
Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

369

AN EVOLUTION SCHEME FOR BUSINESS RULE BASED
LEGACY SYSTEMS

1HAN LI, 1HE GUO, 2HUI GUAN, 3XIN FENG, 4YANG XU, 4HONGJI YANG

1 Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian
116024, Liaoning, China

2 Department of Computer Science and Technology, Shenyang University of Chemical Technology,
Shenyang 110142, Liaoning, China

3 People’s Liberation Army 66444, Beijing 100042, Beijing, China
4 Software Technology Research Laboratory, De Montfort University, Leicester LE1 9BH, England

ABSTRACT

Business rules are compact statements that depict important aspects of business processes. For most
enterprises, business rules are embedded in the information systems. As change is inherent in software,
information systems turn into legacy ones and their documentations may not reflect the actual business
logics. Thus, business rules in legacy systems become significant investments, and it is necessary to evolve
legacy systems without simply getting rid of the embedded business rules. This paper studies the scheme of
business rule-based legacy systems evolution. To locate valuable functionalities, reengineering techniques
are used to comprehend legacy system. Then business rules are extracted from these functionalities by
means of information flow analysis and decomposition slicing. Since service-oriented architecture is
flexible to reuse components and connect components with changes in business, business rules are stored
and managed by a service-oriented business rule management system. A case study is illustrated to show
the scheme can preserve valuable business rules, facilitate evolving business rule-based legacy systems, and
involve non-technical users to business related software evolution.

Keywords: Business Rule, Legacy System, Evolution, Service-Oriented, Reengineering

1. INTRODUCTION

Since software is in a constant flux, many
information systems become legacy ones. Although
most legacy systems are implemented with obsolete
techniques, they are strongly intervened with
existing business processes, and tightly coupled to
business logics which results from many years of
patching and fixing. Thus, enterprises are facing an
unenviable dilemma. On one hand, they want to get
rid of legacy systems in order to align their
information systems with new techniques and
business logics. On the other hand, legacy systems
are important enterprise assets which include
business knowledge, such as enterprise data and
policies. So legacy systems cannot be simply
replaced, and the key lies in the discovery,
application and evolution of the embedded business
rules.

A business rule refers to the logic that governs
business operation. By capturing legacy business
rules, enterprises are able to create systems fully
aligned with their actual business requirements, and
business professionals may be involved to supervise
the process of legacy system evolution.

Recent years, many researchers focus on the
research of business rules of legacy systems. Based
on program transformation, [1] achieved business
rule abstraction and organizing, and made legacy
CRM system more flexible to cope with further
changing requirements. In [2], a framework was
given to recover business rules from large legacy
systems by integrating the advantages of various
normal recovery solutions. In [3], a tailored solution
approach which extracted prime business rules from
large legacy system was proposed and implemented
as a system. Moreover, [4] presented a method to
obtain business rules based on dependence-cache
slicing. Experiments showed the usage of
dependency-cache slicing might improve the
precision of business rule abstraction. Since
Service-Oriented Architecture (SOA) holds many
technology and business benefits, migrating
software systems towards SOA attracts more
attentions. In [5], the transformation of
functionality of CRM system into web services was
investigated. In [6], a case study was given to
evolve legacy system towards SOA, which
provided a practical guideline for legacy system
evolution. Based on wrapping technique, a black-
box modernization approach was depicted to

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

370

transform legacy interactive functionality to
services [7]. Additionally, [8] developed a sequence
mining algorithm in order to identify hidden logics
in e-learning legacy systems.

As mentioned above, this paper focuses on
business rules of legacy systems, and aims at
evolving business rule-based legacy systems
towards SOA. Besides, since most software systems
or applications adopt object-oriented technique,
object-oriented systems are considered as the
research object.

The remainder of the paper is organized as
follows: Section 2 overviews the proposed scheme.
Section 3 depicts the process of the proposed
scheme including system comprehension and
partition, business rule extraction and service-
oriented migration. In Section 4, a realistic business
rule-based legacy system is used as a case study to
show the feasibility of the proposed scheme.
Section 5 draws the conclusions.

