
Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

28

RULES – TL: A SIMPLE AND IMPROVED RULES
ALGORITHM FOR INCOMPLETE AND LARGE DATA

HEBAH ABDULAZIZ ELGIBREEN
1
, MEHMET SABIH AKSOY

 2

1IT Department, College of Computer and Information Sciences, King Saud University, Riyadh 11413,
Saudi Arabia

2IS Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543,
Saudi Arabia

E-mail: 1 hjibreen@ksu.edu.sa , 2 msaksoy@ksu.edu.sa

ABSTRACT

In every aspect of life, many information is flowing around in which human can take advantage of. Thus,
machine learning was born to gather such information and learn how it can autonomously deal with a
certain problem. Different domains have grown to serve different purposes in the machine learning field.
One of the mostly active domains in this field is Inductive Learning. One algorithm family developed in
inductive learning is RULES. Specifically, it is a covering algorithm family where rules are directly
induced from a given set of examples. However, two major deficiencies were found in the algorithms that
belong to this family. They need to tradeoff between time and accuracy while searching for the best rule
and incomplete data were inappropriately handled. Consequently, this paper proposes a new algorithm that
is built based on RULES-6. It uses an advance machine learning method called “transfer learning” to gather
the knowledge of other agents in different domains and use it as the base knowledge that would reduce the
time of search. In addition, the transferred rules are also used to fill missing classes in order to consider not
only the labels available in the target task but also the possibility of future cases. Finally, the performance
of the proposed algorithm will be tested and compared to other rule induction algorithms to prove that it
actually improved the accuracy, reduced the error rate, and consumed a small amount of time.

Keywords – Rules Induction, Transfer Learning, RULES Family, Covering Algorithms, Inductive Learning

1. INTRODUCTION

In order to predict future activities and
induce general conclusion a field of machine
learning, called inductive learning, was introduced.
It is a form of data analysis that uses the knowledge
gained through training to build a classifier that
concludes a general conclusion in the form of rules.
Different methods have been proposed to induce
classification rules. These methods were divided
into two main types: Divide-and-Conquer (Decision
Tree) and Separate-and-Conquer (Covering).
Divide-and-conquer algorithms, such as ID3 [1]
and C4.5 [2], are classification methods that
discover rules using decision tree. This tree can be
used later to represent the rules [3]. This type of
algorithms drew a lot of attention in the past few
years because of the simplicity of deriving a rule
from the convenient data structure of trees. It only
needs to create the rules from each path through the
tree. However, handling decision tree created
greater problems and badly affected the process of
rule induction.

One of the main problems of the divide-
and-conquer algorithms is the difficulty of
representing some rules in the tree. In specific, it
will be difficult to directly induce rules that have no
common attributes from the tree and, instead, some
attributes will be redundant and irrelevant [4].
Moreover, these algorithms caused the replication
problem, where it is possible to re-learn the same
sub-trees in different branches. In addition, when
the tree is very big, understanding and handling of
such a tree will be a headache. Hence, divide and
conquer methods might lead to a confusing and
large decision tree without any reason [5].

On the other hand, the properties of
inducing rules directly from the dataset make it
more preferable than the decision tree structure.
These properties have been summarized in [6] into
four main properties. First, representing the rules as
“IF ... THEN” statement makes it more readable
than trees, i.e. more understandable and
comprehensible by peoples. Moreover, in many
cases, it has been empirically proven that rule
learning is better than decision trees. Additionally,

http://www.jatit.org/
mailto:hjibreen@ksu.edu.sa
mailto:msaksoy@ksu.edu.sa

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

29

the resulting rules can be easily used in any expert
system and can be directly stored in any
knowledge-based system. Finally, it is easy to
analyze and modify the induced rules due to their
independency. Thus, any rule can be understood
and validated without the need to reference other
rules in the repository.

As a result, researchers have recently tried
to improve covering algorithms to be comparative
or even better than divide-and-conquer methods.
Thus, different families have been born for this
purpose, such as AQ [7], CN2[8], RIPPER [9],
RULES [10], Prism [11, 12], and ELEM2 [13].
Nevertheless, RULe Extraction System (RULES)
was distinguished from the others because of its
simplicity. It allows for the discovery of
inconsistent rules to automatically obtain partial
immunity to noise. Furthermore, RULES family is
differentiated from the other algorithms because of
its preservation of the covered examples, where it is
only marked without deletion. Hence, it will avoid
repetitive computation, and the result will be more
generalized. Thus, it will resist fragmentation and
small combination problem. Consequently, it can
manage the reduction of data during the learning
process and resist rules that cover small training
examples with high error rate.

So far, different versions of RULES
family have been proposed by different authors. It
started with version one to seven in addition to
EXT, SRI and IS versions of RULES family. Each
version in the RULES family was proposed for a
certain purpose. Nevertheless, most of them have
one common property. Specifically, when searching
for the best rule, a rule is induced starting from
empty one, then a specialization process begins to
create more specialized rules from the seed
example. This process was proposed to improve the
accuracy of rule induction, but it consumes a lot of
time and needs special pruning procedures to stop
the search and reduce its space. Moreover, it is
difficult to decide what to specialize and when to
stop and as stated in [14], searching with
specialization is usually considered as one of the
time-consuming methods. Hence, it causes the
needs to tradeoff between the accuracy of the rule
induction process and its speed during the search
for the best rules.

Moreover, another problem that was
sought in RULES family is the way it handles
incomplete data. Examples that have a missing
class are either neglected or filled based on other

examples in the training set. However, when the
example is neglected it is possible to lose important
information and decrease the performance of the
algorithm. On the other hand, when the current
examples are only considered, then the available
classes are only reflected while, in reality, other
labels might also be missing from the training set.
Hence, not only the current data is important to
assign the right label but also future cases should
also be considered to increase the resistance to
noise and consider future possible cases, even if the
data is incomplete.

Nevertheless, past knowledge of other
agents can be used to solve the problems of RULES
family. It can be learned from different tasks to be
used as the base knowledge of the current problem.
This base knowledge can reduce the specialization
time because it will not be necessary to always start
from an empty rule. In addition, it can be used to
fill missing classes, where future cases are also
considered because the knowledge is taken from
different and related domains.

