
Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

64

 ARCHITECTURE OPTIMIZATION MODEL FOR THE
MULTILAYER PERCEPTRON AND CLUSTERING

1Mohamed ETTAOUIL, 2Mohamed LAZAAR and 3Youssef GHANOU

1,2 Modeling and Scientific Computing Laboratory, Faculty of Science and Technology, University Sidi
Mohammed Ben Abdellah, Fez, Morocco

3High School of Technology, University Moulay Ismail Meknes, Morocco

E-mail: 1mohamedettaouil@yahoo.fr , 2lazaarmd@gmail.com , 3youssefghanou@yahoo.fr

ABSTRACT

This paper presents an approach called Architecture Optimization Model for the multilayer Perceptron. This
approach permits to optimize the architectures for the multilayer Perceptron. The results obtained by the
neural networks are dependent on their parameters. The architecture has a great impact on the convergence
of the neural networks. More precisely, the choice of neurons in each hidden layer, the number of hidden
layers and the initial weights has a great impact on the convergence of learning methods. In this respect, we
model this choice problem of neural architecture in terms of a mixed-integer problem with linear
constraints. We propose the genetic algorithm to solve the obtained model. The experimental work for
classification problems illustrates the advantages of our approach.

Keywords: Multilayer Perceptron, Non-linear optimization, Genetic algorithms, Supervised Training,
Clustering.

1. INTRODUCTION

The Artificial Neural Networks (ANN) are a very
powerful tool to deal with many applications, and
they have proved their effectiveness in several
research areas such as analysis and image
compression, recognition of writing, speech
recognition [2], signal analysis, process control,
robotics, and research on the Web [14] [12].

An artificial neural network is an information-
processing system that has certain performance
characteristics in common with biological neural
networks. Artificial neural networks have been
developed as generalizations of mathematical
models of neural biology [14], based on the
assumptions that:

- Information processing occurs at many simple
elements called neurons.

- Signals are passed between neurons over
connection links.

- Each connection link has an associated weight,
which, in a typical neural network, multiplies
the signal transmitted.

- Each neuron applies an activation function to
its network input to determine its output signal.

Optimizing the number of hidden layer neurons
for establishing a multilayer Perceptron to solve the
problem remains one of the unsolved tasks in this
research area Multilayer Perceptron consists of
input layer, output layer and hidden layers between
these two layers. The number of these layers is
dependent on the problem [16] [3]. In this work, we
optimize the number of hidden layers and the
number of neurons in each hidden layer to increase
the speed and efficiency of the neural network [6].
To optimize these hidden layers and neurons of the
multilayer Perceptron, we model this problem of
neural architecture in terms of a mixed-integer non
linear problem with linear constraints.

In this paper, we model this problem as mixed-
integer non lineaire programming. We apply
genetic algorithms to find the optimal number of
hidden layers, the activation function and the initial
matrix of weights. We formulate this problem as a
non linear programming with constraints. Genetic
algorithm is proposed to solve it. Consequently we
determine the optimal architecture and the initial
matrix of weights.

2. MULTILAYER PERCEPTRONS

Perceptrons was the generic name given by the
psychologist Frank Rosenblatt to a family of

http://www.jatit.org/
mailto:1mohamedettaouil@yahoo.fr
mailto:2lazaarmd@gmail.com
mailto:3youssefghanou@yahoo.fr

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

65

theoretical and experimental artificial neural net
models which he proposed in the period 1957-1962.
Rosenblatt's work created much excitement,
controversy, and interest in neural net models for
pattern classification in that period and led to
important models abstracted from his work in later
years. Currently the names (single-layer) Perceptron
and Multilayer Perceptron are used to refer to
specific artificial neural network structures based on
Rosenblatt's perceptrons [20].

In artificial neural network consists of a series of
nodes (neurons) which have multiple connections
with other nodes. Each connection has a weight
associated with it which can be varied in strength,
in analogy with neurobiology synapses. A typical
ANN architecture known as a multilayer
perceptron(MLP). The principal with which a
neural network operates is relatively simple. Each
neuron in the input layer holds a value, so that the
input layer holds the input vector. Each of these
neurons connects to every neuron in the next layer
of neurons.