2. SCHEME OVERVIEW

The objective of this research is to extract
reusable legacy assets from the underlying legacy

system and re-host them in service-oriented
architecture. Based on reengineering techniques and
domain knowledge, a scheme is proposed for
business rule centered legacy system evolution.
Figure 1 illustrates the framework of the proposed
scheme, which is linked by an evolution process
model and comprises 5 main modules as follows:

System Comprehension: It contains the methods
of understanding legacy systems including pre-
processing, static analysis and dynamic analysis.

System Partition: It includes the methods of
dividing legacy systems into subsystems. It is a
preparation for extracting business rules.

Business Rule Extraction: It is the kernel of the
proposed scheme, which comprises the methods of
locating and generating business rules.

Service-Oriented Migration: It involves the
methods of representing business rules and
deploying a service-oriented business rule
management system.

Domain Knowledge Base: It comprises a set of
design patterns, architectural patterns and expert
knowledge of particular domains. It supports the
execution of other modules.

Legacy System

Class Diagram

Clustered Class
Diagram

Business
Rule Set

Service-Oriented
BRM system

Comprehension

Partition

Extraction

Migration

Design Pattern

Architectural Pattern

Expert Knowledge

Domain Knowledge Base
Pre-Processing

Static Analysis

Dynamic Analysis

System Comprehension

Pre-Decomposition

Subsystem clustering

System Partition

BRM System Deployment

Service-Oriented Migration

Domain Variable Identification

Rule Generation

Business Rule Extraction

Rule Representation

Figure 1: Framework Of The Proposed Scheme

As shown in Figure 1, the evolution process

model is a 4-phase process as follows:
Comprehension: It is concerned with legacy

system understanding. It outputs a class diagram
which primarily target on valuable legacy
functionalities that may be considered for inclusion
into the target system.

Partition: It takes charge of decomposing class
diagrams into different subsystems. The outputs are
clustered class diagram.

Extraction: It carries out extracting business
rules from corresponding subsystems, which results
in a group of business rules in business rule syntax
[1].

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

371

Migration: It is responsible for integrating web
service technique with business rules. The output is
a service-oriented BRM system.

3. BUSINESS RULE-BASED LEGACY
SYSTEM EVOLUTION

Business rules are the kernel of business rule-

based legacy systems. So identifying business rules
and achieving target systems based on these
existing business rules are significant procedures
during legacy system evolution.

3.1 System Comprehension
Since most legacy systems have been developed

over a long time and the business rules are spread
across the whole system, system comprehension is
considered as a prerequisite for legacy system
evolution.

Pre-Processing aims at identifying and
documenting which legacy functionalities are
compatible with the requirements of the target
system. Except for source code and technical
documents, expert knowledge is required to specify
these useful parts. Pre-processing comprises 2 parts
including information collection and functionality
selection. Information collection is to specify
resources and understand business context. It
contains a list of relevant activities such as
skimming technical documents, studying use cases,
discussing with maintainers and reviewing source
code. Functionality selection is to identify reusable
functionalities. It is iterative and involves business
and technical knowledge. Business experts
recognize domain concepts which are candidates
for target business services. Software engineers
judge which designs and implementations are
candidates for corresponding business concepts. As
a result, functionalities which are potential inputs to
the target system are highlighted and classes that
related to the same functionality are regarded as a
component.

Static Analysis is a possible and suitable
technique to compute the potential role a class
plays in a design pattern, because classes always
match against the design patterns proposed by
system designers or developers in Object-Oriented
development. Thus, it is applied to obtain the
relationships among classes within a component.
The process is summarized as 4 steps:

Step1. Design Pattern Instance Determination
A set of design pattern instances are provided for

specific reusable functionalities.

Step2. Initial Class Diagram Allocation
 According to the instance of a design pattern, an

initial class diagram is developed for what is
expected in the source code.

Step3. Design Pattern Refinement
Enumerating element names in the class diagram

and refine them by searching them in the source
code. Renaming, remodeling, extending and
replacing are the activities to refine class diagram.