Thus, the purpose of this paper is to
propose a new RULES version that improves the
searching procedure and incorporates a new scheme
to handle incomplete data. Specifically, Transfer
Learning [15] will be applied to transfer rules
discovered by other agents based on different but
related tasks. These transferred rules will be used as
the base knowledge to fill the incomplete data with
all possible labels, whether it occurred in the
training set or in the past knowledge base.
Moreover, transfer rules are also used to reduce the
time of specialization and guide the searching
process by using past knowledge instead of pure
pruning.

This paper is organized as follows. First,
the background needed to understand the proposed
algorithm, including RULES and Transfer
Learning, is presented. Then, the related work is
discussed to prove the significant of the proposed
algorithm. After that, the proposed method is
presented and its details are explained. Following
that, the algorithm is tested and its empirical result
that compares the proposed algorithm with other
covering algorithms is explained and discussed.
Finally, the paper is concluded and future work is
presented.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

30

2. BACKGROUND

This section explains the background
needed to understand the proposed algorithm. It
discusses RULES family, and the way it works, in
addition to Transfer Learning.

2.1 Rule Extraction System - RULES
RULES family is one of the covering

algorithms that directly induces rules from the
training set based on the concept of separate and
conquer. It is considered as one of the simplest and
precise families. It induces one rule at a time based
on a seed example and then applies specialization
process to search for the best rules. The rule that
covers the most positive and least negative
examples are chosen as the best rule of the current
seed example. Hence, RULES family does not
require finding of completely consistent rules. It
allows the best rule to cover some negative
examples, in order to handle noisy data, reduce
over-fitting problem, and increase the flexibility of
rule induction.

After that, examples that are positively
covered by the discovered rules are marked as
covered. However, it is not removed from the
training set. This way, repeating the discovery of
the same rule is prevented while coverage accuracy
and generality of new rules will be preserved. At
the end, the algorithm is repeated until all examples
are covered. Consequently, considering the whole
training set, while training, will make RULES resist
fragmentation, where the data reduces during the
learning process, and small combination problem,
where discovered rules covers only small training
examples with high error rate.

Nevertheless, the most important part of
RULES searching strategy is the rule forming
process [16]. Rule forming process is the searching
strategy that aims to create the best rule to cover a
certain example. In specific, it searches for the best
conjunction of conditions and measures its strength
using a certain heuristics; which make this step very
costly. Thus, RULES family order the search based
on the concept of specialization (general-to-specific
search).

The main idea of specialization is to start
from the most general rule, i.e. null rule, and then
specialize it by adding one attribute at a time as an
additional condition. Nevertheless, this process
consumes a lot of time and greatly affects the
algorithm performance. In this process, a stopping
condition must be applied to stop the specialization

and reduce the searching time. However, it is
difficult to decide what to specialize and when to
stop. It is possible that some important
specialization might be neglected while focusing on
trivial ones because the stop condition is too early,
and it is also possible to consume a lot of time to
seek good results because the stop condition is far
away. Thus, it needs to tradeoff between the speed
of the search and its accuracy.

Consequently, it can be concluded, from
all above, that RULES family has a good future
concerning rule discovery. However, it needs
further improvement. Thus, this paper tries to
improve the specialization and rule discovery
process of RULES family using an advance
machine learning method called Transfer Learning,
as will be explained next.

2.2 Transfer Learning
Transfer Learning (TL) is one area of

machine learning that makes the agent learn by
connecting different but related environments [17].
Thus, instead of starting from scratch, the agent will
be able to direct its learning rather than randomly
explore the problem [18], as shown in Figure 1. For
example, in real life, a person can learn how to read
a French text using his own knowledge of English
characters. Even though French and English are
different languages, but they have related context
that a person can re-use to minimize the time
needed for the learning process.

Figure 1: Traditional machine learning vs. TL

The main motivation that caused the birth
of this kind of learning was the need to imitate how
human could apply previously learned knowledge
to improve the lifelong learning methods of
machine learning [19]. Such interest started to
increase from the mid 90s, but in 2005 TL has been
improved to find and apply previously learned
skills and knowledge to solve new tasks. Thus,
Sinno Jialin and Qiang [15] indicated that the aim

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

31

of TL is to “extract the knowledge from one or
more source tasks and applies the knowledge to a
target task.”

TL approaches, in general, have been
divided into different types depending on the state
of the class labels, as explained by Sinno Jialin and
Qiang [15]. Moreover, different types of transfer
can occur depending on what to transfer. It can
transfer instances, feature representation,
parameters, or even relationship knowledge
between the source and target tasks depending on
the problem at hand [20].

3. RELATED WORK

In RULES family, different problems have
been targeted, and different methods have been
proposed along with it. The early versions of
RULES family, specifically RULES-1 [21], 2 [22],
and 3 [23], were basically proposed to enhance the
performance of covering algorithms and induce
better rules using a simple algorithm. However,
RULES-3+ [24], afterwards, was proposed to
improve the performance of RULES-3. This
version was very famous and was used as the base
for many new algorithms. It is different from the
previous version in the way it searches for the best
rule and in sorting and selecting the candidate rules,
where specialization and H measure were applied.

After that, RULES-4 [25], which is based
on RULES3+, and RULES-IS [26] were developed
for incremental learning. In addition, RULES-5
[16], RULES-F [27], RULES-5F [28] was also
developed based on RULES3+ to handle
continuous values during the learning process.
After that, scalability became a concern so RULES-
6 [29], 7 [30], and SRI [31] were developed to
enhance the performance of RULES family and
increase its speed.

Nevertheless, even though these methods
served different purposes and were designed by
different authors, but most of the versions' search
was based on the concept of specialization, which
caused the need to tradeoff between the accuracy
and time. However, one version of RULES family,
specifically RULES-IS, did not have this property
since it was built based on the immune system
network. However, it lost the simplicity property
that makes RULES family more appealing than the
others. Moreover, in all visions of RULES
algorithm, incomplete data were inappropriately
handled. Examples that contained missing classes

were removed or current examples were used to fill
it without considering future cases.