The architecture of an Artificial Neural Network
is a layout of neurons grouped in layers. The main
parameters of ANN: number of layers, number of
neurons per layer, connectivity level and type of
neurons interconnectors [17][21].

A multilayer Perceptron (MLP) is a variant of the
original Perceptron model proposed by Rosenblatt
in the 1950 [19]. It has one or more hidden layers
between its input and output layers, the neurons are
organized in layers, the connections are always
directed from lower layers to upper layers, the
neurons in the same layer are not interconnected.

The first layer of the neural network is the input
layer, we assume it contains n neurons, the last
layer of the network is the output layer, we assume
it contains m neurons.

In the Perceptron model, a single neuron with a
linear weighted net function and a threshold
activation function is employed. The input to this
neuron is a feature vector in an
n-dimensional feature space. The net function
is the weighted sum of the inputs:

Input Layer: A vector of predictor variable

values is presented to the input layer.
The input layer distributes the values to each of the
neurons in the first hidden layer.

Hidden Layer: A group of neurons between an
input layer and output layer. The outputs from the
hidden layer are distributed to the output layer. The
neurons of first hidden layer are directly connected
to the input layer (data layer) of the neural network;
Figure 1 shows the connections between the first
hidden layer and the inputs of the network.

Figure 1. Outputs For The First Hidden Layer

To calculate the outputs for the first hidden layer,
we use the following:

Figure 2 Shows The Connections Between The I-1

Hidden Layer And The I Hidden Layer Of The Neural
Network.

x1

x2

xj

xn0

Input layer Hidden layer 1

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

66

Figure 2. Outputs For The Hodden Layer I=2,…,N

The outputs of the hidden layer i for i=2,…,N can
calculate by the role:

: The weight between the neuron j for the

layer i-1 and the neuron k for the layer i.

: Activation function.

Output Layer: Arriving at a neuron in the output
layer. The connections between the last hidden
layer and Output layer of the neural network are
show in Figure 3.

The outputs Y of the network are calculated by
this following:

Figure 3. Outputs For The Neural Network

The network can have any number of hidden
layers. The values on the output layer of neurons
are the outputs from the network.

A. Learning Techniques
Learning is a process by which the free

parameters of a neural network are adapted through
a continuing process of stimulation by the
environment in which the network is embedded.
The type of learning is determined by the manner in
which the parameter changes take place. The
multilayer perceptron is a supervised learning.

Supervised training takes place as follows. The
weights are initially set random values over a small
range. When a vector is fed into the network, the
output vector will also be random. By comparing
this output with what it should be, we can perturb
the weights to give an output which is closer to the
target value. This is repeated for each vector in the
training data set. The network is trained iteratively
by successive passes of the training data though the
network.

There are various schemes for training the
network in this fashion, but one of the mots
common and successful is the back-propagation
[17].

B. Backpropagation
Backpropagation neural network [23]

architecture is the most popular supervised learning
networks. Their topology allows the data to flow in
the same direction along the network using a
technique called error Backpropagation. It makes
possible to readjust the connection weights.

Forward Phase: During this phase the free
parameters of the network are fixed, and the input

hidden layer i-1 Hidden layer i

 hidden layer N Output layer

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

67

signal is propagated through the network layer by
layer. The forward phase finishes with the
computation of an error signal:

where di is the desired response and yi is the

actual output produced by the network in response
to the input xi.

Backward Phase: During this second phase, the
error signal ei is propagated through the network in
the backward direction, hence the name of the
algorithm. It is during this phase that adjustments
are applied to the free parameters of the network so
as to minimize the error ei in a statistical sense.

This sort of network has to be made of one Input
Layer and one Output Layer, between these both
layers, least one hidden layer. Hidden layers
propagate the information along the networks.

