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ABSTRACT 

In every aspect of life, many information is flowing around in which human can take advantage of. Thus, 
machine learning was born to gather such information and learn how it can autonomously deal with a 
certain problem. Different domains have grown to serve different purposes in the machine learning field. 
One of the mostly active domains in this field is Inductive Learning. One algorithm family developed in 
inductive learning is RULES. Specifically, it is a covering algorithm family where rules are directly 
induced from a given set of examples.  However, two major deficiencies were found in the algorithms that 
belong to this family. They need to tradeoff between time and accuracy while searching for the best rule 
and incomplete data were inappropriately handled. Consequently, this paper proposes a new algorithm that 
is built based on RULES-6. It uses an advance machine learning method called “transfer learning” to gather 
the knowledge of other agents in different domains and use it as the base knowledge that would reduce the 
time of search. In addition, the transferred rules are also used to fill missing classes in order to consider not 
only the labels available in the target task but also the possibility of future cases. Finally, the performance 
of the proposed algorithm will be tested and compared to other rule induction algorithms to prove that it 
actually improved the accuracy, reduced the error rate, and consumed a small amount of time. 
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1. INTRODUCTION 

In order to predict future activities and 
induce general conclusion a field of machine 
learning, called inductive learning, was introduced. 
It is a form of data analysis that uses the knowledge 
gained through training to build a classifier that 
concludes a general conclusion in the form of rules. 
Different methods have been proposed to induce 
classification rules. These methods were divided 
into two main types: Divide-and-Conquer (Decision 
Tree) and Separate-and-Conquer (Covering). 
Divide-and-conquer algorithms, such as ID3 [1] 
and C4.5 [2], are classification methods that 
discover rules using decision tree. This tree can be 
used later to represent the rules [3]. This type of 
algorithms drew a lot of attention in the past few 
years because of the simplicity of deriving a rule 
from the convenient data structure of trees. It only 
needs to create the rules from each path through the 
tree. However, handling decision tree created 
greater problems and badly affected the process of 
rule induction.   

One of the main problems of the divide-
and-conquer algorithms is the difficulty of 
representing some rules in the tree. In specific, it 
will be difficult to directly induce rules that have no 
common attributes from the tree and, instead, some 
attributes will be redundant and irrelevant [4]. 
Moreover, these algorithms caused the replication 
problem, where it is possible to re-learn the same 
sub-trees in different branches. In addition, when 
the tree is very big, understanding and handling of 
such a tree will be a headache. Hence, divide and 
conquer methods might lead to a confusing and 
large decision tree without any reason [5]. 

On the other hand, the properties of 
inducing rules directly from the dataset make it 
more preferable than the decision tree structure. 
These properties have been summarized in [6] into 
four main properties. First, representing the rules as 
“IF  ... THEN” statement makes it more readable 
than trees, i.e. more understandable and 
comprehensible by peoples. Moreover, in many 
cases, it has been empirically proven that rule 
learning is better than decision trees. Additionally, 
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the resulting rules can be easily used in any expert 
system and can be directly stored in any 
knowledge-based system. Finally, it is easy to 
analyze and modify the induced rules due to their 
independency. Thus, any rule can be understood 
and validated without the need to reference other 
rules in the repository. 

As a result, researchers have recently tried 
to improve covering algorithms to be comparative 
or even better than divide-and-conquer methods. 
Thus, different families have been born for this 
purpose, such as AQ [7], CN2[8], RIPPER [9], 
RULES [10], Prism [11, 12], and ELEM2 [13]. 
Nevertheless, RULe Extraction System (RULES) 
was distinguished from the others because of its 
simplicity. It allows for the discovery of 
inconsistent rules to automatically obtain partial 
immunity to noise.  Furthermore, RULES family is 
differentiated from the other algorithms because of 
its preservation of the covered examples, where it is 
only marked without deletion. Hence, it will avoid 
repetitive computation, and the result will be more 
generalized. Thus, it will resist fragmentation and 
small combination problem. Consequently, it can 
manage the reduction of data during the learning 
process and resist rules that cover small training 
examples with high error rate. 

So far, different versions of RULES 
family have been proposed by different authors. It 
started with version one to seven in addition to 
EXT, SRI and IS versions of RULES family. Each 
version in the RULES family was proposed for a 
certain purpose. Nevertheless, most of them have 
one common property. Specifically, when searching 
for the best rule, a rule is induced starting from 
empty one, then a specialization process begins to 
create more specialized rules from the seed 
example. This process was proposed to improve the 
accuracy of rule induction, but it consumes a lot of 
time and needs special pruning procedures to stop 
the search and reduce its space. Moreover, it is 
difficult to decide what to specialize and when to 
stop and as stated in [14], searching with 
specialization is usually considered as one of the 
time-consuming  methods. Hence, it causes the 
needs to tradeoff between the accuracy of the rule 
induction process and its speed during the search 
for the best rules. 

