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ABSTRACT 

 
A nonlinear dynamic model of the geared rotor system, with consideration of the bearing clearances and 
gear backlashes, is established. A numerical algorithm based on Runge–Kutta-Butcher  method is used to 
study the nonlinear behaviors of the system accounting for the effects of different excitation frequency. A 
detailed parametric research is conducted to analyze the influences of the excitation frequency on the 
nonlinear characteristics of the system. The final goal of the work is to study bifurcation and chaotic 
behavior of a gear pair model that includes nonlinearities due to bearing and teeth backlash. The analyses 
are performed in a parametric manner using non-dimensional excitation as bifurcation parameters. The 
results show that the different excitation frequency can significantly influence the nonlinear dynamic 
responses. 
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1. INTRODUCTION  
 

Geared rotor systems can be found in a wide 
range of automotive, aerospace, marine, wind 
turbine and industrial applications. The dynamic 
response of a geared rotor system, in generally, 
depends on the time-varying stiffness, static 
transmission error, gear backlash, the damping 
coefficient ratio and excitation loads. These 
parameters have direct effects on the dynamic 
response and performance of the system. The 
nonlinear dynamic behaviors of the system are 
investigated and the several studies on the effect of 
systematic parameter on the dynamic response are 
summarized as follows. 

A considerable amount of studies on the dynamic 
model for the dynamic analysis of geared rotor 
system are reported by many researchers[1,2,3,4]. 
Raghothama and Narayanan [5] carried out the 
incremental harmonic balance method to investigate 
the periodic motions of a non-linear geared rotor-
bearing system. It was conducted that the system 
exhibited a period doubling route and a quasi-
periodic route to chaos in different regions of 
excitation frequency. Vedmar and Anersson[6] 
presented a method to calculate dynamic gear tooth 
force and bearing forces where the bearing model 
was under elastic bearings assumption. Alhyyab 
and Kahraman[7] investigated steady state period-
one motions of a nonlinear geared rotor-bearing 

system by using a multi-term harmonic balance 
method in conjunction with discrete Fourier 
transforms. Rui and Chen[8] analyzed the dynamic 
response of gear model under primary resonance 
and 1/2 sub-harmonious resonance by means of 
averaging method. Vaishya and Singh[9] used a 
sliding friction method to simulate the nonlinear 
dynamics of a gear system in order to obtain 
insights into the relative effects of sliding friction 
and mesh damping, respectively. Liu and Robert[10] 
examined a nonlinear, parametrically excited 
dynamics of idler gear sets. The periodic steady 
state solutions were obtained using analytical and 
numerical approaches. Li et al[11] applied the 
theory of multiple scales method to research the 
vibration behaviors of gear system. 

In this study, The paper proposes a study of the 
nonlinear characteristics of a gear pair. A numerical 
algorithm based on Runge–Kutta-Butcher (RKB) 
method is used to study the nonlinear behaviors of a 
gear pair accounting for the effects of the excitation 
frequency. A detailed parametric research is 
conducted to analyze the influences of the 
excitation frequency on the nonlinear characteristics 
of the system. Nonlinear dynamic responses 
accompanied by nonlinear phenomena like 
bifurcation, periodic and quasi-periodic solutions 
and chaos are investigated. Different routes to chaos 
for the geared rotor system are illustrated and the 
evolutions of the dynamic responses are 
demonstrated by phase plane plots, Poincaré Maps, 
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fast Fourier transform spectra and bifurcation 
diagrams in detail. 

2. MODELING AND EQUATION OF 
MOTION 
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Figure 1: Nonlinear Model Of A Gear Pair System 

The nonlinear model of a geared rotor system 
considered in this study is shown in Figure1. In this 
model it is assumed that the system is symmetric 
about the plane of the gears and the axial motion is 
negligible. Bearings and shafts that support the 
gears are represented by equivalent damping, linear 
stiffness and clearance elements as shown in 
Figure1. The damping elements are characterized 
by linear viscous damping coefficients dc  and pc  
The bearing clearance elements are defined by 
force-displacement function )( dd xf  and )( pp xf . 
The support stiffness elements are represented by 
corresponding scaling constants dk  and 

pk  
External radial preloads are applied to both the 
rolling element bearings. Therefore, the essential 
vibration of the system can be described by four 
degrees of freedom system, with coordinates  

T
pxdxpdX ][ θθ=                       (1) 

By using Newton's second law, the 
corresponding equations of vibration are obtained 
in the general form 
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This model takes into account the static 
transmission, )(te  representing geometrical errors 

of the gear teeth profile and spacing. In addition, 
the quantity  

)()()()( tetpxtdxppRddRtrx −−+−= θθ     (3

) 

 is known as the dynamic transmission error.  