3. OPTIMIZATION OF ARTIFICIAL
NEURAL ARCHITECTURE

The problem of neural architectures optimization
is to find the optimal number of hidden layers in the
ANN, the number of neurons within each layer, and
the good activation function, in order to maximize
the performance of artificial neural networks
[5][6][8]. In this work, we assign to each neuron a
binary variable which takes the value 1 if the
neuron is active and 0 is otherwise.

Notation:

 : Number of hidden layers.

 : Number of neurons in input layer.

 : Number of neurons in hidden layer i.

 : Optimal number of neurons in hidden layer i.

 : Number of neurons in output layer.

 : Input data of neural network.

 : Calculated output of neural network.

 : Output of neuron j in hidden layer i.

 : Activation function.

 : Desired output.

 : Binary variable for and
 .

where

We computed the output of neural network by the
following formulation:

- Output of first hidden layer

The neurons of first hidden layer are directly
connected to the input layer (data layer) of the
neural network; Figure 1 shows the connections
between the first hidden layer and the inputs of the
network.

The output for each neuron in the first hidden
layer is calculated by:

- Output for the hidden layer i = 2,…,N

The number of hidden layer and number of
neurons in each layer has a great impact on the
convergence of the learning for the multilayer
neural network.

To calculate the output of each neuron for the
hidden layer i, where i=2,…,N, we propose the rule:

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

68

- Output for the neural network

The output of the neural network is defined by
the following expression:

Objective function

The objective function of the proposed model is
the error between the calculated output and desired
output:

Constraints

The last constraints guarantee the existence of the
hidden layers.

Optimization Model

The neural architecture optimization problem can
be formulated as the following model:

Let presents the solution of the

optimization problem (P).

Many exact methods for solving mixed-integer
non-linear programming (MINLPs) include
innovative approaches and related techniques taken
and extended from Mixed-integer programming
(MIP). Outer Approximation (OA) methods [6]
[10], Branch-and-Bound (B&B) [12] [18],
Extended Cutting Plane methods [22], and
Generalized Bender’s Decomposition (GBD) [10]
for solving MINLPs have been discussed in the
literature since the early 1980’s. These approaches
generally rely on the successive solutions of closely
related NLP problems. For example, B&B starts out
forming a pure continuous NLP problem by
dropping the integrality requirements of the discrete
variables (often called the relaxed MINLP or
RMINLP). Moreover, each node of the emerging
B&B tree represents a solution of the RMINLP with
adjusted bounds on the discrete variables [1].

The disadvantage of the exact solution methods
mentioned above is that they become
computationally intensive as the number of
variables is increased throughout the procedure.
Therefore, efficient heuristic methods are required
to solve large-size instances accurately.

The heuristics methods for solving combinatorial
optimization have now a long history, and there are
virtually no well-known, hard optimization
problems for which a meta-heuristic has not been
applied. Often, meta-heuristics obtain the best
known solutions for hard, large-size real problems,
for which exact methods are too time consuming to
be applied in practice.

4. SOLVING THE OBTAINED
OPTIMIZATION MODEL USING
GENETIC ALGORITHM

In this section, we use the genetic algorithm to
solve the architecture optimization problems. To
this end, we have coded individual by tree
chromosomes; moreover, the fitness of each
individual depends on the value of the objective
function.

The Genetic Algorithm (GA) was introduced by
J. HOLLAND to solve a large number of complex
optimization problems [15]. Each solution
represents an individual who is coded in one or
several chromosomes. These chromosomes
represent the problem's variables. First, an initial
population composed by a fix number of
individuals is generated, then, operators of
reproduction are applied to a number of individuals
selected switch their fitness. This procedure is
repeated until the maximums number of iterations is
attained. GA has been applied in a large number of

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

69

optimization problems in several domains,
telecommunication, routing, scheduling, and it
proves it's efficiently to obtain a good solution [3].
We have formulated the problem as a non linear
program with mixed variables [13].