Moreover, another problem that was 
sought in RULES family is the way it handles 
incomplete data. Examples that have a missing 
class are either neglected or filled based on other 

examples in the training set. However, when the 
example is neglected it is possible to lose important 
information and decrease the performance of the 
algorithm. On the other hand, when the current 
examples are only considered, then the available 
classes are only reflected while, in reality, other 
labels might also be missing from the training set.  
Hence, not only the current data is important to 
assign the right label but also future cases should 
also be considered to increase the resistance to 
noise and consider future possible cases, even if the 
data is incomplete.   

Nevertheless, past knowledge of other 
agents can be used to solve the problems of RULES 
family. It can be learned from different tasks to be 
used as the base knowledge of the current problem. 
This base knowledge can reduce the specialization 
time because it will not be necessary to always start 
from an empty rule. In addition, it can be used to 
fill missing classes, where future cases are also 
considered because the knowledge is taken from 
different and related domains. 

Thus, the purpose of this paper is to 
propose a new RULES version that improves the 
searching procedure and incorporates a new scheme 
to handle incomplete data. Specifically, Transfer 
Learning [15] will be applied to transfer rules 
discovered by other agents based on different but 
related tasks. These transferred rules will be used as 
the base knowledge to fill the incomplete data with 
all possible labels, whether it occurred in the 
training set or in the past knowledge base. 
Moreover, transfer rules are also used to reduce the 
time of specialization and guide the searching 
process by using past knowledge instead of pure 
pruning.   

This paper is organized as follows. First, 
the background needed to understand the proposed 
algorithm, including RULES and Transfer 
Learning, is presented. Then, the related work is 
discussed to prove the significant of the proposed 
algorithm. After that, the proposed method is 
presented and its details are explained. Following 
that, the algorithm is tested and its empirical result 
that compares the proposed algorithm with other 
covering algorithms is explained and discussed. 
Finally, the paper is concluded and future work is 
presented.  
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2. BACKGROUND   

This section explains the background 
needed to understand the proposed algorithm. It 
discusses RULES family, and the way it works, in 
addition to Transfer Learning.  

2.1 Rule Extraction System - RULES 
RULES family is one of the covering 

algorithms that directly induces rules from the 
training set based on the concept of separate and 
conquer. It is considered as one of the simplest and 
precise families. It induces one rule at a time based 
on a seed example and then applies specialization 
process to search for the best rules. The rule that 
covers the most positive and least negative 
examples are chosen as the best rule of the current 
seed example. Hence, RULES family does not 
require finding of completely consistent rules. It 
allows the best rule to cover some negative 
examples, in order to handle noisy data, reduce 
over-fitting problem, and increase the flexibility of 
rule induction.   

After that, examples that are positively 
covered by the discovered rules are marked as 
covered. However, it is not removed from the 
training set. This way, repeating the discovery of 
the same rule is prevented while coverage accuracy 
and generality of new rules will be preserved. At 
the end, the algorithm is repeated until all examples 
are covered. Consequently, considering the whole 
training set, while training, will make RULES resist 
fragmentation, where the data reduces during the 
learning process, and small combination problem, 
where discovered rules covers only small training 
examples with high error rate.  

Nevertheless, the most important part of 
RULES searching strategy is the rule forming 
process [16]. Rule forming process is the searching 
strategy that aims to create the best rule to cover a 
certain example.  In specific, it searches for the best 
conjunction of conditions and measures its strength 
using a certain heuristics; which make this step very 
costly. Thus, RULES family order the search based 
on the concept of specialization (general-to-specific 
search). 

The main idea of specialization is to start 
from the most general rule, i.e. null rule, and then 
specialize it by adding one attribute at a time as an 
additional condition. Nevertheless, this process 
consumes a lot of time and greatly affects the 
algorithm performance. In this process, a stopping 
condition must be applied to stop the specialization 

and reduce the searching time. However, it is 
difficult to decide what to specialize and when to 
stop. It is possible that some important 
specialization might be neglected while focusing on 
trivial ones because the stop condition is too early, 
and it is also possible to consume a lot of time to 
seek good results because the stop condition is far 
away. Thus, it needs to tradeoff between the speed 
of the search and its accuracy.  

Consequently, it can be concluded, from 
all above, that RULES family has a good future 
concerning rule discovery. However, it needs 
further improvement. Thus, this paper tries to 
improve the specialization and rule discovery 
process of RULES family using an advance 
machine learning method called Transfer Learning, 
as will be explained next.   

2.2 Transfer Learning 
Transfer Learning (TL) is one area of 

machine learning that makes the agent learn by 
connecting different but related environments [17]. 
Thus, instead of starting from scratch, the agent will 
be able to direct its learning rather than randomly 
explore the problem [18], as shown in Figure 1. For 
example, in real life, a person can learn how to read 
a French text using his own knowledge of English 
characters. Even though French and English are 
different languages, but they have related context 
that a person can re-use to minimize the time 
needed for the learning process.  