Hence, it can be concluded that RULES
family is still lacking in different areas. In general,
two main deficiencies can be sought; which is the
tradeoff when searching for the best rule and
dealing with incomplete data. Specialization, as
discussed before, is important to surpass the
problem of irrelevant conditions. However, it
consumes a lot of time and highly affects the
algorithm performance, where it is difficult to
decide what to specialize and when to stop.
Additionally, incomplete data was inappropriately
handled without considering the future.

Nevertheless, past knowledge of other
agents can be used to solve these problems.
Knowledge that has been learned from other tasks
can be used as the base knowledge of the current
problem. Hence, TL can be integrated into
inductive learning.

In the past, inductive TL has been used in
different machine learning techniques for
classification. Instances were transferred to improve
the classification accuracy, as in [32]. Features'
representation, however, were transferred to create
a model that can handle unreliable data, especially
in images and text mining, as in [33]. Parameters
can also be transferred to guide the classification
process and, finally, relationship knowledge has
been transferred to simplify dealing with a complex
target problem, as in [34-36].

Nevertheless, these techniques were
mostly targeting certain type of data. Its target was
either to improve the accuracy or replace the
heuristics, and it was usually used to deal with a
scarce target task that is complex to deal with.
Thus, most of these algorithms actually increased
the space of searching or reduced its accuracy,
which can cause greater problems with scalability.
However, it was concluded in [37] that transferring
the whole rule from the source to the target task can
tremendously improve the induction process.
Hence, it would be better to take advantage of the
good properties of rule transfer while avoiding its
drawback.

In our knowledge, no one yet has used
Rule Transfer in covering algorithms, specifically
RULES family. Consequently, the goal of this
paper is to use TL and transfer the rules gathered by
other agents in other domains to solve the problems
of RULES family. This method will be explained in
the next section.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

32

4. RULES WITH TRANSFER LEARNING

This section explains the proposed
algorithm, which is called RULES-TL, and
discusses its key ideas. In general, RULES-TL is
based on RULES-6, and it is developed to improve
the performance of RULES family and scale it
further to incomplete data. It integrates relational
knowledge transfer (in the shape of rules) with
RULES-6. In particular, Inductive TL is applied,
which require that the information transferred from
the source contains the class label, and no missing
information is transferred. These transferred rules
are used in a way to reduce the searching space
before going through the induction process.

In general, RULES-TL maps the source
rules from the source task and transfers it to the
target tasks. These rules are then used to fill
missing classes and reduce the search space by
marking the examples covered by these rules so that
no further searching is needed for it.

RULES-TL, as explained in Figure 2,
starts by applying RULES-6 over the source tasks
to induce the best rules. Then, the resulting rules
are mapped to the target task representation. The
mapping process first removes any unrelated rules,
where an attribute or value in the rule is not found
in the target header. Then, its format is transformed
based on the format of the target task definition.
After that, every mapped rule is taken as ground
base to cover existing examples. If the rule covers
an example, then the algorithm call Induce-One-
Rule of RULES-6 but starting from the mapped rule
instead of empty one. Hence, mapped rule is
specialized to induce better ones based on the seed
example.

Main()

Input: Tset = Target set, mN = minimum negative,
mP = minimum positive, w = beam width
Output: RuleSet = induced rules

Trules = read source task rules
MappedRules = MapRules (Trules, Tset)
//Mark covered examples, store unseen rules, and
return induced rues
RuleSet = Mark_covered_examples (Tset, mP,
mN, w, MappedRules)
//update Tset
Fill_miss_class (Tset, MappedRules)
//Call RULES-6 as in [29]
RulesSet=RulesSet + RULES-6(Tset, mP, mN, w)

MapRules (Trules, Tset)

Input: Trules, Tset
Output: Transferred rules

MappedRules = ϕ
For every rule(i) ∈ Trules
//If the rule does not contain unrelated conditions

If all attribute and values of rule(i) ∈ Tset
header

MappedR(i) = change the format of rules(i)
to the same format as Tset
MappedRules=MappedRules + MappedR(i)

Return MappedRules
--
Mark_covered_examples (MappedRules, Tset,
mP, mN, w)

Input: MappedRules, Tset, mP, mN, w
Output: Transferred rules

RuleSet = ∅
Urules = ∅
For every rule(i) ∈ MappedRules

For every uncovered example in Tset
Select a seed example (s) from uncovered
example
//Call RULES-6 Induce procedure BUT
initial BestRule = rule(i) NOT empty rule

R = Induce_One_Rule (s, rule(i),
Tset, mP, mN, w)
If R≠ ϕ THEN
//mark the rule as seen since it covers
an example

 rule(i).Unseen = False
Mark example (s) as covered
RuleSet = RuleSet + R

If rule(i).Unseen = True THEN
Urules = Urules + rule(i)

Store Urules for future use
Return RuleSet

Fill_miss_class (Tset, MappedRules)

Input: MappedRules, Tset
Output: Only update the target set by filling its
missing classes

BestScore = -1
BestLabel = ϕ
For every example (s) with missing class

//get the best label based on Mapped rules
For every rule(i) ∈ MappedRules

Score = Compute S-Score for rule(i)
If (score > Threshold) & (score > BestScore)
THEN

BestScore = score
BestLabel = rule(i).label

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

33

//If no rule cover the example with missing class
If BestLabel = ϕ THEN

BestLabel = Label of most similar example
in Tset

Update s with Label value

Figure 2: RULES-TL pseudo code

Following that, covered examples are
marked as covered, rules that cover at least one
example is marked as seen rule, and rules that does
not cover any example is marked as unseen rule for
future use. Thus, past knowledge of other agents in
a different task is used as the base to discover and
induce good rules instead of always starting from
an empty rule. Hence, the accuracy and speed are
both increased. Thus, it reduces the need to tradeoff
between time and accuracy.