Genetic algorithm
1. Choose the initial population of individuals;
2. Evaluate the fitness of each individual in that

population;
3. Repeat on this generation:

a. Select the best-fit individuals for
reproduction;

b. Crossover and Mutation operations;
c. Evaluate the individual fitness of new

individuals;
d. Replace least-fit population with new

individuals;

Until termination (time limit, fitness achieved).

A. Initial population
The first step in the functioning of a GA is the

generation of an initial population. Each member of
this population presents a feasible solution of the
problem.

The individual of the initial population are
randomly generated, and take the value 0 or 1,
and the weights matrix takes random values in
space where and

where
. Because all the observations are in the set

.

B. Evaluating individuals
After creating the initial population, each

individual is evaluated and assigned a fitness value
according to the fitness function.

In this step, each individual is assigned a
numerical value called fitness which corresponds to
its performance; it depends essentially on the value
of objective function in this individual. An
individual who has a great fitness is the one who is
the most adapted to the problem.

The fitness suggested in our work is the
following function:

Minimize the value of the objective function is

equivalent to maximize the value of the fitness
function.

C. Selection
The application of the fitness criterion to choose

which individuals from a population will go on to
reproduce.

Where

D. Crossover

The crossover is very important phase in the
genetic algorithm, in this step, new individuals
called children are created by individuals selected
from the population called parents. Children are
constructed as follows:

We fix a point of crossover, the parent are cut
switch this point, the first part of parent 1 and the
second of parent 2 go to child 1 and the rest go to
child 2.

In the crossover that we adopted, we choose 2
different crossover points, the first for the matrix of
weights and the second is for vector U.

E. Mutation
The rule of mutation is to keep the diversity of

solutions in order to avoid local optimums. It
corresponds on changing the values of one (or
several) value (s) of the individuals who are (or
were) (s) chosen randomly.

5. EXPERIMENT RESULTS

Classification algorithms attempt to organize
unlabeled feature vectors into clusters such that
points within a cluster are more similar to each
other than to vectors belonging to different clusters.

To illustrate the advantages of the proposed
approach, we apply our algorithm to a widely used
dataset, Iris dataset [24] for classification. It
consists of three target classes: Iris Setosa, Iris
Virginica and Iris Versicolor. Each species contains
50 data samples. Each sample has four real-valued
features: sepal length, sepal width, petal length and
petal width. By doing this, all features have the
same contribution to Iris classification. In our
method, two output neurons are needed to represent
Iris Setosa and Iris Virginica. Samples from Iris
Setosa cause the first output neuron to fire. Samples
from Iris Virginica cause the second output neuron
to fire. The samples causing neither output neuron
to fire belong to Iris Versicolor. The experiment
results are presented in the TABLE I.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

70

Table I : Experiments Results
Pm Pc {n1,n2} {n1,op ,n2,op}
0.2 0.8 {8,8} {3,4}
0.3 0.8 {7,7} {4,4}
0.3 0.7 {10,10} {3,3}
0.3 0.7 {9,9} {4,4}

Where:

- Pm: Probability of mutation
- Pc: Probability of crosser
- ni: number of neurons in hidden layer i.
- ni,op : optimal number of neurons

determined using the proposed method in
hidden layer i.

After determining the optimal number of neurons
in each hidden layer and the hidden layers, we can
initialize the neural networks by an adequate
number of neurons. Our algorithm tested on
instances for Iris data. We use an architecture
contains two hidden layers, in each layer four
neurons.

Table II :Classification For Training Data

 Nr. T.
D. C.C MC Accuracy

(%)
Setosa 25 25 0 100

Virginica 25 25 1 96

Versicolor 25 23 2 92

Overall 75 73 3 97.3

Where Nr. T. D. is the Number of Training Data
and C. C. is the data Correctly Classified.

The TABLE II presents the obtained clustering
results of training data. We remark that the
proposed method permits to classify all the training
data only three data; one from Virginica and two
from Versicolor.