 
Figure 1: Traditional machine learning vs. TL 

The main motivation that caused the birth 
of this kind of learning was the need to imitate how 
human could apply previously learned knowledge 
to improve the lifelong learning methods of 
machine learning [19]. Such interest started to 
increase from the mid 90s, but in 2005 TL has been 
improved to find and apply previously learned 
skills and knowledge to solve new tasks. Thus, 
Sinno Jialin and Qiang [15] indicated that the aim 
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of TL is to “extract the knowledge from one or 
more source tasks and applies the knowledge to a 
target task.” 

TL approaches, in general, have been 
divided into different types depending on the state 
of the class labels, as explained by Sinno Jialin and 
Qiang [15]. Moreover, different types of transfer 
can occur depending on what to transfer. It can 
transfer instances, feature representation, 
parameters, or even relationship knowledge 
between the source and target tasks depending on 
the problem at hand [20].  

3. RELATED WORK  

In RULES family, different problems have 
been targeted, and different methods have been 
proposed along with it. The early versions of 
RULES family, specifically RULES-1 [21], 2 [22], 
and 3 [23], were basically proposed to enhance the 
performance of covering algorithms and induce 
better rules using a simple algorithm. However, 
RULES-3+ [24], afterwards, was proposed to 
improve the performance of RULES-3. This 
version was very famous and was used as the base 
for many new algorithms. It is different from the 
previous version in the way it searches for the best 
rule and in sorting and selecting the candidate rules, 
where specialization and H measure were applied.  

After that, RULES-4 [25], which is based 
on RULES3+, and RULES-IS [26] were developed 
for incremental learning. In addition, RULES-5 
[16], RULES-F [27], RULES-5F [28] was also 
developed based on RULES3+ to handle 
continuous values during the learning process. 
After that, scalability became a concern so RULES-
6 [29], 7 [30], and SRI [31] were developed to 
enhance the performance of RULES family and 
increase its speed.  

Nevertheless, even though these methods 
served different purposes and were designed by 
different authors, but most of the versions' search 
was based on the concept of specialization, which 
caused the need to tradeoff between the accuracy 
and time.  However, one version of RULES family, 
specifically RULES-IS, did not have this property 
since it was built based on the immune system 
network. However, it lost the simplicity property 
that makes RULES family more appealing than the 
others. Moreover, in all visions of RULES 
algorithm, incomplete data were inappropriately 
handled. Examples that contained missing classes 

were removed or current examples were used to fill 
it without considering future cases. 

Hence, it can be concluded that RULES 
family is still lacking in different areas. In general, 
two main deficiencies can be sought; which is the 
tradeoff when searching for the best rule and 
dealing with incomplete data. Specialization, as 
discussed before, is important to surpass the 
problem of irrelevant conditions. However, it 
consumes a lot of time and highly affects the 
algorithm performance, where it is difficult to 
decide what to specialize and when to stop. 
Additionally, incomplete data was inappropriately 
handled without considering the future.  

Nevertheless, past knowledge of other 
agents can be used to solve these problems. 
Knowledge that has been learned from other tasks 
can be used as the base knowledge of the current 
problem. Hence, TL can be integrated into 
inductive learning. 

In the past, inductive TL has been used in 
different machine learning techniques for 
classification. Instances were transferred to improve 
the classification accuracy, as in [32]. Features' 
representation, however, were transferred to create 
a model that can handle unreliable data, especially 
in images and text mining, as in [33]. Parameters 
can also be transferred to guide the classification 
process and, finally, relationship knowledge has 
been transferred to simplify dealing with a complex 
target problem, as in [34-36]. 

Nevertheless, these techniques were 
mostly targeting certain type of data. Its target was 
either to improve the accuracy or replace the 
heuristics, and it was usually used to deal with a 
scarce target task that is complex to deal with. 
Thus, most of these algorithms actually increased 
the space of searching or reduced its accuracy, 
which can cause greater problems with scalability. 
However, it was concluded in [37] that transferring 
the whole rule from the source to the target task can 
tremendously improve the induction process. 
Hence, it would be better to take advantage of the 
good properties of rule transfer while avoiding its 
drawback. 

In our knowledge, no one yet has used 
Rule Transfer in covering algorithms, specifically 
RULES family. Consequently, the goal of this 
paper is to use TL and transfer the rules gathered by 
other agents in other domains to solve the problems 
of RULES family. This method will be explained in 
the next section. 
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4. RULES WITH TRANSFER LEARNING 

This section explains the proposed 
algorithm, which is called RULES-TL, and 
discusses its key ideas. In general, RULES-TL is 
based on RULES-6, and it is developed to improve 
the performance of RULES family and scale it 
further to incomplete data. It integrates relational 
knowledge transfer (in the shape of rules) with 
RULES-6. In particular, Inductive TL is applied, 
which require that the information transferred from 
the source contains the class label, and no missing 
information is transferred. These transferred rules 
are used in a way to reduce the searching space 
before going through the induction process.  

In general, RULES-TL maps the source 
rules from the source task and transfers it to the 
target tasks. These rules are then used to fill 
missing classes and reduce the search space by 
marking the examples covered by these rules so that 
no further searching is needed for it.   