After that, incomplete examples, which
miss a class, are filled using the mapped rules. It
starts to measure the similarity between the
incomplete example and mapped rules using S
measure [38]. Then, the score is compared with a
threshold. If the rule score exceeds this threshold,
then the example is considered as covered.
However, if the algorithm was not able to find any
matching rule, then the most similar example in the
training set will be used to fill the missing class.
After that, RULES-6 algorithm is applied over the
uncovered examples to make sure that all the
examples are marked as covered.

Consequently, it can be concluded that the
problem of specialization is reduced because of the
use of past knowledge of other domains as the base
knowledge of new tasks. This way transferred rules
can reduce the time of specialization and improve
the accuracy. Moreover, incomplete data were
accurately handled using such past knowledge
instead of neglect important information just
because it is incomplete. Hence, it is anticipated
that RULES-TL will be more scalable and accurate
than the original RULES-6, which will be proven in
the experiment later. Nevertheless, to further
explain the key ideas of RULES-TL, each one is
presented in a separate section as follows.

4.1 Rule Quality Metric
In order to evaluate the rules and search

for the best one, a certain quality matrix should be
applied. Such matrix measures the quality of a rule
based on the available data, specifically number of
positive and negative examples covered by a rule.
Hence, it measures the quality and coverage of the
rules to guide the searching process to the best one.

In RULES-TL, two quality matrixes were used
depending on purpose of use. When the algorithm
wants to measure the rule quality in order to search
and induce the best rule of a given example, m-
probability-estimate [39] is used. This is because
the “induce rule” procedure used in RULES-TL is
based on RULES-6, and since it was found that m-
probability-estimate outperform other measures
when tested with RULES-6 then it was decided to
use the same matrix to search for the best rule
during the specialization process.

On the other hand, when it comes to
searching for the best rule and choosing for the best
label to fill the missing class, S measure was used.
It is computed using (1), where N is the total
number of negative examples, P is the total number
of positive examples, n is the number of negative
examples covered by the new rule, and p is the
number of positive examples covered by the new
rule.

𝑆 = 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑦 ∗ 𝑔𝑎𝑖𝑛 ∗ (1 −𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙)

𝑆 = 𝑝
𝑝+𝑛

. 𝑝
𝑃_𝑢𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

. (1 − 𝑛
𝑁

) (1)

As described by Bigot [38], S measure is a
measure that has been developed to improve the
rule induction result by considering the
classification gain, level, and consistency. This
measure has been tested with other covering
algorithms' measures to find that it significantly
gives better results. Hence, it was decided to choose
it when searching for the best label to fill the
missing classes.

4.2 Search-space Pruning Rules
As descried previously, two main

searching procedures are applied over RULES-TL.
The first one is the original searching procedure of
RULES-6, which is used to induce the best rule that
cover different examples. While the other searching
procedure is used to search for the best rule to fill a
missing class. Hence, in RULES-TL, two main
pruning procedures were used.

When it comes to the search space of rule
induction, four main rules were applied based on
RULES-6. It reduces the searching space and scale
the algorithm to large dataset. These rules took
advantage of the nature structure of the
specialization hypotheses [1]. This structure
indicates that the more conditions added to the rule
the fewer examples it will cover. Moreover, to
increase the algorithm resistance to future noise the
induced rule should not be overspecialized, and it

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

34

should be general enough to give good results.
Thus, the following four rules were applied to
constraint the searching space and remove rules that
would reduce the quality and speed.

If Rule.Consistency = 100% Then remove Rule

If Rule.PosCoverage ≤ MinPos Then remove Rule

If Rule.Score ≤ BestRule.Score Then remove Rule

If PreRule.NegCoverage - Rule.NegCoverage ≤ MinNeg Then

remove Rule

The pruning rules remove fully consistent
rule because it will produce overspecialized rules. It
removes rules that cover positive examples less
than an allowed number specified by the user. It
also removes the rules that start to reduce the
quality measure. Finally, when the difference
between a rule and its predecessor is less than a
threshold specified by the user then these rules are
also removed.

On the other hand, when it comes to
transfer searching space, when missing classes are
filled, a noise threshold called T threshold [25]
were used. As illustrated in (2), this threshold
considers the noise level and the ratio of positive
examples in the whole training set. In this
threshold, NL is the allowed noise specified by the
user, E is the total number of examples in the
training set, and Ei is the number of example that
belongs to a class i.

𝑇 = 2 − 2�(1 − 𝑁𝐿) 𝐸𝑖
𝐸
− 2�𝑁𝐿(1 − 𝐸𝑖

𝐸
) (2)

This threshold is then used to remove rules
that are not related to the example under sturdy.
Thus, the following rule is applied to decide if the
transfer rule can be considered when searching for
the best label or not.

If Rule.S-Score ≤ Threshold Then remove Rule

4.3 Discretization Method
In order to handle dataset that contain

continuous values, offline discretization was
applied. In specific, entropy-based discretization
method of Fayyad and Irani [40] were applied over
the dataset in order to convert the continuous values
into discrete ones. This discretization method were
chosen based on the study conducted in [41, 42],
where it was found that the, depending on the data
and algorithm used the right choice of offline
discretization method can be made. In addition, in
RULES-6 and RULES-SRI, it was empirically
proven that Fayyad and Irani discretization is the

most appropriate offline discretization for RULES
algorithms. This method split the ranges of
continuous values to small intervals to be used as
discrete values.

4.4 Missing Attributes
In real life, data is not always complete.

Gathered data usually contains missing information
and dataset attributes could contain null values.
Some researchers choose to neglect such examples,
but this is not a good decision since these examples
might contain important information that could
affect the quality of the rule induction algorithm. In
[43], different methods that handle missing
attributes have been presented and empirically
tested over many rule induction methods and large
number of datasets. As a result of this test, it was
found that imputation methods, especially Fuzzy K-
means (FK-means) [44], are the most suitable
methods to handle missing values in rule induction.

In FK-means, each object has a
membership function that measures the degree in
which the object belongs to a certain value. Hence,
it clusters the objects over values clusters based on
the membership function. Hence, RULES-TL used
FK-means to fill missing values of the attributes.
Consequently, important information will not be
lost, and incomplete data can be filled.