Table IIII: Classification For Testing Data
 Nr. T. D. C.C MC Accuracy

Setosa 25 25 0 100
Virginica 25 21 0 100
Versicolor 25 23 2 92

Overall 75 72 2 96

The TABLE III presents the obtained clustering
results of testing data. This table shows that our

method gives the good results, because all the
testing data were correctly classified except two. In
fact; these elements (misclassified) are from the
Versicolor class.

A comparison of the average classification
accuracy rate of the proposed method with other
existing neural networks training algorithms: Error
Back-Propagation (EBP), Radial Basis Function
(RBF) neural networks and Support Vector
Machine (SVM). We use half of the data examples
(75 items) for training and the remaining (75 items)
for testing as well.

Table III: Comparison For Iris Data Classification

Method CPU It. M.T. M.TS
A.T

(%)

A.TS

(%)

EBP 39.98 500 3 2 96 97.3

EBP 68.63 800 2 1 97.3 98.6

RBF 16.84 85 4 4 94.6 94.6

RBF 19.81 111 4 2 96 97.3

SVM 8.743 5000 3 5 94.6 93.3

Proposed

Method
11.35 100 3 2 96 97.3

- It: Number of iterations;
- M.T.: Misclassified for training set;
- M.TS.: Misclassified for testing set;
- A.T.: Accuracy for training set;
- A.TS.: Accuracy for testing set.

The results are shown in the TABLE IV, we can
see that the proposed method gets a higher average
classification accuracy rate than the existing
methods.

In addition, the number of hidden neurons must
be decided before training in both EBP and RBF
neural networks. Different number of hidden
neurons results in different training time and
training accuracy. It is still a difficult task to
determine the number of hidden neurons in
advance.

Based on these tables we can conclude that the
proposed approach in this paper gives better results
compared to the neural methods; few time than all
methods only SVM and good results for clustering
the data.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

71

6. CONCLUSION

A Model is developed to optimize the
architecture of Artificial Neural Networks. The
Genetic Algorithm (GA) is especially appropriate to
obtain the optimal solution of the nonlinear
problem. This method is tested to determine the
optimal number of artificial neurons in the
Multilayer Perceptron and the most favorable
weights matrix. We have proposed a new modeling
for the multilayer Perceptron architecture
optimization problem as a mixed-integer problem
with constraints. The aim is to obtain optimal
number of hidden layers and the optimal number of
neurons in each hidden layer depending on the Iris
data, the results obtained demonstrates the good
generalization of neural networks architectures. In
conclusion, the optimal architecture of artificial
neural network can play an important role in the
classification problem. We can call the proposed
approach to solve many other problems; speech,
image, robotics,

REFERENCES

[1] J. F. Benders, “Partitioning procedures for

solving mixed-variables programming
problems”. Numer. Math., 4:238, 1962.

[2] M. K. Apalak, M. Yildirim, R Ekici, “Layer
optimization for maximum fundamental
frequency of laminated composite plates for
different edge conditions”, composites science
and technology (68), 2008, pp. 537-550.

[3] K. Deep, K. Pratap Singh, M.L. Kansal, C.
Mohan, “A real coded genetic algorithm for
solving integer and mixed integer optimization
problems”, Applied Mathematics and
Computation, 2009, pp. 505–518.

[4] L. Derong, C. Tsu-Shuan, Z. Yi, “A
Constructive Algorithm For Feedforward
Neural Networks With Incremental Training”,
IEEE Transactions on circuits and systems-I:
fundamental theory and applications, Vol. 49,
No. 12, 2002.

[5] M. Duran, I. E. Grossmann. “An outer-
approximation algorithm for a class of mixed-
integer non linear programs”. Mathematical
Programming, 1986, pp. 307-339.

[6] E. Egriogglu, C, Hakam Aladag, S. Gunay, “A
new model selection straegy in artificiel neural
networks”, Applied Mathematics and
Computation (195), 2008, pp. 591-597.

[7] M. Ettaouil and Y. Ghanou, “Neural
architectures optimization and Genetic

algorithms”, Wseas Transactions On
Computer, Issue 3, Volume 8, 2009, pp. 526-
537.

