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ABSTRACT 
 

This paper presents an approach called Architecture Optimization Model for the multilayer Perceptron. This 
approach permits to optimize the architectures for the multilayer Perceptron. The results obtained by the 
neural networks are dependent on their parameters. The architecture has a great impact on the convergence 
of the neural networks. More precisely, the choice of neurons in each hidden layer, the number of hidden 
layers and the initial weights has a great impact on the convergence of learning methods. In this respect, we 
model this choice problem of neural architecture in terms of a mixed-integer problem with linear 
constraints. We propose the genetic algorithm to solve the obtained model. The experimental work for 
classification problems illustrates the advantages of our approach. 

Keywords: Multilayer Perceptron, Non-linear optimization, Genetic algorithms, Supervised Training, 
Clustering. 

 
1. INTRODUCTION  

The Artificial Neural Networks (ANN) are a very 
powerful tool to deal with many applications, and 
they have proved their effectiveness in several 
research areas such as analysis and image 
compression, recognition of writing, speech 
recognition [2], signal analysis, process control, 
robotics, and research on the Web [14] [12]. 

An artificial neural network is an information-
processing system that has certain performance 
characteristics in common with biological neural 
networks. Artificial neural networks have been 
developed as generalizations of mathematical 
models of neural biology [14], based on the 
assumptions that: 

- Information processing occurs at many simple 
elements called neurons. 

- Signals are passed between neurons over 
connection links. 

- Each connection link has an associated weight, 
which, in a typical neural network, multiplies 
the signal transmitted. 

- Each neuron applies an activation function to 
its network input to determine its output signal. 

Optimizing the number of hidden layer neurons 
for establishing a multilayer Perceptron to solve the 
problem remains one of the unsolved tasks in this 
research area Multilayer Perceptron consists of 
input layer, output layer and hidden layers between 
these two layers. The number of these layers is 
dependent on the problem [16] [3]. In this work, we 
optimize the number of hidden layers and the 
number of neurons in each hidden layer to increase 
the speed and efficiency of the neural network [6]. 
To optimize these hidden layers and neurons of the 
multilayer Perceptron, we model this problem of 
neural architecture in terms of a mixed-integer non 
linear problem with linear constraints. 

In this paper, we model this problem as mixed-
integer non lineaire programming. We apply 
genetic algorithms to find the optimal number of 
hidden layers, the activation function and the initial 
matrix of weights. We formulate this problem as a 
non linear programming with constraints. Genetic 
algorithm is proposed to solve it. Consequently we 
determine the optimal architecture and the initial 
matrix of weights. 

2.  MULTILAYER PERCEPTRONS 

Perceptrons was the generic name given by the 
psychologist Frank Rosenblatt to a family of 
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theoretical and experimental artificial neural net 
models which he proposed in the period 1957-1962. 
Rosenblatt's work created much excitement, 
controversy, and interest in neural net models for 
pattern classification in that period and led to 
important models abstracted from his work in later 
years. Currently the names (single-layer) Perceptron 
and Multilayer Perceptron are used to refer to 
specific artificial neural network structures based on 
Rosenblatt's perceptrons [20]. 

In artificial neural network consists of a series of 
nodes (neurons) which have multiple connections 
with other nodes. Each connection has a weight 
associated with it which can be varied in strength, 
in analogy with neurobiology synapses. A typical 
ANN architecture known as a multilayer 
perceptron(MLP). The principal with which a 
neural network operates is relatively simple. Each 
neuron in the input layer holds a value, so that the 
input layer holds the input vector. Each of these 
neurons connects to every neuron in the next layer 
of neurons. 

The architecture of an Artificial Neural Network 
is a layout of neurons grouped in layers. The main 
parameters of ANN: number of layers, number of 
neurons per layer, connectivity level and type of 
neurons interconnectors [17][21]. 

A multilayer Perceptron (MLP) is a variant of the 
original Perceptron model proposed by Rosenblatt 
in the 1950 [19]. It has one or more hidden layers 
between its input and output layers, the neurons are 
organized in layers, the connections are always 
directed from lower layers to upper layers, the 
neurons in the same layer are not interconnected.  

The first layer of the neural network is the input 
layer, we assume it contains n neurons, the last 
layer of the network is the output layer, we assume 
it contains m neurons. 

In the Perceptron model, a single neuron with a 
linear weighted net function and a threshold 
activation function is employed. The input to this 
neuron  is a feature vector in an 
n-dimensional feature space. The net function  
is the weighted sum of the inputs: 

 
Input Layer: A vector of predictor variable 

values  is presented to the input layer. 
The input layer distributes the values to each of the 
neurons in the first hidden layer. 