4.5 Missing Classes
In addition to missing values, labels might

also be missed because of natural reasons, such as
manually filling of the training set or lack of
information. Nevertheless, such examples might be
very important and can have sensitive information
that would guide the learning process to better
result. Thus, missing classes should not be
neglected. However, deciding on the best label is a
critical procedure and could highly affect the final
result. Consequently, only considering the
information of training set is not enough.

In general, past knowledge of other agents
can be a great help to fill missing labels.
Transferring knowledge from another expertise is
always a smart choice in any field of human life.
However, it cannot be guaranteed that every field
will have prior information. Consequently, RULES-
TL tries to use TL to transfer past knowledge of
other agents but not necessary from the same
domain. Thus, it can be guaranteed that filling the
missing classes will be guided by past knowledge
even if it is from other fields. Hence, new labels
will consider the available data in the current

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

35

training set in addition to the past rules gathered by
other agents.

Nevertheless, sometimes it is possible that
no transferred rules are found to be a match for the
targeted examples. In such a case, it is suggested to
use the most similar example in the training set.
The example similarity is measured based on D-
distance, as illustrated in (3), where Vi

E1 and Vi
E2

are the values of the continuous attribute (i) in
example E1,E2 respectively, Vi

min and Vi
max are the

minimum and maximum values of attribute (i), and
the distance between discrete attributes is computed
using equation (4). D-distance, as explained by
Pham, Bigot, and Dimov [16] is a distance measure
that can compare any type of examples together. In
this measure, distance between continuous
attributes is considered in addition to the difference
between the discrete ones. This way, all types of
data is taken into consideration in order to make it
possible to find an identical example that belongs to
a class so that targeted example also join the same
class.

𝐷(𝐸1,𝐸2) =

�∑ (𝑉𝐸1𝑖 −𝑉𝐸2𝑖

𝑉𝑚𝑎𝑥
𝑖 −𝑉𝑚𝑖𝑛

𝑖)2𝐴𝑙𝑙 𝑐𝑜𝑛𝑡.𝐴𝑡𝑡𝑟 + ∑ 𝑑(𝐴1,𝐴2)𝐴𝑙𝑙 𝑑𝑖𝑠𝑐.𝐴𝑡𝑡𝑟 (3)

𝑑(𝐴1,𝐴2) = �0 𝑖𝑓 𝐴1 = 𝐴2
1 𝑖𝑓 𝐴1 ≠ 𝐴2 (4)

5. EXPERIMENT

In order to test the performance of
RULES-TL different experiments were conducted.
RULES-TL was first implemented using Java
language in JBuilder environment. The experiments
were conducted on a PC with Intel®Core™ i7
CPU, 2.67 GHz processes, and 6GB RAM. In
addition, KEEL (Knowledge Extraction based on
Evolutionary Learning) tool [45, 46] was used to
build the experiments and decide on its properties.
It was also used to compare the performance
between the proposed algorithm and existing
methods.

KEEL is an open-source tool developed by
Java software to evaluate algorithms proposed for
problems of data mining. It includes a large
collection of classical rule induction algorithms that
can be used to compare the performance of the
proposed algorithm. Moreover, it has Statistical
Analysis Tools (SAT) that can be used to design an
experiment and perform a complete analysis on the

algorithms' performance using a simple graphical
user interface. Nevertheless, five key elements were
defined in order to build the desired experiment.
These elements can be described as follows.

5.1 Dataset
In order to show how reliable the proposed

algorithm is, eight dataset were used to test
RULES-TL. These data set were taken from KEEL
dataset repository [46]. The properties of each
dataset are specified in Table 1, and each dataset is
gathered as a sample from real-life data and serve a
certain domain, as follows.

Ecoli: Contains information about measures
applied over proteins to predict its localization site.

Yeast: Contains information about Yeast cells to
determine its localization site in each cell.

Australian Credit: Contains information about
Australian credit card applications to determine if it
should be approved or not.

Credit Approval: It is an extended version of
Australian Credit with more information.

Cleveland: Contains information about Cleveland
heart disease to detect the occurrence of heart
disease in the patients of Cleveland Clinic
Foundation in Long Beach USA.

Statlog: Contain general information about heart
disease to detect its presence or absence.

Bupa: Contains information about liver disorder
that might occur due to excessive alcohol
consumption in order to decide if a person suffers
from alcoholism.

Hepatitis: Contains information about hepatitis
patients in order to indicate if he survives or not.

Red Wine: Contains information about red wine to
indicate whether it has good quality or not.

White Wine: Contains information about white
wine to indicate whether it has good quality or not.

Table 1: Experiment dataset property
Dataset #Examples #Attributes #Labels

ecoli 336 7 8
yeast 1484 8 10
Australian
Crd. 690 14 2

Crd.
Approval 690 15 2

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

36

Dataset #Examples #Attributes #Labels
ecoli 336 7 8
yeast 1484 8 10
Australian
Crd. 690 14 2

Crd.
Approval 690 15 2

Cleveland 303 13 5
Statlog 270 13 2
Bupa 345 6 2
Hepatitis 155 19 2
Red Wine 1599 11 11
White
Wine 4898 11 11

Moreover, each dataset is partitioned to

five-pair partitions using the hold-out approach
[47]. Each pair includes a test and training data.
The training data is used for training the algorithm,
and the test data is used to test the result of the
algorithm. In specific, for the large dataset (data
with more than one thousands examples), the test
set include one-third of the data while the training
set include the remaining two third. However, with
small data (data with less than one thousands
examples) the partitioning was repeated five times,
and the result was averaged.

5.2 Predecessors
As discussed previously, the attributes

values sometimes need further refinement before
starting with the learning process. In specific,
predecessor procedures need to be applied over all
the data to deal with missing and continuous
attributes. Hence, like RULES-TL, FK-means and
entropy-based discretization method of Fayyad and
Irani are applied over the data in order to fill
missing attributes and discretize continuous values.

5.3 Comparative Covering Algorithms
In order to prove that the performance of

rule induction has improved by using RULES-TL,
five different covering algorithms were compared
with RULES-TL performance. Specifically, the
following algorithms were tested.

RULES-6: The predecessor of RULES-TL, where
the transfer learning was not applied.