[8] M. Ettaouil, Y.Ghanou, K. Elmoutaouakil, M.
Lazaar, “A New Architecture Optimization
Model for the Kohonen Networks and
Clustering”, Journal of Advanced Research in
Computer Science (JARCS), Volume 3, Issue
1, 2011, pp. 14 - 32.

[9] M. Ettaouil, C. Loqman. “A New Optimization
Model for Solving the Constraint Satisfaction
Problem”. Journal of Advanced Research in
Computer Science (JARCS). Volume 1, Issue
1, 2009, pp. 13 - 31.

[10] R. Fletcher and S. Leyffer, “Solving Mixed
Integer Programs by Outer Approximation”,
Math. Program. 66, 1994, pp. 327–349.

[11] J. A. Freeman, D. M. Skapura, “Neural
Networks Algorithms, Applications and
Programming Techniques”, Pearson Education,
2004, pp. 213 – 262.

[12] O.K. Gupta and A. Ravindran, “Branch and
Bound Experiments in Convex Nonlinear
Integer Programming”, Manage Sci., 31 (12),
1985, pp. 1533–1546.

[13] Hasham Shiraz Ali, Umar Nauman, Faraz
Ahsan, Sajjad Mohsin, “Genetic Algorithm
Based Bowling Coach For Cricket”, Journal of
Theoretical and Applied Information
Technology, Vol 37. No. 2, 2012, pp 171-176.

[14] J.Hertz, A. Krogh, and R.G. Palmer,
“Introduction to Theory of Neural
Computation”. Santa Fe Institute Studies in the
Sciences of Complexity. Addison Wesley,
Wokingham, England, 1991.

[15] J. Holland, “Genetic Algorithms”, pour la
science, n°179, Edition of Scientific American,
1992, pp. 44-50.

[16] T.Y. Kwok, D.K. Yeung, “Constructive
algorithms for structure learning in feed
forward neural networks for regression
problems”, IEEE Trans. Neural Networks 8,
1997, pp. 630-645.

[17] X. Liang, “Removal of hidden neurons in
multilayer perceptrons by orthogonal
projection and weight crosswise propagation”,
Neural Comput. & Applic., 16, 2007, pp. 57-
68.

[18] Quesada and I.E. Grossmann, “An LP/NLP
Based Branch and Bound Algorithm for
Convex MINLP Optimization Problems”,
Computers Chem. Eng., 16 (10/11), 1992, pp.
937–947.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

72

[19] Rosenblatt, “The Perceptron: A Theory of
Statistical Separability in Cognitive Systems”,
Cornell Aeronautical Laboratory, Report No.
VG-1196-G-1, January, 1958.

[20] F. Rosenblatt, “Perceptrons and the Theory of
Brain Mechanisms”, Cornell Aeronautical
Laboratory, Report No. VG-1196-G-8.
September, 1960.

[21] A. C. Subhajini, T. Santhanam, “Fuzzy
Artmapneural Network Achitecture For
Weather Forecasting”, Journal of Theoretical
and Applied Information Technology, Vol 34.
No. 1, 2011, pp 022-028.

[22] T.Westerlund and F. Petersson, “A Cutting
Plane Method for Solving Convex MINLP
Problems”, Computers Chem. Eng., 19, 1995,
pp. 131–136.

[23] X. Zeng and D.S. Yeung, “Hidden neuron
pruning of multilayer perceptrons using a
quantified sensitivity Measure”,
Neurocomputing, 69, 2006, pp. 825-837.

[24] www.ics.uci.edu/mlearn/MLRepository.html.

http://www.jatit.org/

	1Mohamed ETTAOUIL, 2Mohamed LAZAAR and 3Youssef GHANOU
	A. Learning Techniques
	B. Backpropagation
	Genetic algorithm
	A. Initial population
	B. Evaluating individuals
	C. Selection
	D. Crossover
	E. Mutation

