 
definitions. 

Definition 1 For a finite set 3D ⊂  and positive 
integers x, y, z, define 

( , , , ) max ( | )GI D x y z I D∗ =                        (2) 

where the maximum is over all grids G with x-by-y-
by-z grid, and ( | )GI D denotes the three variables 
mutual information of |GD . 

Definition 2 The characteristic matrix M(D) of a 
set D of three-variable data is an infinite matrix 
with entries 

, ,
| ( , , , ) |( )

log( )x y z
I D x y zM D

xyz

∗

=                      (3) 

Definition 3 The Three Dimensions Maximal 
Information Coefficient (3D-MIC) of a set D of 
three-variable data with sample size n and grid size 
less than B(n) is given by 

, ,.( )
3 ( ) max ( )x y zxyz B n

D MIC D M D
<

− =                 (4) 

where 1( ) ( )B n O n ε−≤ for some ε . 

Remark Since for an x-by-y-by-z grid G, 
0 | ( | ) | log( )GI D xyz< < , all the characteristic 
matrices fall between 0 and 1. The symmetry of 3D 
mutual information implies that the characteristic 
matrix M(D) remains the same when the axis of D 
are interchanged. However, computing each entry 
of the characteristic matrix grows exponentially 
with the number of data points increasing. The 
maximum 3D mutual information on Data sets is 
only one kind of statistic property. There can be 
other different patterns in definition of 
corresponding statistic scores and measurement. 
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3. RECURRENCE APPROACH ON 3D-MIC 
ALGORITHM 

 
We begin by outlining an idealized algorithm for 

generating the characteristic matrix. Algorithm 1 
represents what we would use if efficiency were not 
a problem. 

Table 1: Algorithm Of Compute Characteristic Matrix 
Algorithm 1 Characteristic Matrix.(D, B) 

Require: D is a three variable set 
1: for ( x, y, z) such that xyz < B do 
1: G ← ( x, y, z) grid on D 
2: ( , , , ) max I( | )GI D x y z D∗ ←  
4: , ,( ) | ( , , , ) | / log( )x y zM D I D x y z xyz∗=  
5: end for 
6: return , ,( ) :x y zM D xyz B≤  

By definition (1), the maxi function involved in 
Algorithm 1 is meant to return the highest mutual 
information attainable using a grid G with x−by−y− 
by−z on the data D. The core of approximating 
maxi is to find an optimal single axis partition. In 
the following section, we will use some dynamic 
programming methods which are called optimal 
single axis partition (OSP) to obtain the maxI. 

Assume that our set {(x, y, z)|(x, y, z)∈D} is 
sorted in an increasing order by x-value, we denote 
various partitions of the x-axis by specifying the 
indices of the end points of their columns. 
Specifically, we will call an ordered list of 
integers 0 , , tp p〈 〉  with 0 1, , tp p p< < <  an x-
axis partition of size t of the 0( 1)p + -th through tp -th 
points of D. Given a partition 0 , , tP p p= 〈 〉  and 
an integer a with ip < a < 1ip + , we 
denote { } :P a = 0 1, , , , , ,i i tp p a p p+〈 〉  . If ip =a 
for some i, we denote { }P a P= , and if a > tp , we 
denote { }P a 0: , , ,tp p a=< > . For fixed y, z-
axis partitions Q, R, by definition (1) on mutual 
information in three variables, we have  

( ; ; ) ( ) ( ) ( )
( , ) ( , ) ( , )
( , , )

I P Q R H P H Q H R
H P Q H P R H Q R
H P Q R

= + +
− − −
+

 

where ( )H ⋅ denotes Shannon entropy. However, 
since Q, R are fixed, the OSP algorithm needs only 
to maximize 

( ; ; ) ( ) ( , ) ( , ) ( , , )I P Q R H P H P Q H P R H P Q R= − − +  

over all partitions P on x-axis of D in order to 
maximize I(P,Q,R). Thus, from this point of view 
we show the following optimal single axis partition 
algorithm to approach 3D-MIC Algorithm. 

Table 2: Single Axis Partition Algorithm 
Algorithm 2 3D-MIC Algorithm (D, Q, R, x) 
Require: D is a three variable ( x, y, z,) set sorted 
in 
 increasing order by x-value  
Require: Q is a y-axis partition of D 
Require: R is a z-axis partition of D 
Require: x is a integer greater than 1 
Ensure: Returns a list of scores 2( , , )xI I  such 
that each  

lI is the maximum value of I (P; Q; R) over all  
partitions P on x-axis of size l. 
1: 0 , , kp p< >← Get Partition (P; Q; R) 
2: %% Find the optimal partitions of size 2 
3: for t=2 to k do 
4: Find s∈{1 , ... , t } maximizing 
5: 0( , , )s tH p p p< > 0( , , , )s tH p p p Q− < >  

0( , , , )s tH p p p R− < > 0( , , , , )s tH p p p Q R+ < >  
6: ,2 0 , ,t s tP p p p←< >  
7: ,2 ,2( ) ( ) ( )t tI H P H Q H R← + +  

,2( , )tH P Q− ,2( , )tH P R− ( , )H Q R− ,2( , , )tH P Q R+  
8: end for 
9: %% Inductively build the rest of the table of  

%% optimal partitions 
10: for l=3 to x do 
11: for t=l to k do 
12: Find s∈{l-1 , ... , t } maximizing 

, 1( , , ) : [ ( ) ( ) ( , )]s
s l

t

p
F s t l I H Q H R H Q R

p −= − − +  

[ ( , , ) ( , , )t s
s s s s

t

p p
H p p Q H p p R

p
−

− < > + < >  

( , , , )]s sH p p Q R− < >  
13: , , 1t l s l tP P p−←   

14:  , ,( ) ( ) ( )t l t lI H P H Q H R← + +  

,( , )t lH P Q− ,( , )t lH P R− ( , )H Q R− ,( , , )t lH P Q R+  
15: end for 
16: end for 
17: , ,k l k kP P←  for l∈ (k , x] 
18: , ,k l k kI I←  for l∈ (k , x] 
19: return ,2 ,, ,k k xI I  

If given some number x of partitions and some 
number y, z of partitions, we could run the OSP 
algorithm function on every possible y, z size 
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partition. we would find an optimal grid. But the 
number of possible y, z partitions makes this 
infeasible. A natural approach to this problem is to 
consider only grids for which at least one axis is 
partitioned ahead. To this end, the OSP algorithm 
fixes a partition of y, z axis with Q, R and then runs 
to the result. Later, the OSP is called again but with 
the axes switched. The maximum of the three 
scores obtained is used. 

4. CONCLUSIONS 
 

This study describes the improved 3D-MIC 
Algorithm that discovers coefficients in multi-
variables (X, Y, Z). We have showed that the 3D-
MIC Algorithm is different from the original one in 
complexity and properties. The idea in 3D-MIC can 
be generalized to n-dimension variable sets. Like 
any other statistical analysis, the proposed approach 
has some limitations. First, it cannot automatically 
determine the maximum grid numbers B(n). B(n) is 
the important factor affecting program running 
speed. Furthermore, we need to give a complete 
proof of the convergence of the algorithm 
theoretically. This is our follow-up work. 
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