RULES-TL, as explained in Figure 2, 
starts by applying RULES-6 over the source tasks 
to induce the best rules. Then, the resulting rules 
are mapped to the target task representation. The 
mapping process first removes any unrelated rules, 
where an attribute or value in the rule is not found 
in the target header. Then, its format is transformed 
based on the format of the target task definition. 
After that, every mapped rule is taken as ground 
base to cover existing examples. If the rule covers 
an example, then the algorithm call Induce-One-
Rule of RULES-6 but starting from the mapped rule 
instead of empty one. Hence, mapped rule is 
specialized to induce better ones based on the seed 
example.   

Main() 

Input: Tset = Target set, mN = minimum negative, 
mP = minimum positive, w = beam width 
Output: RuleSet = induced rules 

Trules = read source task rules 
MappedRules = MapRules (Trules, Tset) 
//Mark covered examples, store unseen rules, and 
return induced rues 
RuleSet = Mark_covered_examples (Tset, mP, 
mN, w, MappedRules)  
//update Tset 
Fill_miss_class (Tset, MappedRules)  
//Call RULES-6 as in [29] 
RulesSet=RulesSet + RULES-6(Tset, mP, mN, w ) 
------------------------------------------------------------- 

MapRules (Trules, Tset) 

Input: Trules, Tset 
Output: Transferred rules 

MappedRules = ϕ 
For every rule(i) ∈ Trules 
//If the rule does not contain unrelated conditions 

If all attribute and values of rule(i) ∈ Tset 
header 

MappedR(i) = change the format of rules(i) 
to the same format as Tset 
MappedRules=MappedRules + MappedR(i) 

Return MappedRules 
-------------------------------------------------------------- 
Mark_covered_examples (MappedRules, Tset, 
mP, mN, w) 

Input: MappedRules, Tset, mP, mN, w 
Output: Transferred rules 

RuleSet = ∅ 
Urules = ∅ 
For every rule(i) ∈ MappedRules 

For every uncovered example in Tset 
Select a seed example (s) from uncovered 
example 
//Call RULES-6 Induce procedure BUT 
initial BestRule = rule(i) NOT empty rule  

R = Induce_One_Rule (s, rule(i), 
Tset, mP, mN, w)  
If R≠ ϕ THEN   
//mark the rule as seen since it covers 
an example 

 rule(i).Unseen = False   
Mark example (s) as covered 
RuleSet = RuleSet + R 

If rule(i).Unseen = True THEN 
Urules = Urules + rule(i) 

Store Urules for future use 
Return RuleSet 
------------------------------------------------------------- 
Fill_miss_class (Tset, MappedRules) 

Input: MappedRules, Tset 
Output: Only update the target set by filling its 
missing classes 

BestScore = -1 
BestLabel = ϕ 
For every example (s) with missing class 

//get the best label based on Mapped rules 
For every rule(i) ∈ MappedRules 

Score = Compute S-Score for rule(i) 
If (score > Threshold) & (score > BestScore) 
THEN  

BestScore = score 
BestLabel = rule(i).label 
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//If no rule cover the example with missing class 
If BestLabel = ϕ THEN 

BestLabel = Label of most similar example 
in Tset 

Update s with Label value 

Figure 2: RULES-TL pseudo code 

Following that, covered examples are 
marked as covered, rules that cover at least one 
example is marked as seen rule, and rules that does 
not cover any example is marked as unseen rule for 
future use. Thus, past knowledge of other agents in 
a different task is used as the base to discover and 
induce good rules instead of always starting from 
an empty rule. Hence, the accuracy and speed are 
both increased. Thus, it reduces the need to tradeoff 
between time and accuracy.  

After that, incomplete examples, which 
miss a class, are filled using the mapped rules. It 
starts to measure the similarity between the 
incomplete example and mapped rules using S 
measure [38]. Then, the score is compared with a 
threshold. If the rule score exceeds this threshold, 
then the example is considered as covered. 
However, if the algorithm was not able to find any 
matching rule, then the most similar example in the 
training set will be used to fill the missing class. 
After that, RULES-6 algorithm is applied over the 
uncovered examples to make sure that all the 
examples are marked as covered. 

Consequently, it can be concluded that the 
problem of specialization is reduced because of the 
use of past knowledge of other domains as the base 
knowledge of new tasks. This way transferred rules 
can reduce the time of specialization and improve 
the accuracy. Moreover, incomplete data were 
accurately handled using such past knowledge 
instead of neglect important information just 
because it is incomplete. Hence, it is anticipated 
that RULES-TL will be more scalable and accurate 
than the original RULES-6, which will be proven in 
the experiment later.  Nevertheless, to further 
explain the key ideas of RULES-TL, each one is 
presented in a separate section as follows.   

4.1 Rule Quality Metric 
In order to evaluate the rules and search 

for the best one, a certain quality matrix should be 
applied. Such matrix measures the quality of a rule 
based on the available data, specifically number of 
positive and negative examples covered by a rule. 
Hence, it measures the quality and coverage of the 
rules to guide the searching process to the best one. 