Step4. Actual Class Diagram Detection
Taking the refined class diagram as the

declaration form, all classes and their methods are
detected to generate candidate class diagrams that
match the refined design pattern for a specific
functionality.

Dynamic analysis provides a mechanism for
Component and Connector view which illustrates
runtime behavior among various functionalities. It
only retrieves actual interacted components.
Therefore, the dynamic relationships of
components are captured and recorded. Following
depicts the steps of dynamic analysis.

Step1. Task Scenario Selection
In terms of the occurrences of classes and

interfaces in use cases, a set of common task
scenarios are selected.

Step2. Components and Connector Aggregation
Observing which procedures are executed when

a specific task scenario is executed and further
tracks its chain reaction to discover how
components are interacted at run-time.

Step3. Sequence Diagram Generation
The dynamic relationships among components

are modeled using component-level sequence
diagrams.

3.2 System Partition
As legacy systems are always huge in size, it is

useful to break a complex system down into a set of
small and manageable subsystems which
respectively contains relevant components.

Pre-Decomposition: Legacy systems always
contain a large number of cooperating components,
and these components are often organized into
identifiable clusters, namely, subsystems. That is,
components which contribute to the same business
logic are included in a subsystem. Hence, according
to domain-expert knowledge, a legacy system is
preliminarily decomposed based on the discrepancy
of business logic that embedded in various
subsystems. Figure 2 shows the structure of a
legacy system after pre-decomposition.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

372

Legacy System

Subsystem1
(BusinessLogic1)

Subsystemn
(BusinessLogicn)

Subsystem2
(BusinessLogic2)

Component1
1

(Functionality1
1)

Component1
2

(Functionality1
2)

Component1
n1

(Functionality1
n1)

Component1
1

(Functionality1
1)

Component1
2

(Functionality1
2)

Component1
n

(Functionality1
n)

Component2
1

(Functionality2
1)

Component2
2

(Functionality2
2)

Component2
n2

(Functionality2
n2)

Componentn
1

(Functionalityn
1)

Componentn
2

(Functionalityn
2)

Componentn
n3

(Functionalityn
n3)

...

...
...

...

Figure 2: Structure Of A Legacy System After Pre-Decomposition

Subsystem Clustering: Partition clustering starts

with an initial set of cluster centers, and relocates
entities by moving them from one cluster to another.
It is a proper method to optimize the subsystems
generated by pre-decomposition. In order to
efficiently explore the extraordinary large solution
space of all possible partitions, Genetic Algorithm
(GA) based clustering is applied. The inputs of the
clustering algorithm are preliminary subsystems
and the dependency graph of all classes contained
in these subsystems. Following represents the main
steps of GA-based clustering algorithm.

Step1. Fitness Function Selection
Fitness function is used to quantify the quality of

a cluster. Considering both intra and inter
connectivities among classes, modularization
quality (MQ) is selected as the fitness function
which is shown in Eq. (1), where Ai=μi/Ni

2 is the
intra-connectivity of subsystem i which has Ni
classes and μi intra-edge dependencies, and
Ei,j=εi,j/2NiNj (i≠j) and Ei,j=0 (i=j) depicts the inter-
connectivity between subsystem i and j which
respectively contains Ni and Nj classes with εi,j
inter-edge dependencies.

kk

,
, =1=1 - 1(-1)

2
1

i ji
i ji

i

EA
kMQ k kk

A k



 ≥= 



=

∑∑

 (1)

Step2. Encoding Scheme Selection
In a chromosome, the value of a gene represents

the index of a subsystem that the class belongs to.
The position of a gene depicts the index of a class.

Step3. Population Initialization

In order to improve the efficiency of GA, domain
knowledge is taken as a reference. That is,
compared with randomly generated population, the
value of a gene considers the result of pre-
decomposition.

Step4. Genetic Operator Execution
The execution comprises selection, crossover,

mutation and replacement. Tournament selection
strategy is used to choose parental members for
reproducing population. Classes that depend on
each other in a chromosome are passed together to
the offspring during crossover. Mutation only
happens when the offspring improves the quality of
the chromosome. MQ is utilized to determine
which chromosomes should be replaced by new
ones.