Hidden Layer: A group of neurons between an 
input layer and output layer. The outputs from the 
hidden layer are distributed to the output layer. The 
neurons of first hidden layer are directly connected 
to the input layer (data layer) of the neural network; 
Figure 1 shows the connections between the first 
hidden layer and the inputs of the network.  

 
Figure 1. Outputs For The First Hidden Layer 

To calculate the outputs for the first hidden layer, 
we use the following: 

 
Figure 2 Shows The Connections Between The I-1 

Hidden Layer And The I Hidden Layer Of The Neural 
Network. 
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Figure 2. Outputs For The Hodden Layer I=2,…,N 

The outputs of the hidden layer i for i=2,…,N can 
calculate by the role: 

 
: The weight between the neuron j for the 

layer i-1 and the neuron k for the layer i. 

: Activation function. 

Output Layer: Arriving at a neuron in the output 
layer. The connections between the last hidden 
layer and Output layer of the neural network are 
show in Figure 3. 

The outputs Y of the network are calculated by 
this following: 

 
 

Figure 3. Outputs For The Neural Network 

The network can have any number of hidden 
layers. The values on the output layer of neurons 
are the outputs from the network.  

A. Learning Techniques 
Learning is a process by which the free 

parameters of a neural network are adapted through 
a continuing process of stimulation by the 
environment in which the network is embedded. 
The type of learning is determined by the manner in 
which the parameter changes take place. The 
multilayer perceptron is a supervised learning. 

Supervised training takes place as follows. The 
weights are initially set random values over a small 
range. When a vector is fed into the network, the 
output vector will also be random. By comparing 
this output with what it should be, we can perturb 
the weights to give an output which is closer to the 
target value. This is repeated for each vector in the 
training data set. The network is trained iteratively 
by successive passes of the training data though the 
network. 

There are various schemes for training the 
network in this fashion, but one of the mots 
common and successful is the back-propagation 
[17]. 

B.  Backpropagation 
Backpropagation neural network [23] 

architecture is the most popular supervised learning 
networks. Their topology allows the data to flow in 
the same direction along the network using a 
technique called error Backpropagation. It makes 
possible to readjust the connection weights.  

Forward Phase: During this phase the free 
parameters of the network are fixed, and the input 
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signal is propagated through the network layer by 
layer. The forward phase finishes with the 
computation of an error signal:  

 
where di is the desired response and yi is the 

actual output produced by the network in response 
to the input xi. 

Backward Phase: During this second phase, the 
error signal ei is propagated through the network in 
the backward direction, hence the name of the 
algorithm. It is during this phase that adjustments 
are applied to the free parameters of the network so 
as to minimize the error ei in a statistical sense. 

This sort of network has to be made of one Input 
Layer and one Output Layer, between these both 
layers, least one hidden layer. Hidden layers 
propagate the information along the networks. 

3. OPTIMIZATION OF ARTIFICIAL 
NEURAL ARCHITECTURE 

The problem of neural architectures optimization 
is to find the optimal number of hidden layers in the 
ANN, the number of neurons within each layer, and 
the good activation function, in order to maximize 
the performance of artificial neural networks 
[5][6][8]. In this work, we assign to each neuron a 
binary variable which takes the value 1 if the 
neuron is active and 0 is otherwise.  

Notation: 

    : Number of hidden layers. 

   : Number of neurons in input layer. 

     : Number of neurons in hidden layer i. 

 : Optimal number of neurons in hidden layer i. 

 : Number of neurons in output layer. 

     : Input data of neural network. 

     : Calculated output of neural network. 

   : Output of neuron j in hidden layer i. 

      : Activation function. 

     : Desired output. 

  : Binary variable for  and             
 . 

 
where  

We computed the output of neural network by the 
following formulation: 

 
- Output of first hidden layer 

The neurons of first hidden layer are directly 
connected to the input layer (data layer) of the 
neural network; Figure 1 shows the connections 
between the first hidden layer and the inputs of the 
network. 

The output for each neuron in the first hidden 
layer is calculated by: 

 
- Output for the hidden layer i = 2,…,N 

The number of hidden layer and number of 
neurons in each layer has a great impact on the 
convergence of the learning for the multilayer 
neural network.  

To calculate the output of each neuron for the 
hidden layer i, where i=2,…,N, we propose the rule: 
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- Output for the neural network  

The output of the neural network is defined by 
the following expression: 

 

 
 

Objective function 

The objective function of the proposed model is 
the error between the calculated output and desired 
output: 

 
Constraints 

The last constraints guarantee the existence of the 
hidden layers. 

 
Optimization Model 

The neural architecture optimization problem can 
be formulated as the following model: 

 
Let  presents the solution of the 

optimization problem (P). 