In RULES-TL, two quality matrixes were used 
depending on purpose of use. When the algorithm 
wants to measure the rule quality in order to search 
and induce the best rule of a given example, m-
probability-estimate [39] is used. This is because 
the “induce rule” procedure used in RULES-TL is 
based on RULES-6, and since it was found that m-
probability-estimate outperform other measures 
when tested with RULES-6 then it was decided to 
use the same matrix to search for the best rule 
during the specialization process.   

On the other hand, when it comes to 
searching for the best rule and choosing for the best 
label to fill the missing class, S measure was used. 
It is computed using (1), where N is the total 
number of negative examples, P is the total number 
of positive examples, n is the number of negative 
examples covered by the new rule, and p is the 
number of positive examples covered by the new 
rule.  

𝑆 = 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑦 ∗ 𝑔𝑎𝑖𝑛 ∗ (1 −𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙) 

𝑆 = 𝑝
𝑝+𝑛

. 𝑝
𝑃_𝑢𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

. (1 − 𝑛
𝑁

)        (1) 

As described by Bigot [38], S measure is a 
measure that has been developed to improve the 
rule induction result by considering the 
classification gain, level, and consistency. This 
measure has been tested with other covering 
algorithms' measures to find that it significantly 
gives better results. Hence, it was decided to choose 
it when searching for the best label to fill the 
missing classes. 

4.2 Search-space Pruning Rules  
As descried previously, two main 

searching procedures are applied over RULES-TL. 
The first one is the original searching procedure of 
RULES-6, which is used to induce the best rule that 
cover different examples. While the other searching 
procedure is used to search for the best rule to fill a 
missing class. Hence, in RULES-TL, two main 
pruning procedures were used.  

When it comes to the search space of rule 
induction, four main rules were applied based on 
RULES-6. It reduces the searching space and scale 
the algorithm to large dataset. These rules took 
advantage of the nature structure of the 
specialization hypotheses [1]. This structure 
indicates that the more conditions added to the rule 
the fewer examples it will cover. Moreover, to 
increase the algorithm resistance to future noise the 
induced rule should not be overspecialized, and it 
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should be general enough to give good results. 
Thus, the following four rules were applied to 
constraint the searching space and remove rules that 
would reduce the quality and speed.   

If   Rule.Consistency = 100% Then   remove Rule 

If   Rule.PosCoverage ≤ MinPos   Then  remove Rule 

If   Rule.Score ≤ BestRule.Score   Then   remove Rule 

If   PreRule.NegCoverage - Rule.NegCoverage ≤ MinNeg  Then  

remove Rule 

The pruning rules remove fully consistent 
rule because it will produce overspecialized rules. It 
removes rules that cover positive examples less 
than an allowed number specified by the user. It 
also removes the rules that start to reduce the 
quality measure. Finally, when the difference 
between a rule and its predecessor is less than a 
threshold specified by the user then these rules are 
also removed.  

On the other hand, when it comes to 
transfer searching space, when missing classes are 
filled, a noise threshold called T threshold [25] 
were used. As illustrated in (2), this threshold 
considers the noise level and the ratio of positive 
examples in the whole training set. In this 
threshold, NL is the allowed noise specified by the 
user, E is the total number of examples in the 
training set, and Ei is the number of example that 
belongs to a class i.  

𝑇 = 2 − 2�(1 − 𝑁𝐿) 𝐸𝑖
𝐸
− 2�𝑁𝐿(1 − 𝐸𝑖

𝐸
) (2) 

This threshold is then used to remove rules 
that are not related to the example under sturdy. 
Thus, the following rule is applied to decide if the 
transfer rule can be considered when searching for 
the best label or not. 

If   Rule.S-Score ≤ Threshold   Then   remove Rule 

4.3 Discretization Method 
In order to handle dataset that contain 

continuous values, offline discretization was 
applied. In specific, entropy-based discretization 
method of Fayyad and Irani [40] were applied over 
the dataset in order to convert the continuous values 
into discrete ones. This discretization method were 
chosen based on the study conducted in [41, 42], 
where it was found that the, depending on the data 
and algorithm used the right choice of offline 
discretization method can be made. In addition, in 
RULES-6 and RULES-SRI, it was empirically 
proven that Fayyad and Irani discretization is the 

most appropriate offline discretization for RULES 
algorithms. This method split the ranges of 
continuous values to small intervals to be used as 
discrete values.  

4.4 Missing Attributes 
In real life, data is not always complete. 

Gathered data usually contains missing information 
and dataset attributes could contain null values. 
Some researchers choose to neglect such examples, 
but this is not a good decision since these examples 
might contain important information that could 
affect the quality of the rule induction algorithm. In 
[43], different methods that handle missing 
attributes have been presented and empirically 
tested over many rule induction methods and large 
number of datasets. As a result of this test, it was 
found that imputation methods, especially Fuzzy K-
means (FK-means) [44], are the most suitable 
methods to handle missing values in rule induction.  