Step5. Termination of Clustering
The terminating conditions satisfy when the

genetic operators result in specified number of
generations or the value of the fitness function of
the best chromosome remains the same.

3.3 Business Rule Extraction
Business rules which are stated as statements that

define or constrain some aspect of the business [9]
are the kernel investments for enterprises. Within
each subsystem, business rules are extracted as
follows:

Domain Variable Identification: Since business
rules always creating, maintaining and utilizing
data, and data are primarily represented by
variables in source code, variables that relates with
business rules becomes the clue of business rule
extraction. Business rule related variables are
defined as domain variables comprising pure and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

373

derived domain variables. Pure domain variables
directly map to objects in source code. Derived
domain variables depend on other domain variables.
In order to identify domain variables information-
flow algorithm is applied to each methods in a class.
First, input, output and variables that apparently
map to objects of source code are considered as
initial domain variables. Next, other domain
variables are computed by relation ρ in
information-flow algorithm [10].

Rule Generation: Although legacy systems are
partitioned into corresponding subsystems. It is still
complex to locate business rules within a subsystem.
Thus, according to the domain variables identified,
decomposition slicing is performed to carve out the
minimal subset of program statements without
affecting the implied business logics.
Decomposition slicing does not depend on
statement numbers. It produces a set of slices which
contains all the identified domain variables. Based
on the slices, business rules are generated based on
business rule syntax [1].

3.4 Service-Oriented Migration
A Business Rule Management System (BRMS)

is a software system used to define, deploy, execute,
monitor and maintain the variety and complexity of
decision logics used by operational systems within
an organization. Adopting BRMS in information
systems can decrease development cost and shorten
the cycle of development and maintenance. So the
extracted business rules are integrated into BRMS.
Moreover, in order to easily deploy and integrate
new business requirements, Web Service is applied
to construct BRMS. That is, components in the
BRMS are implemented as service suppliers or
consumers.

Rule Representation: Business rules represented
in business rule syntax is similar to natural
language. As natural language is difficult to be
directly converted into standard XML format,
Entity Relationship Diagram (ERD) is involved as
an interpreter for the conversion. The process of
rule representation contains 2 steps.

Step1. ERD Conversion
ERD is a graphic that shows the relationships

among entities in a database. It is intuitive and easy
to be comprehended by both engineers and business
professionals. The Business Rules Group studied
the relationship between entity relationship models
and business rules. Based on the method which
converts business rules into entity relationship
models [9], business rules are transformed into a set
of database tables which are visually represented by
ERD.

Step2. XML Conversion
As the target system is service-oriented, business

rules represented by ERD requires to be converted
into XML format. RuleML [11] is an open
language standard for rule interchange and markup.
It bases on XML and is commonly used in Web
Service. Thus, it is applied to represent business
rules. According to the types of business rules,
various elements in entity relationship model are
mapped to corresponding elements in RuleML.

Service-Oriented BRMS Deployment: Business
logics are separated from abundant and complex
legacy functionalities. In order to avoid mussily
distributing business logics in legacy systems and
facilitate further business rule evolution, the
extracted business rules are stored and deployed in
a service-oriented BRMS. Figure 3 shows the
architecture of the service-oriented BRMS.

Software System
Components

Business Rule Verifier
(Monitoring Service)

Business Rule Editor
(Authoring Service)

Business Rule Repository
(Storage Service)

Business Rule Engine
(Decision Service)

Application Layer
Business Logic Layer

Service-oriented BRMS

Figure 3: Architecture Of The Service-Oriented BRMS

For the target system, the entire service-oriented
BRMS is considered as an independent service
which provides business logic service for
components in application layer. Inside the service-

oriented BRMS, its 4 modules are respectively
made available as different rule services which
loosely couple with each other.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

374

4. CASE STUDY

In order to ensure the feasibility of the proposed
scheme, the early version of a Customer
Relationship Management (CRM) system, which
manages the customers of an online shopping
system, is chosen as the case study. For online

shopping systems, the success of a retailer tightly
relates to the quality of its customer care. Thus, the
CRM system must contain a set of business rules
used to classify and serve customers. The CRM
system is a web-based legacy system which is
developed by ASP and Microsoft Access.