The damping mechanism in both the gear mesh 
and the bearings are assumed to be linear, so that 
the corresponding forces may be expressed in the 
simpler form 
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In these equations, dx  and px  are the transverse 

displacements of the gears; dθ  and pθ  are the 

wheel angular positions; dm  and pm  are the gear 

masses; dI  and pI are the mass moments of inertia 

of the gears; dR  and pR  are the base circle radii of 

the gears. rk  is the gear mesh stiffness; rc  
represents the linear viscous damping of the gear 
mesh; the quantity ),,( ddd tT θθ   represents the 
moment input to the driving gear, while, 

),,( ppp tT θθ  is the resistant moment developed on 

the driven gear during the motion. dF  and pF  refer 
to the bearing pretension radial forces applied on 
the gear centers. 

Furthermore, taking into account the gear 
backlash, the gear meshing restoring force 
component is expressed in the form 

rrrrdr kxfxh )(),( =θ                          (5) 

where rk  represents the gear mesh stiffness, 
while  
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and 2l represents the total gear backlash. 
Likewise, the restoring forces in the bearings is 
expressed in the classical linear form  

nnnn xkxf =)(                       (7) 

Next, introducing the parameters 
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The original set of equations of motion (2) can be 
obtained in the following form 
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Dimensionless forms of the above equations are 
obtained by letting 
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The dimensionless governing equations of 
motion (9) are yielded in the normalized form 

)(tFKfUCUM =++                  (11) 
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3. NUMERICAL SOLUTIONS 
 
The nonlinear dynamic equations presented in 

equation (11) for the geared rotor system are solved 
by using the fifth order Runge–Kutta-Butcher 
method. The algorithm is written as  
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where 
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Note that h is the time step; it  and iy  are the 
current values and ),( ii ytf  is called an increment 
function which can be interpreted as representative 
slope over the interval. The initial value of the h in 
the iterative solution procedure is assigned a value 
of π/500 and the termination criterion is specified 
as an error tolerance of less than 0.00002. The time 
series data corresponding to the first 1000 
revolutions of the two gears are deliberately 
excluded from the dynamic analysis to ensure that 
the analyzed data relate to steady-state conditions. 
The sampled data are used to generate the Phase 
diagrams, the Poincaré maps, the power spectra and 
the bifurcation diagrams of the geared rotor system 
for obtaining a basic understanding of dynamic 
behavior. 
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4.  RESULTS AND DISCUSSIONS 
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Figure 2: Simulation Obtained For 11k =0.25, 22k  

=0.25 With iω  =0.8675, 

(A) Phase Diagram; (B) Poincaré Map; (C) Power 
Spectrum. 

To test the existence of the essential dynamics of 
the geared rotor system and provide valuable 
insights into its nonlinear dynamic behavior, the 
phase diagrams, the Poincaré maps and the power 
spectra of the system are illustrated in Figures.2-5. 

Figure 2 shows simulation obtained for 11k =0.25, 

22k =0.25 with iω  =0.8675. From Figure2, we can 
see that the spectrum graph includes mesh 
frequency 0.8675; the phase plane is a circle; the 
Poincaré map is a point. It shows that the vibration 

of the system is a simple harmonic motion. 
Figure 3 presents simulation obtained for 

11k =0.25, 22k =0.25 with iω =1.1256. From Figure 
3, we can observe that the spectrum graph includes 
mesh frequency 1.1256 and n1.1256/3 (n=0, ±1, 
±2…) frequencies; the phase plane is a 3-looped 
circle; the Poincaré map includes three points. It is 
concluded that the vibration of the system is 1/3 
sub-harmonic motion. 
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Figure 3: Simulation Obtained For 11k =0.25, 

22k =0.25 With iω =1.1256. (A) Phase Diagram; (B) 
Poincaré Map; (C) Power Spectrum. 