Many exact methods for solving mixed-integer 
non-linear programming (MINLPs) include 
innovative approaches and related techniques taken 
and extended from Mixed-integer programming 
(MIP). Outer Approximation (OA) methods [6] 
[10], Branch-and-Bound (B&B) [12] [18], 
Extended Cutting Plane methods [22], and 
Generalized Bender’s Decomposition (GBD) [10] 
for solving MINLPs have been discussed in the 
literature since the early 1980’s. These approaches 
generally rely on the successive solutions of closely 
related NLP problems. For example, B&B starts out 
forming a pure continuous NLP problem by 
dropping the integrality requirements of the discrete 
variables (often called the relaxed MINLP or 
RMINLP). Moreover, each node of the emerging 
B&B tree represents a solution of the RMINLP with 
adjusted bounds on the discrete variables [1]. 

The disadvantage of the exact solution methods 
mentioned above is that they become 
computationally intensive as the number of 
variables is increased throughout the procedure. 
Therefore, efficient heuristic methods are required 
to solve large-size instances accurately. 

The heuristics methods for solving combinatorial 
optimization have now a long history, and there are 
virtually no well-known, hard optimization 
problems for which a meta-heuristic has not been 
applied. Often, meta-heuristics obtain the best 
known solutions for hard, large-size real problems, 
for which exact methods are too time consuming to 
be applied in practice. 

4. SOLVING THE OBTAINED 
OPTIMIZATION MODEL USING 
GENETIC ALGORITHM 

In this section, we use the genetic algorithm to 
solve the architecture optimization problems. To 
this end, we have coded individual by tree 
chromosomes; moreover, the fitness of each 
individual depends on the value of the objective 
function. 

The Genetic Algorithm (GA) was introduced by 
J. HOLLAND to solve a large number of complex 
optimization problems [15]. Each solution 
represents an individual who is coded in one or 
several chromosomes. These chromosomes 
represent the problem's variables. First, an initial 
population composed by a fix number of 
individuals is generated, then, operators of 
reproduction are applied to a number of individuals 
selected switch their fitness. This procedure is 
repeated until the maximums number of iterations is 
attained. GA has been applied in a large number of 
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optimization problems in several domains, 
telecommunication, routing, scheduling, and it 
proves it's efficiently to obtain a good solution [3]. 
We have formulated the problem as a non linear 
program with mixed variables [13]. 

Genetic algorithm 
1. Choose the initial population of individuals; 
2. Evaluate the fitness of each individual in that 

population; 
3. Repeat on this generation: 

a. Select the best-fit individuals for 
reproduction; 

b. Crossover and Mutation operations; 
c. Evaluate the individual fitness of new 

individuals; 
d. Replace least-fit population with new 

individuals; 

Until termination (time limit, fitness achieved). 

A. Initial population 
The first step in the functioning of a GA is the 

generation of an initial population. Each member of 
this population presents a feasible solution of the 
problem. 

The individual of the initial population are 
randomly generated, and  take the value 0 or 1, 
and the weights matrix takes random values in 
space  where  and 

where  
. Because all the observations are in the set 

. 

B. Evaluating individuals 
After creating the initial population, each 

individual is evaluated and assigned a fitness value 
according to the fitness function. 

In this step, each individual is assigned a 
numerical value called fitness which corresponds to 
its performance; it depends essentially on the value 
of objective function in this individual. An 
individual who has a great fitness is the one who is 
the most adapted to the problem. 

The fitness suggested in our work is the 
following function: 

 
Minimize the value of the objective function is 

equivalent to maximize the value of the fitness 
function. 

C. Selection 
The application of the fitness criterion to choose 

which individuals from a population will go on to 
reproduce. 

Where 

 
D.  Crossover 

The crossover is very important phase in the 
genetic algorithm, in this step, new individuals 
called children are created by individuals selected 
from the population called parents. Children are 
constructed as follows: 

We fix a point of crossover, the parent are cut 
switch this point, the first part of parent 1 and the 
second of parent 2 go to child 1 and the rest go to 
child 2. 

In the crossover that we adopted, we choose 2 
different crossover points, the first for the matrix of 
weights and the second is for vector U. 

E. Mutation 
The rule of mutation is to keep the diversity of 

solutions in order to avoid local optimums. It 
corresponds on changing the values of one (or 
several) value (s) of the individuals who are (or 
were) (s) chosen randomly. 

5. EXPERIMENT RESULTS 

Classification algorithms attempt to organize 
unlabeled feature vectors into clusters such that 
points within a cluster are more similar to each 
other than to vectors belonging to different clusters.  