Investment Category

PK,I1 Investment Category Code

 Investment Category Description
 Investment Category Definition

Investment Risk Type

PK,I1 Investment Risk Type Code

 Investment Risk Type Description
 Investment Risk Type Definition

Investment Type

PK,I1 Investment Type Code

 Investment Type Description
 Investment Type Definition

Country

PK,I1 Country Code

FK1,I2 Region Code
 Country Name
 Country Blacklisted Indicator

Region

PK,I1 Region Code

 Region Name
 Region Business Exclusion Indicator

Fee Type

PK,I1 Fee Type Code

 Fee Type Description
 Fee Type Definition

Fund General Information

PK Fund Acronym

 Fund Name

Investment

PK,I3 Investment ID

FK1,I1 Country Code
FK2,I5 Fund Acronym
FK3,I2 Investment Category Code
FK5,I4 Investment Type Code
 Investment Short Name
 nvestment Long Name
 Investment Close Date
 Investment Funding Date
 Investment Total Amount
FK4,I6 Investment Risk Type Code

Figure 4: Partial Logical View Of The Case Study

During system comprehension, pre-processing

firstly chooses Access database during information
collection and analyzes tables in Access database.
Figure 4 shows partial logical view of the case
study, which contains tables that possess
investment relevant data. In addition, each arrow in
Figure 4 represents a 1:n relationship.

Then, a RFM (Recency, Frequency and
Monetary) analysis method is applied to
comprehend the relationships among tables and
data stored in the tables, and with the help of
business professionals customers are classified into
6 groups consisting of superstar, golden customer,
typical customer, exceptional occasions customer,
everyday shopper and dormant customer. Taking
superstar as an example, it includes customers who
are the most loyal and hold highest frequency and
investment.

Since ASP codes separate representation and
logic processing, it is easy to locate description
codes and concentrate on business logics by
identifying variable handling and business relevant
codes. Then the relationships among these business
logic relevant codes are captured by static and
dynamic analysis. As the CRM system relatively
simple, system partition is omitted. That is, the
entire CRM system is considered as one subsystem,

and the next step is to identify business rules. For
instance, when considering variable dct which maps
to object discount as a domain variable, a business
rule, which means if the purchase of an order is
over 1000, a discount is given to the order and the
discount rate is 5%, is captured as shown in Figure
5.

ON (discount)
IF (order exists) AND (order.purchase>1000)
THEN discountrate=5%

Figure 5: An Example Of Business Rule

In order to deploy the extracted business rules in
the service-oriented BRMS, business rules are
transformed into XML format with the help of ERD.
In the case study, 17 tables are established to
express the entity relationship model. For example,
table Rule Enforcement is used to record the type,
starting and ending date of rules. As shown in
Figure 6 the business rule in Figure 5 is represented
in RuleML.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

375

<Implies>
 <if>
 <And>
 <Atom>
 <Rel>exist</Rel>
 <Var>order</Var>
 </Atom>
 <Atom>
 <Rel>purchase</Rel>
 <Var>order</Var>
 <Ind>over 1000</Var>

 </Atom>
 </And>
 </if>
 <then>
 <Atom>
 <Rel>discountrate</Rel>
 <Var>order</Var>
 <Data>5.0 percent</Data>
 </Atom>
 </then>
</Implies>

Figure 6: The Sample Business Rule In Ruleml

At last, these business rules in XML format are
stored in business rule repository of the service-
oriented BRMS and serves as services. Based on
the service-oriented BRMS, business rules can be
evolved according to further business requirements.
In terms of these evolved business rules,
corresponding business services are able to be
implemented by wrapping corresponding legacy
codes or developing new services.