RULES-SRI: One version of RULES family that
was proposed to improve the scalability and make
the algorithm more accurate over large data set.

Ripper [48]: An algorithm that is developed to
directly generate rules by combining attributes that
positively cover as many examples as possible.

C4.5Rules [2]: A decision tree based algorithm that
discovers rules using decision tree and then use the
resulting tree to represent the rules.

DataSqueezer [6]: A covering algorithm that is a
fast, supervised, greedy, and simple algorithm,
which required the existence of all class labels.

5.4 Postprocessor
After conducting the experiment, and to

visualize the result, different statistical analysis
tests were applied. Specifically, three statistical
tests were recorded to measure the error rate of
each algorithm, their accuracy, and the time spent
by RULES-TL. The details of each statistical test
can be described as follows.

5x2CV Test [49]: It is an approximate statistical
test that compares supervised learning algorithms.
It shows the error mean and median of each
algorithm based on 2 fold-cross validation and five
iterations.

Accuracy Test: It shows the accuracy result of
each algorithm by testing the final rules over the
test set.

Time Test: It measures the rule induction time
spent by RULES-TL, measured by seconds.

5.5 Evaluation Result
Using the resulting statistics of KEEL

analysis tool, it was possible to record the
algorithms' performance, as illustrated in Table 2.
As it can be noticed, the average error rate in
RULES-TL is less than all the other algorithms,
except for C4.5rules. Specifically, transferring rules
to a dataset, with missing classes or not, usually
improves the performance. However, comparing to
the tree based algorithm (C4.5rules), the average
performance has slightly reduced. Nevertheless, in
some datasets the performance of RULES-TL has
outperformed the C4.5rule algorithm and, on
average, the error difference between the two
algorithms is only 5%. Hence, it can be said that
RULES-TL is comparable to C4.5, not to mention
that RULES-TL uses a special procedure to deal
with missing classes.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

37

Moreover, the previous statement can be
further verified when considering the accuracy of
the resulting rules, as illustrated in Table 3. As it
can be noticed the accuracy performance of
RULES-TL is the same whether the classes are
missing or not, and it has more accuracy than most
of the algorithms. In addition, in comparison to
C4.5 rules, the accuracy of both algorithms in most
of the datasets is comparable. On average, C4.5 has
8% more accuracy than RULES-TL. Nevertheless,
such percentage is better than the result of past
RULES algorithms.

Consequently, it is important to emphasize
that, whether the dataset have missing classes or
not, RULES-TL outperformed its predecessor
RULES-6, and it is more scalable than RULES-
SRI. It has better accuracy and less error rate on all
tested data. Hence, it can be stated that RULES-TL
has improved the scalability of RULES family over
complete and incomplete data. This is because
RULES scalable algorithms, specifically RULES-6
and RULES-SRI, result in worse performance.

Additionally, when it comes to the speed
of RULES-TL, it can be noticed that it does not
spend a large amount of time on rule induction. As
illustrated in Table 4, it is only a matter of seconds
to induce rules. In the most difficult case, when the
red-wine dataset has 1599 examples and its target
(white wine) has 4898, it only takes 171 seconds
when all classes are available and 64 seconds when
missing classes exists. Moreover, it must be noted
that the performance of the algorithm speed
actually improved when missing classes exist due
to the use of transferred rules extensively instead of
going through most of the examples.

Consequently, RULES-TL reduces the
error rate and improves the accuracy, whether it has
complete and incomplete datasets. Moreover, it was
noted that RULES-TL accuracy performance was
the same when the class is missing or not while it
reduced the induction time when the classes are
missing. Hence, RULES-TL is a good option for
large and incomplete data. Ultimately, it can be
stated that the purpose of this paper has been met,
and RULES-TL is a valid innovate method.

Table 2: Error mean and median using Clas-5X2CV

Dataset C4.5 rules Ripper Data
Squeezer RULES-6 RULES-SRI

RULES-TL

Miss Class No Miss Class

Source Target ẋ M ẋ M ẋ M ẋ M ẋ M ẋ M ẋ M

ecoli yeast 0.44 0.44 0.73 0.75 0.71 0.68 0.71 0.71 0.83 0.83 0.63 0.62 0.64 0.64

Australian
Crd.

Crd.
Approval 0.13 0.14 0.16 0.16 0.32 0.32 0.24 0.23 0.36 0.37 0.19 0.20 0.18 0.17

Cleveland Statlog 0.18 0.18 0.30 0.31 0.44 0.44 0.30 0.29 0.36 0.40 0.19 0.20 0.19 0.20

Bupa Hepatitis 0.13 0.12 0.38 0.37 0.16 0.18 0.07 0.06 0.38 0.37 0.13 0.12 0.07 0.06

Red Wine White
Wine 0.50 0.51 0.49 0.49 0.62 0.61 0.53 0.54 0.95 0.95 0.53 0.54 0.53 0.54

Average 0.27 0.27 0.41 0.41 0.45 0.44 0.37 0.36 0.57 0.58 0.33 0.33 0.32 0.32

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

38

Table 3: Accuracy result
Dataset C4.5 Ripper Data

Squeezer RULES-6 RULES
-SRI

RULES-TL
Source Target Miss Class No Miss Class
ecoli yeast 0.59 0.30 0.28 0.31 0.16 0.36 0.35

Australian
Credit

Credit
Approval 0.88 0.91 0.68 0.75 0.65 0.81 0.83

Cleveland Statlog 0.87 0.79 0.55 0.75 0.66 0.80 0.80

Bupa Hepatitis 0.90 0.63 0.83 0.92 0.67 0.91 0.92

Red Wine White Wine 0.52 0.70 0.37 0.46 0.05 0.47 0.46

Average 0.75 0.66 0.54 0.63 0.43 0.67 0.67

Table 4: Rule induction execution time in seconds

Dataset RULES-TL

Source Target Miss Class No Miss Class
ecoli yeast 28 26

Australian Crd. Crd. Approval 5 5
Cleveland Statlog 1 1

Bupa Hepatitis 1 1
Red Wine White Wine 64 171

6. CONCLUSION

In order to predict future activities,
RULES family was introduced. It is a covering
algorithm family that is used to induce simple rule
and identify future activities. However, the
algorithms of this family are still lacking when
dealing with incomplete data. It needs further
improvement to handle missing classes and to
reduce the time spent on the specialization process.
Hence, this paper has proposed a new algorithm
that takes advantage of advance machine learning
methods, specifically TL, in order to transfer other
agents' knowledge gathered from other domains.