In FK-means, each object has a 
membership function that measures the degree in 
which the object belongs to a certain value. Hence, 
it clusters the objects over values clusters based on 
the membership function. Hence, RULES-TL used 
FK-means to fill missing values of the attributes. 
Consequently, important information will not be 
lost, and incomplete data can be filled.   

4.5 Missing Classes 
In addition to missing values, labels might 

also be missed because of natural reasons, such as 
manually filling of the training set or lack of 
information. Nevertheless, such examples might be 
very important and can have sensitive information 
that would guide the learning process to better 
result. Thus, missing classes should not be 
neglected. However, deciding on the best label is a 
critical procedure and could highly affect the final 
result. Consequently, only considering the 
information of training set is not enough.  

In general, past knowledge of other agents 
can be a great help to fill missing labels. 
Transferring knowledge from another expertise is 
always a smart choice in any field of human life. 
However, it cannot be guaranteed that every field 
will have prior information. Consequently, RULES-
TL tries to use TL to transfer past knowledge of 
other agents but not necessary from the same 
domain. Thus, it can be guaranteed that filling the 
missing classes will be guided by past knowledge 
even if it is from other fields. Hence, new labels 
will consider the available data in the current 
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training set in addition to the past rules gathered by 
other agents. 

Nevertheless, sometimes it is possible that 
no transferred rules are found to be a match for the 
targeted examples. In such a case, it is suggested to 
use the most similar example in the training set. 
The example similarity is measured based on D-
distance, as illustrated in (3), where Vi

E1 and Vi
E2 

are the values of the continuous attribute (i) in 
example E1,E2 respectively, Vi

min and Vi
max are the 

minimum and maximum values of attribute (i), and 
the distance between discrete attributes is computed 
using equation (4). D-distance, as explained by 
Pham, Bigot, and Dimov [16] is a distance measure 
that can compare any type of examples together. In 
this measure, distance between continuous 
attributes is considered in addition to the difference 
between the discrete ones. This way, all types of 
data is taken into consideration in order to make it 
possible to find an identical example that belongs to 
a class so that targeted example also join the same 
class.   

𝐷(𝐸1,𝐸2) =

�∑ ( 𝑉𝐸1𝑖 −𝑉𝐸2𝑖

𝑉𝑚𝑎𝑥
𝑖 −𝑉𝑚𝑖𝑛

𝑖 )2𝐴𝑙𝑙 𝑐𝑜𝑛𝑡.𝐴𝑡𝑡𝑟 + ∑ 𝑑(𝐴1,𝐴2)𝐴𝑙𝑙 𝑑𝑖𝑠𝑐.𝐴𝑡𝑡𝑟  (3) 

 

𝑑(𝐴1,𝐴2) = �0                        𝑖𝑓 𝐴1 = 𝐴2
1                        𝑖𝑓 𝐴1 ≠ 𝐴2        (4) 

5. EXPERIMENT  

In order to test the performance of 
RULES-TL different experiments were conducted. 
RULES-TL was first implemented using Java 
language in JBuilder environment. The experiments 
were conducted on a PC with Intel®Core™ i7 
CPU, 2.67 GHz processes, and 6GB RAM. In 
addition, KEEL (Knowledge Extraction based on 
Evolutionary Learning) tool [45, 46] was used to 
build the experiments and decide on its properties. 
It was also used to compare the performance 
between the proposed algorithm and existing 
methods.  

KEEL is an open-source tool developed by 
Java software to evaluate algorithms proposed for 
problems of data mining. It includes a large 
collection of classical rule induction algorithms that 
can be used to compare the performance of the 
proposed algorithm. Moreover, it has Statistical 
Analysis Tools (SAT) that can be used to design an 
experiment and perform a complete analysis on the 

algorithms' performance using a simple graphical 
user interface. Nevertheless, five key elements were 
defined in order to build the desired experiment. 
These elements can be described as follows.  

5.1 Dataset  
In order to show how reliable the proposed 

algorithm is, eight dataset were used to test 
RULES-TL. These data set were taken from KEEL 
dataset repository [46]. The properties of each 
dataset are specified in Table 1, and each dataset is 
gathered as a sample from real-life data and serve a 
certain domain, as follows.  

Ecoli: Contains information about measures 
applied over proteins to predict its localization site. 

Yeast: Contains information about Yeast cells to 
determine its localization site in each cell. 

Australian Credit: Contains information about 
Australian credit card applications to determine if it 
should be approved or not.  

Credit Approval: It is an extended version of 
Australian Credit with more information. 

Cleveland: Contains information about Cleveland 
heart disease to detect the occurrence of heart 
disease in the patients of Cleveland Clinic 
Foundation in Long Beach USA. 

Statlog: Contain general information about heart 
disease to detect its presence or absence.  

Bupa: Contains information about liver disorder 
that might occur due to excessive alcohol 
consumption in order to decide if a person suffers 
from alcoholism.  