Figure4 depicts simulation obtained for k11=0.25, 
k22=0.25 with iω =1.4060. From Figure 4, it can be 
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found that the spectrum graph consists of two 
fundamental frequencies ω1 and ω2 at a ratio ω1 
/ω2 and there are peaks at the combination 
frequencies mω1+nω2 (m, n=0, ±1, ±2…); the 
phase plane is a shaped belt; the Poincaré map is a 
deformed closed orbit. It is implied that the 
vibration of the system is quasi-periodic motion. 
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Figure 4: Simulation Obtained For 11k =0.25, 

22k =0.25 With iω =1.4060. (A) Phase Diagram; (B) 
Poincaré Map; (C) Power Spectrum. 

Figure 5 denotes simulation obtained for 
11k =0.25, 22k =0.25 with iω =1.4060. From Figure 5, 

we can see that a characteristic broad spectrum is 
obtained; the phase plane is a chaotic strange 
attractor; the Poincaré map includes many points. It 
is concluded that the vibration of the system is 
chaotic motion. 
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Figure 5: Simulation Obtained For 11k =0.25, 

22k =0.25 With iω =1.4150. (A) Phase Diagram; (B) 
Poincaré Map; (C) Power Spectrum. 

Figure 6(a) presents bifurcation diagram for the 
meshing gears in the line of action direction for 

11k =0.25, 22k =0.25. With the changes of 
excitation frequency iω  the vibration of the system 
also changes. It can be observed that geared rotor 
system exhibits periodic motion at almost of the 
dimensionless coefficient of iω , i.e. iω  < 1.1256. 
Furthermore, when iω  is 1.0, the mesh frequency 
closes to the natural frequency of the system and 
the jumping phenomenon occurs. However, at a 
higher dimensionless ration of iω  = 1.4060, the 
system undergoes quasi-periodic motion. It is 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
367 

 

characterized by chaotic motion in the intervals 
with iω  = 1.2335-1.4057 and iω  > 1.4062. The 
results show that the system vibrations change from 
periodic motion to chaotic motions through 3-
period bifurcation, and changes from chaotic 
motions to periodic motion by inverse quasi-period 
bifurcation. 

 

 
(a) 

 
(b) 

Figure 6: Bifurcation Diagrams Of Meshing Gears In 
The Contact Line Direction Using Dimensionless 
Frequency, iω  As Bifurcation Parameter With 

iF =0.0532, 33ξ  =0.0516: (A) 11k =0.25, 22k =0.25; 

(B) 11k =1.75, 22k =1.75. 

Figure 6(b) shows bifurcation diagram for the 
meshing gears in the line of action direction for 

11k =1.75, 22k =1.75. Comparison of the bifurcation 
diagram with those presented in Figure 6(a), it can 
be seen that the system shows 1T-periodic motion 
at low values of the dimensionless frequency, i.e. 

iω ≤ 1.3253. However, as iω  is increased from 
1.3253 to 1.3673, the 1T-periodic motion is 
replaced by sub-synchronous 2T-periodic motion. 
Chaotic behavior appears as the dimensionless 
frequency is further increased from iω  =1.3673 to 

iω =1.4923. The system also exhibits periodic 
motion at high values of the dimensionless 
frequency, i.e. iω  > 1.4923. Moreover, there are 
jumping phenomena at the dimensionless frequency 

of iω  =0.6051 and iω  =1.3675. Thus, it can be 
inferred that the dynamic responses change from 
periodic motions to chaotic motions by double-
period bifurcation and from chaotic motions to 
periodic motions by inverse double-period 
bifurcation. 
5. CONCLUSIONS 

In the present paper, the nonlinear model is 
proposed to study the dynamic behaviors of the 
gear pair based on the numerical method of the 
RKB. The results show that the different excitation 
frequency can significantly influence the nonlinear 
dynamic response. There are three kinds of forced 
stead responses, i.e. simple harmonic, sub-harmonic 
and chaotic responses. The system responses 
transform from periodic motions to chaotic motion 
through double-period bifurcation and from chaotic 
motions to periodic motions by inverse double-
period bifurcation. 
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