The performance of this algorithm was
tested over eight dataset and compared with five
rule induction algorithms. As a result, it was found
that RULES-TL has improved the performance of
RULES family over complete and incomplete
datasets. In reality, it actually improves the
performance more when the data is incomplete
since the accuracy is the same while the time was
tremendously reduced especially with large dataset.
Nevertheless, RULES family, in general, needs
further improvement to beat tree based algorithms
like C4.5 rules. However, its current performance is
comparable since the difference error rate between
RULES-TL and C4.5 was only 5%.

As future work it is suggested to test
RULES-TL with larger dataset. In addition, it is
also proposed to compare it with more rule
induction algorithms in order to further prove its
efficiency.

ACKNOWLEDGEMENT

The authors would like to thank the
Research Center at college of Computer and
Information Sciences, King Saud University,
Riyadh, Saudi Arabia for their support.

REFERENCES

[1] T. M. Mitchell, Machine Learning. New
York: McGraw-Hill, 1997.

[2] J. R. Quinlan, C4.5: Programs for Machine
Learning: Morgan Kaufmann, 1993.

[3] F. Stahl and M. Bramer, "Computationally
efficient induction of classification rules with
the PMCRI and J-PMCRI frameworks,"
Knowledge-Based Systems, 2012.

[4] F. Stahl, M. Bramer, and M. Adda, "PMCRI:
A Parallel Modular Classification Rule
Induction Framework," in Machine Learning
and Data Mining in Pattern Recognition. vol.
5632, P. Perner, Ed., ed: Springer Berlin /
Heidelberg, 2009, pp. 148-162.

[5] I. H. Witten, E. Frank, and M. A. Hall, Data
Mining Practical Machine Learning Tools and

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

39

Techniques, Third ed.: Morgan Kaufmann,
2011.

[6] L. A. Kurgan, K. J. Cios, and S. Dick, "Highly
Scalable and Robust Rule Learner:
Performance Evaluation and Comparison,"
IEEE SYSTEMS, MAN, AND
CYBERNETICS—PART B: CYBERNETICS,
vol. 36, pp. 32- 53, 2006.

[7] R. Michalski, "On the quasi-minimal solution
of the general covering problem," in V
International Symposium on Information
Processing, Yougoslavia, Bled, 1969, pp. 128-
128.

[8] P. Clark and T. Niblett, "The CN2 induction
algorithm," Machine Learning, vol. 3, pp.
261-283, 1989.

[9] E. Frank and I. H. Witten, "Generating
Accurate Rule Sets Without Global
Optimization," presented at the Fifteenth
International Conference on Machine
Learning, 1998.

[10] M. Aksoy, "A review of rules family of
algorithms," Mathematical and Computational
Applications, vol. 13, pp. 51-60, 2008.

[11] F. Stahl, M. Bramer, and M. Adda, "P-Prism:
A Computationally Efficient Approach to
Scaling up Classification Rule Induction," in
Artificial Intelligence in Theory and Practice
II. vol. 276, M. Bramer, Ed., ed: Springer
Boston, 2008, pp. 77-86.

[12] F. Stahl and M. Bramer, "Induction of
Modular Classification Rules: Using Jmax-
pruning," pp. 79-92, 2011.

[13] A. An, "Learning classification rules from
data," Computers & Mathematics with
Applications, vol. 45, pp. 737-748, 2003.

[14] H. Theron, "An Empirical Evaluation of Beam
Search and Pruning in BEXA," in Fifth
International Conference on Tools with
Artificial Intelligence (TAI '93) Boston, MA,
1993, pp. 132- 139.

[15] P. Sinno Jialin and Y. Qiang, "A Survey on
Transfer Learning," Knowledge and Data
Engineering, IEEE Transactions on, vol. 22,
pp. 1345-1359, 2010.

[16] D. Pham, S. Bigot, and S. Dimov, "RULES-5:
a rule induction algorithm for classification
problems involving continuous attributes," in
Institution of Mechanical Engineers, 2003, pp.
1273-1286.

[17] J. Ramon, K. Driessens, and T.
Croonenborghs, "Transfer Learning in
Reinforcement Learning Problems Through
Partial Policy Recycling: Machine Learning,"
in ECML 2007. vol. 4701, J. Kok, J.

Koronacki, R. Mantaras, S. Matwin, D.
Mladenic, and A. Skowron, Eds., ed: Springer
Berlin / Heidelberg, 2007, pp. 699-707.

[18] M. Taylor, H. B. Suay, and S. Chernova,
"Integrating Reinforcement Learning with
Human Demonstrations of Varying Ability,"
in International Conferance of Autonomous
Agents and Multiagent Systems (AAMAS
2011), Taipei, Taiwan, 2011.

[19] M. Mahmud, "On Universal Transfer
Learning Algorithmic Learning Theory." vol.
4754, M. Hutter, R. Servedio, and E.
Takimoto, Eds., ed: Springer Berlin /
Heidelberg, 2007, pp. 135-149.

[20] L. Yongqiang, "A Review About Transfer
Learning Methods and Applications," in
International Conference on Information and
Network Technology IPCSIT, Singapore,
2011, pp. 7-11.

[21] D. T. Pham and M. S. Aksoy, "RULES: A
simple rule extraction system," Expert Systems
with Applications, vol. 8, pp. 59-65, 1995.

[22] D. T. Pham and M. S. Aksoy, "An algorithm
for automatic rule induction," Artificial
Intelligence in Engineering, vol. 8, pp. 277-
282, 1993.

[23] D. T. Pham and M. S. Aksoy, "A new
algorithm for inductive learning," Journal of
Systems Engenering, vol. 5, pp. 115-122,
1995.