Hepatitis: Contains information about hepatitis 
patients in order to indicate if he survives  or not.  

Red Wine: Contains information about red wine to 
indicate whether it has good quality or not.  

White Wine: Contains information about white 
wine to indicate whether it has good quality or not. 

Table 1: Experiment dataset property 
Dataset #Examples #Attributes #Labels 

ecoli 336 7 8 
yeast 1484 8 10 
Australian 
Crd. 690 14 2 

Crd. 
Approval 690 15 2 
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Dataset #Examples #Attributes #Labels 
ecoli 336 7 8 
yeast 1484 8 10 
Australian 
Crd. 690 14 2 

Crd. 
Approval 690 15 2 

Cleveland 303 13 5 
Statlog 270 13 2 
Bupa 345 6 2 
Hepatitis 155 19 2 
Red Wine 1599 11 11 
White 
Wine 4898 11 11 

 
Moreover, each dataset is partitioned to 

five-pair partitions using the hold-out approach 
[47]. Each pair includes a test and training data. 
The training data is used for training the algorithm, 
and the test data is used to test the result of the 
algorithm. In specific, for the large dataset (data 
with more than one thousands examples), the test 
set include one-third of the data while the training 
set include the remaining two third. However, with 
small data (data with less than one thousands 
examples) the partitioning was repeated five times, 
and the result was averaged.  

5.2 Predecessors  
As discussed previously, the attributes 

values sometimes need further refinement before 
starting with the learning process. In specific, 
predecessor procedures need to be applied over all 
the data to deal with missing and continuous 
attributes. Hence, like RULES-TL, FK-means and 
entropy-based discretization method of Fayyad and 
Irani are applied over the data in order to fill 
missing attributes and discretize continuous values.  

5.3 Comparative Covering Algorithms  
In order to prove that the performance of 

rule induction has improved by using RULES-TL, 
five different covering algorithms were compared 
with RULES-TL performance. Specifically, the 
following algorithms were tested.   

RULES-6: The predecessor of RULES-TL, where 
the transfer learning was not applied. 

RULES-SRI: One version of RULES family that 
was proposed to improve the scalability and make 
the algorithm more accurate over large data set.  

Ripper [48]:  An algorithm that is developed to 
directly generate rules by combining attributes that 
positively cover as many examples as possible.  

C4.5Rules [2]: A decision tree based algorithm that 
discovers rules using decision tree and then use the 
resulting tree to represent the rules.  

DataSqueezer [6]: A covering algorithm that is a 
fast, supervised, greedy, and simple algorithm, 
which required the existence of all class labels.   

5.4 Postprocessor 
After conducting the experiment, and to 

visualize the result, different statistical analysis 
tests were applied. Specifically, three statistical 
tests were recorded to measure the error rate of 
each algorithm, their accuracy, and the time spent 
by RULES-TL. The details of each statistical test 
can be described as follows.  

5x2CV Test [49]: It is an approximate statistical 
test that compares supervised learning algorithms. 
It shows the error mean and median of each 
algorithm based on 2 fold-cross validation and five 
iterations.   

Accuracy Test: It shows the accuracy result of 
each algorithm by testing the final rules over the 
test set.   

Time Test: It measures the rule induction time 
spent by RULES-TL, measured by seconds.  

5.5 Evaluation Result 
Using the resulting statistics of KEEL 

analysis tool, it was possible to record the 
algorithms' performance, as illustrated in Table 2. 
As it can be noticed, the average error rate in 
RULES-TL is less than all the other algorithms, 
except for C4.5rules. Specifically, transferring rules 
to a dataset, with missing classes or not, usually 
improves the performance. However, comparing to 
the tree based algorithm (C4.5rules), the average 
performance has slightly reduced. Nevertheless, in 
some datasets the performance of RULES-TL has 
outperformed the C4.5rule algorithm and, on 
average, the error difference between the two 
algorithms is only 5%. Hence, it can be said that 
RULES-TL is comparable to C4.5, not to mention 
that RULES-TL uses a special procedure to deal 
with missing classes. 

http://www.jatit.org/


Journal of Theoretical and Applied Information Technology 
 10th January 2013. Vol. 47 No.1 

© 2005 - 2013 JATIT & LLS. All rights reserved.  
 

ISSN: 1992-8645                                                       www.jatit.org                                                          E-ISSN: 1817-3195 

 
37 
 

Moreover, the previous statement can be 
further verified when considering the accuracy of 
the resulting rules, as illustrated in Table 3. As it 
can be noticed the accuracy performance of 
RULES-TL is the same whether the classes are 
missing or not, and it has more accuracy than most 
of the algorithms. In addition, in comparison to 
C4.5 rules, the accuracy of both algorithms in most 
of the datasets is comparable. On average, C4.5 has 
8% more accuracy than RULES-TL. Nevertheless, 
such percentage is better than the result of past 
RULES algorithms.   