5. CONCLUSION

This paper presents a scheme to assist the

evolution of business rule-based legacy systems. To
concentrate on valuable legacy functionalities,
legacy systems are understood and partitioned to
subsystems by applying reengineering techniques.
Information-flow analysis and decomposition
slicing are applied to identify domain variables and
business rule relevant code segments. In terms of
domain expert knowledge, implied business rules
are captured and are deployed in a service-oriented
BRMS. The feasibility of the scheme is proved by a
simple case study. In brief, the scheme is able to
assist business rule-based legacy system evolution.
By applying software reengineering and knowledge
from business experts, it not only facilitates the
identification of valuable functionality and business
rules, but also gives an opportunity for non-
technical business users to take part in the evolution
of legacy systems. Furthermore, by integrating
service-oriented architecture and business rule
management with legacy system evolution,
business rule-based legacy system can be organized
by a flexible architecture which may facilitate
further evolution.

REFERENCES:

[1] Y. Xu, H. Yang, and I. Amin, “Business Rule
Based Program Transformation for CRM
System Evolution”, Proceedings of IEEE
International Conference on Information Reuse
and Integration, Institute of Electrical and
Electronics Engineers Computer Society,
September 16-18, 2006, pp. 244-247.

[2] X. Wang, J. Sun, X. Yang, and Z. He, “A
Framework of Business Rules Recovery from
Large Legacy Systems”, WSEAS Transactions
on Information Science and Applications, Vol.
3, No. 3, 2006, pp. 576-583.

[3] C. Wang, Y. Zhou, and J. Chen, “Extracting
Prime Business Rules from Large Legacy
System”, Proceedings of International
Conference on Computer Science and Software
Engineering, IEEE Computer Society,
December 12-14, 2008, pp.19-23.

[4] G. Xie, “Business Rule Extraction from Legacy
System Using Dependence-Cache Slicing”,
Proceedings of International Conference on
Information Science and Engineering, IEEE
Computer Society, December 26-28, 2009, pp.
4214-4218.

[5] Y. Xu, Q. Duan, and H. Yang, “Web Services
Oriented Customer Relationship Management
System Evolution”, Proceedings of the 13th
IEEE International Workshop on Software
Technology and Engineering Practice, Institute
of Electrical and Electronics Engineers
Computer Society, September 24-25, 2005, pp.
39-48.

[6] F. Cuadrado, B. García, J. C. Dueñas, and H. A.
Parada, “A Case Study on Software Evolution
towards Service-Oriented Architecture”,
Proceedings of the 22nd International
Conference on Advanced Information
Networking and Applications, Institute of
Electrical and Electronics Engineers Computer
Society, March 25-28, 2008, pp. 1399-1404.

[7] G. Canfora, A. R. Fasolino, G. Frattolillo, and
P. Tramontana, “A Wrapping Approach for
Migrating Legacy System Interactive
Functionalities to Service Oriented
Architectures”, Journal of Systems and
Software, Vol. 81, No. 4, 2008, pp. 463-480.

[8] Z. Zhang, D. Zhou, H. Yang, and S. Zhong, “A
Service Composition Approach Based on
Sequence Mining for Migrating E-Learning
Legacy System to SOA”, International Journal
of Automation and Computing, Vol. 7, No. 4,
2010, pp. 584-595.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

376

[9] The Business Rules Group, “Definiting
Business Rules-What Are They Really?”,
Report, 2000.

[10] X. Wang, J. Sun, X. Yang, Z. He, and S. R.
Maddineni, “Application of Information-flow
Relations Algorithm on Extracting Business
Rules from the Legacy Code”, Proceedings of
the 5th World Congress on Intelligent Control
and Automation, Institute of Electrical and
Electronics Engineers Inc., June 15-19, 2004,
pp. 3055-3058.

[11] J. A. Randall, W. Duminda, and B. M. James,
“Using RuleML to Specify Cross-Domain
Information Flow Control Policies”,
Proceedings of IEEE International Conference
on System of Systems Engineering, IEEE
Computer Society, May 30-June 3, 2009, pp. 1-
6.

http://www.jatit.org/

	1HAN LI, 1HE GUO, 2HUI GUAN, 3XIN FENG, 4YANG XU, 4HONGJI YANG
	3.1 System Comprehension
	3.2 System Partition
	3.3 Business Rule Extraction
	3.4 Service-Oriented Migration