[24] D. T. Pham and S. S. Dimov, "The RULES-3
Plus inductive learning algorithm," in In
Proceedings of the Third World Congress on
Expert Systems, Seoul, Korea, 1996, pp. 917–
924.

[25] D. T. Pham and S. S. Dimov, "An algorithm
for incremental inductive learning," Journal of
Engineering Manufacture, vol. 211, pp. 239-
249, 1997.

[26] D. T. Pham and A. J. Soroka, "An Immune-
network inspired rule generation algorithm
(RULES-IS)," in Third Virtual International
Conference on Innovative Production
Machines and Systems, WhittlesDunbeath,
2007.

[27] D. T. Pham, S. Bigot, and S. S. Dimov,
"RULES-F: A fuzzy inductive learning
algorithm," Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science, vol. 220, pp.
1433-1447, 2006.

[28] S. Bigot, "A new rule space representation
scheme for rule induction in classification and
control applications," Proceedings of the
Institution of Mechanical Engineers, Part I:

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 10th January 2013. Vol. 47 No.1

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

40

Journal of Systems and Control Engineering,
2011.

[29] D. T. Pham and A. A. Afify, "RULES-6: A
Simple Rule Induction Algorithm for
Supporting Decision Making," presented at
the 31st Annual Conference of IEEE
Industrial Electronics Society (IECON '05),
2005.

[30] K. Shehzad, "EDISC: A Class-tailored
Discretization Technique for Rule-based
Classification," IEEE Transactions on
Knowledge and Data Engineering, vol. 24, pp.
1435-1447, 2012.

[31] A. A. Afify and D. T. Pham, "SRI: A Scalable
Rule Induction Algorithm," Proceedings of
the Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering
Science, vol. 220, pp. 537-552, 2006.

[32] W. Pan, E. Zhong, and Q. Yang, "Transfer
Learning for Text Mining," pp. 223-257,
2012.

[33] Y.-F. Xie, S.-Z. Su, and S.-Z. Li, "A
Pedestrian Classification Method Based on
Transfer Learning," presented at the
International Conference on Image Analysis
and Signal Processing - IASP, Zhejiang, 2010.

[34] J. I. Estévez, P. A. Toledo, and S. Alayón,
"Using an Induced Relational Decision Tree
for Rule Injection in a Learning Classifier
System," presented at the IEEE Congress on
Evolutionary Computation New Orleans, LA,
2011.

[35] H. Boström, "Induction of Recursive Transfer
Rules," in Learning Language in Logic. vol.
1925, J. Cussens and S. Džeroski, Eds., ed:
Springer Berlin / Heidelberg, 2000, pp. 369-
450.

[36] M. D. Reid, "DEFT Guessing: Using
Inductive Transfer to Improve Rule
Evaluation from Limited Data," Doctor of
Philosophy, School of Computer Science and
Engineering, The University of New South
Wales, Sydney, Australia, 2007.

[37] P. Ganchev, D. Malehorn, W. L. Bigbee, and
V. Gopalakrishnan, "Transfer learning of
classification rules for biomarker discovery
and verification from molecular profiling
studies," Journal of biomedical informatics,
vol. 44 Suppl 1, pp. S17-23, Dec 2011.

[38] S. Bigot, "A study of specialisation and
classification heuristics used in covering
algorithms," presented at the IPROM2009
Innovative Production Machines and Systems
Fifth I*PROMS Virtual Conference, Cardiff,
UK, 2009.

[39] J. Fürnkranz and P. A. Flach, "An analysis of
rule evaluation metrics," in 20th International
Conference on Machine Learning,
Washington, DC, USA, 2003, pp. 202-209.

[40] U. M. Fayyad and K. B. Irani, "Multi-interval
discretization of continuousvalued attributes
for classification learning," presented at the
13th International Joint Conference of
Artificial Intelligence, 1993.

[41] Z. Cai, "Technical Aspects of Data Mining,"
PhD, University of Wales Cardiff, Cardiff,
UK, 2001.

[42] D. T. Pham and A. A. Afify, "Online
Discretization of Continuous-Valued
Attributes in Rule Induction," Proceedings of
the Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering
Science, vol. 219, pp. 829-842, 2005.

[43] J. Luengo, S. García, and F. Herrera, "On the
choice of the best imputation methods for
missing values considering three groups of
classification methods," Knowledge and
Information Systems, vol. 32, pp. 77-108,
2012/07/01 2012.

[44] J. Deogun, W. Spaulding, B. Shuart, and D.
Li., "Towards Missing Data Imputation: A
Study of Fuzzy K-means Clustering Method,"
presented at the 4th International Conference
of Rough Sets and Current Trends in
Computing (RSCTC'04), Uppsala, Sweden,
2004.

[45] J. Alcalá-Fdez, L. Sánchez, S. García, M. J. d.
Jesus, S. Ventura, J. M. Garrell, J. Otero, C.
Romero, J. Bacardit, V. M. Rivas, J. C.
Fernández, and F. Herrera, "KEEL: A
Software Tool to Assess Evolutionary
Algorithms to Data Mining Problems," Soft
Computing, vol. 13, pp. 307-318, 2009.

[46] J. Alcalá-Fdez, A. Fernandez, J. Luengo, J.
Derrac, S. García, L. Sánchez, and F. Herrera,
"KEEL Data-Mining Software Tool: Data Set
Repository, Integration of Algorithms and
Experimental Analysis Framework," Journal
of Multiple-Valued Logic and Soft Computing
vol. 17, pp. 255-287, 2011.

[47] B. Efron and R. Tibshirani, An Introduction to
the Bootstrap. USA: Chapman & Hall, 1993.

[48] W. W. Cohen, "Fast Effective Rule
Induction," in Twelfth International
Conference on Machine Learning, 1995, pp.
115-123.

[49] T. G. Dietterich, " Approximate Statistical
Tests for Comparing Supervised Classification
Learning Algorithms," Neural Computation
vol. 10, pp. 1895-1923, 1998.

http://www.jatit.org/

	HEBAH ABDULAZIZ ELGIBREEN1, Mehmet Sabih Aksoy 2