Consequently, it is important to emphasize 
that, whether the dataset have missing classes or 
not, RULES-TL outperformed its predecessor 
RULES-6, and it is more scalable than RULES-
SRI. It has better accuracy and less error rate on all 
tested data. Hence, it can be stated that RULES-TL 
has improved the scalability of RULES family over 
complete and incomplete data. This is because 
RULES scalable algorithms, specifically RULES-6 
and RULES-SRI, result in worse performance.  

Additionally, when it comes to the speed 
of RULES-TL, it can be noticed that it does not 
spend a large amount of time on rule induction. As 
illustrated in Table 4, it is only a matter of seconds 
to induce rules. In the most difficult case, when the 
red-wine dataset has 1599 examples and its target 
(white wine) has 4898, it only takes 171 seconds 
when all classes are available and 64 seconds when 
missing classes exists. Moreover, it must be noted 
that the performance of the algorithm speed 
actually improved when missing classes exist due 
to the use of transferred rules extensively instead of 
going through most of the examples.   

Consequently, RULES-TL reduces the 
error rate and improves the accuracy, whether it has 
complete and incomplete datasets. Moreover, it was 
noted that RULES-TL accuracy performance was 
the same when the class is missing or not while it 
reduced the induction time when the classes are 
missing. Hence, RULES-TL is a good option for 
large and incomplete data. Ultimately, it can be 
stated that the purpose of this paper has been met, 
and RULES-TL is a valid innovate method.

 
 

Table 2: Error mean and median using Clas-5X2CV 

Dataset C4.5 rules Ripper Data 
Squeezer RULES-6 RULES-SRI 

RULES-TL 

Miss Class No Miss Class 

Source Target ẋ M ẋ M ẋ M ẋ M ẋ M ẋ M ẋ M 

ecoli yeast 0.44 0.44 0.73 0.75 0.71 0.68 0.71 0.71 0.83 0.83 0.63 0.62 0.64 0.64 

Australian 
Crd. 

Crd. 
Approval 0.13 0.14 0.16 0.16 0.32 0.32 0.24 0.23 0.36 0.37 0.19 0.20 0.18 0.17 

Cleveland Statlog 0.18 0.18 0.30 0.31 0.44 0.44 0.30 0.29 0.36 0.40 0.19 0.20 0.19 0.20 

Bupa Hepatitis 0.13 0.12 0.38 0.37 0.16 0.18 0.07 0.06 0.38 0.37 0.13 0.12 0.07 0.06 

Red Wine White 
Wine 0.50 0.51 0.49 0.49 0.62 0.61 0.53 0.54 0.95 0.95 0.53 0.54 0.53 0.54 

Average 0.27 0.27 0.41 0.41 0.45 0.44 0.37 0.36 0.57 0.58 0.33 0.33 0.32 0.32 
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Table 3: Accuracy result 
Dataset C4.5 Ripper Data 

Squeezer RULES-6 RULES
-SRI 

RULES-TL 
Source Target Miss Class No Miss Class 
ecoli yeast 0.59 0.30 0.28 0.31 0.16 0.36 0.35 

Australian 
Credit 

Credit 
Approval 0.88 0.91 0.68 0.75 0.65 0.81 0.83 

Cleveland Statlog 0.87 0.79 0.55 0.75 0.66 0.80 0.80 

Bupa Hepatitis 0.90 0.63 0.83 0.92 0.67 0.91 0.92 

Red Wine White Wine 0.52 0.70 0.37 0.46 0.05 0.47 0.46 

Average 0.75 0.66 0.54 0.63 0.43 0.67 0.67 
 

Table 4: Rule induction execution time in seconds 

Dataset RULES-TL 

Source Target Miss Class No Miss Class 
ecoli yeast 28 26 

Australian Crd. Crd. Approval 5 5 
Cleveland Statlog 1 1 

Bupa Hepatitis 1 1 
Red Wine White Wine 64 171 

 

6. CONCLUSION  

In order to predict future activities, 
RULES family was introduced. It is a covering 
algorithm family that is used to induce simple rule 
and identify future activities. However, the 
algorithms of this family are still lacking when 
dealing with incomplete data. It needs further 
improvement to handle missing classes and to 
reduce the time spent on the specialization process. 
Hence, this paper has proposed a new algorithm 
that takes advantage of advance machine learning 
methods, specifically TL, in order to transfer other 
agents' knowledge gathered from other domains.  

The performance of this algorithm was 
tested over eight dataset and compared with five 
rule induction algorithms. As a result, it was found 
that RULES-TL has improved the performance of 
RULES family over complete and incomplete 
datasets. In reality, it actually improves the 
performance more when the data is incomplete 
since the accuracy is the same while the time was 
tremendously reduced especially with large dataset. 
Nevertheless, RULES family, in general, needs 
further improvement to beat tree based algorithms 
like C4.5 rules. However, its current performance is 
comparable since the difference error rate between 
RULES-TL and C4.5 was only 5%.   

As future work it is suggested to test 
RULES-TL with larger dataset. In addition, it is 
also proposed to compare it with more rule 
induction algorithms in order to further prove its 
efficiency.  
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