To illustrate the advantages of the proposed 
approach, we apply our algorithm to a widely used 
dataset, Iris dataset [24] for classification. It 
consists of three target classes: Iris Setosa, Iris 
Virginica and Iris Versicolor. Each species contains 
50 data samples. Each sample has four real-valued 
features: sepal length, sepal width, petal length and 
petal width. By doing this, all features have the 
same contribution to Iris classification. In our 
method, two output neurons are needed to represent 
Iris Setosa and Iris Virginica. Samples from Iris 
Setosa cause the first output neuron to fire. Samples 
from Iris Virginica cause the second output neuron 
to fire. The samples causing neither output neuron 
to fire belong to Iris Versicolor. The experiment 
results are presented in the TABLE I. 
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Table I : Experiments Results 
Pm Pc {n1,n2} {n1,op ,n2,op} 
0.2 0.8 {8,8} {3,4} 
0.3 0.8 {7,7} {4,4} 
0.3 0.7 {10,10} {3,3} 
0.3 0.7 {9,9} {4,4} 

 
Where: 

- Pm: Probability of mutation 
- Pc: Probability of crosser 
- ni: number of neurons in hidden layer i. 
- ni,op : optimal number of neurons 

determined using the proposed method in 
hidden layer i. 

After determining the optimal number of neurons 
in each hidden layer and the hidden layers, we can 
initialize the neural networks by an adequate 
number of neurons. Our algorithm tested on 
instances for Iris data. We use an architecture 
contains two hidden layers, in each layer four 
neurons.  

Table II :Classification For Training Data 

 Nr. T. 
D. C.C MC Accuracy 

(%) 
Setosa 25 25 0 100 

Virginica 25 25 1 96 

Versicolor 25 23 2 92 

Overall 75 73 3 97.3 
 

Where Nr. T. D. is the Number of Training Data 
and C. C. is the data Correctly Classified. 

The TABLE II presents the obtained clustering 
results of training data. We remark that the 
proposed method permits to classify all the training 
data only three data; one from Virginica and two 
from Versicolor. 

Table IIII: Classification For Testing Data 
 Nr. T. D. C.C MC Accuracy 

Setosa 25 25 0 100 
Virginica 25 21 0 100 
Versicolor 25 23 2 92 

Overall 75 72 2 96 
 

The TABLE III presents the obtained clustering 
results of testing data. This table shows that our 

method gives the good results, because all the 
testing data were correctly classified except two. In 
fact; these elements (misclassified) are from the 
Versicolor class. 

A comparison of the average classification 
accuracy rate of the proposed method with other 
existing neural networks training algorithms: Error 
Back-Propagation (EBP), Radial Basis Function 
(RBF) neural networks and Support Vector 
Machine (SVM). We use half of the data examples 
(75 items) for training and the remaining (75 items) 
for testing as well. 

Table  III: Comparison For Iris Data Classification 

Method CPU It. M.T. M.TS 
A.T 

(%) 

A.TS 

(%) 

EBP 39.98 500 3 2 96 97.3 

EBP 68.63 800 2 1 97.3 98.6 

RBF 16.84 85 4 4 94.6 94.6 

RBF 19.81 111 4 2 96 97.3 

SVM 8.743 5000 3 5 94.6 93.3 

Proposed 

Method 
11.35 100 3 2 96 97.3 

 

- It: Number of iterations; 
- M.T.: Misclassified for training set; 
- M.TS.: Misclassified for testing set; 
- A.T.: Accuracy for training set; 
- A.TS.: Accuracy for testing set. 

The results are shown in the TABLE IV, we can 
see that the proposed method gets a higher average 
classification accuracy rate than the existing 
methods. 

In addition, the number of hidden neurons must 
be decided before training in both EBP and RBF 
neural networks. Different number of hidden 
neurons results in different training time and 
training accuracy. It is still a difficult task to 
determine the number of hidden neurons in 
advance. 

Based on these tables we can conclude that the 
proposed approach in this paper gives better results 
compared to the neural methods; few time than all 
methods only SVM and good results for clustering 
the data. 
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6. CONCLUSION  

A Model is developed to optimize the 
architecture of Artificial Neural Networks. The 
Genetic Algorithm (GA) is especially appropriate to 
obtain the optimal solution of the nonlinear 
problem. This method is tested to determine the 
optimal number of artificial neurons in the 
Multilayer Perceptron and the most favorable 
weights matrix. We have proposed a new modeling 
for the multilayer Perceptron architecture 
optimization problem as a mixed-integer problem 
with constraints. The aim is to obtain optimal 
number of hidden layers and the optimal number of 
neurons in each hidden layer depending on the Iris 
data, the results obtained demonstrates the good 
generalization of neural networks architectures. In 
conclusion, the optimal architecture of artificial 
neural network can play an important role in the 
classification problem. We can call the proposed 
approach to solve many other problems; speech, 
image, robotics, 
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